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Abstract

We consider the problem of forecasting the future
locations of pedestrians in an ego-centric view of a
moving vehicle. Current CNNs or RNNs are flawed
in capturing the high dynamics of motion between
pedestrians and the ego-vehicle, and suffer from the
massive parameter usages due to the inefficiency of
learning long-term temporal dependencies. To ad-
dress these issues, we propose an efficient multi-
modal transformer network that aggregates the tra-
jectory and ego-vehicle speed variations at a coarse
granularity and that interacts with the optical flow
in a fine-grained level to fill the vacancy of highly
dynamic motion. Specifically, a coarse-grained fu-
sion stage fuses the information between trajec-
tory and ego-vehicle speed modalities to capture
the general temporal consistency. Meanwhile, a
fine-grained fusion stage merges the optical flow
in the center area and pedestrian area, which com-
pensates the highly dynamic motion of ego-vehicle
and target pedestrian. The whole network is only
attention-based that can efficiently model long-
term sequences for better capturing the temporal
variations. Our multimodal transformer is validated
on the PIE and JAAD datasets and achieves the
state-of-the-art performance with the most light-
weight model size. The codes are available at
https://github.com/ericyinyzy/MTN trajectory.

1 Introduction
Pedestrian trajectory prediction anticipates the future bound-
ing boxes of pedestrians in an ego-centric view of a mov-
ing vehicle, which is critical for autonomous driving sys-
tems to avoid possible collisions. It also benefits various
visual research fields such as pedestrians intention estima-
tion [Schneemann and Heinemann, 2016; Rehder et al., 2018;
Saleh et al., 2019], video prediction [Wichers et al., 2018;
Oliu et al., 2018; Ye et al., 2019; Wu et al., 2020], and
pose forecasting [Mangalam et al., 2020; Adeli et al., 2020;
Cao et al., 2020]. The task requires different visual modal-
ities to capture the highly dynamic motion information be-
tween pedestrians and ego-vehicle, which is hard to reflect in

the changes of bounding boxes [Styles et al., 2020]. Addi-
tionally, how to model the long-term location dependencies
more effectively and implement with fewer parameters also
increases the challenges.

Existing approaches have closely studied additional vi-
sual modalities, which have significantly improved the per-
formance on pedestrian trajectory prediction tasks compared
to those only trajectory-based methods [Alahi et al., 2016;
Bhattacharyya et al., 2018]. Some methods [Rasouli et al.,
2019; Malla et al., 2020] utilize image sequence to extract
a semantic prior for guiding the future trajectory, like cross-
ing intention [Rasouli et al., 2019] or predefined action cate-
gory [Malla et al., 2020]. The semantic priors can provide
general orientation (e.g. across or along the sidewalk) of
future trajectories whereas it is hard to satisfy the demand
for precise locating. Recently, an approach [Makansi et al.,
2020] exploits scene segmentation to estimate all possible
end-locations of target pedestrian to predict future trajectory.
The performance, however, may degenerate because of the
low accuracy of end-locations estimation caused by the lim-
ited perception perspective and the changing scene from the
ego-centric view. A remedy for these drawbacks is to intro-
duce optical flow to extract motion features for compensating
the temporal features in the past trajectory [Styles et al., 2019;
2020]. Nevertheless, only using optical flow in the bounding
boxes [Styles et al., 2019; 2020] can not effectively compen-
sate the motion from the ego-vehicle. It also sustains the in-
terference from irrelevant motion in the scene.

Apart from that, current RNNs [Rasouli et al., 2019;
Dendorfer et al., 2020] or CNNs [Styles et al., 2019; 2020]
approaches have been widely applied to relevant tasks and
have achieved promising progress. However, CNNs fail to
model the long-term dependencies due to the limited recep-
tive field, and RNNs are usually flawed in extracting local se-
quence patterns [Wang, 2018] which sometimes contain key
clues for predicting future. Moreover, in fusion mechanism,
most existing networks directly merge the features from dif-
ferent modalities through a simple concatenation. The lack
of mining characteristics and relations of distinct modalities
makes these approaches hardly capture the interaction be-
tween various granular motion features and produce redun-
dant parameters that are limited to deploy on vehicle plat-
forms with less computing resources.

To address such limitations, we propose a Multimodal
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Transformer Network (MTN), which integrates the observed
trajectory, ego-vehicle speed and optical flows to predict
future pedestrian trajectory. Owing to the relations be-
tween observed trajectory of target and ego-vehicle speed se-
quence, a novel coarse-grained fusion stage firstly pro-
cesses the two modalities to produce a hybrid represen-
tation through a co-attentional mechanism. The inspira-
tion comes from vision-language tasks [Lu et al., 2019].
Next, a fine-grained fusion stage integrates the hybrid results
of the former stage with the motion representations of pedes-
trians and ego-vehicle. The latter can provide fine-grained
dynamic motion information and is obtained when we pro-
cess separated patches of the optical flow in the center area
and target pedestrians in parallel. This fusion stage can also
avoid interference from the motion of irrelevant objects. Fi-
nally, MTN outputs future locations of the target in parallel in
one time. The whole network is only attention-based, which
can efficiently model long-term sequences and better capture
the local temporal variations through a coarse-to-fine manner.

The effectiveness of our method is evaluated on the two
largest datasets with dense pedestrian bounding box annota-
tions, PIE [Rasouli et al., 2019] and JAAD [Rasouli et al.,
2017], under the benchmark of [Rasouli et al., 2019]. Exper-
imental results demonstrate that our method achieves state-
of-the-art performance with the fewest parameters.

In summary, the main contributions of this paper can be
summarized as follows:

1) The introduction of the center area and target pedestrian
optical flow compensates the highly dynamic motion between
the ego-vehicle and pedestrians by dividing them into patches
and processing in parallel.

2) The proposed MTN integrates multiple modalities at
distinct stages according to their granularity to more effec-
tively capture of the highly dynamic motion information. In
addition, the MTN takes advantages of attention-based archi-
tecture to efficiently model long-range temporal dependen-
cies with much fewer parameters.

2 Method
In this section, we describe the details of our method which
include the optical flow representations, the multimodal
transformer architecture, and a warm-up training strategy.

2.1 Optical Flow Representations
The center area and target boxes of optical flows imply ego-
vehicle and pedestrian motion. Both of them compensate the
highly dynamic motion by dividing flows into patches and
applying a spatial average pooling on them due to the lo-
cal smoothness. As Fig. 1 shows, for the t-th frame of the
optical flows, a Region Of Proposal (ROI) φtego with shape
(2, Hego,Wego) is cropped at the center. Then, φtego is split
intoM patches with equal area, each patch owns the shape of
(2, bHego√

M
c, bWego√

M
c) and may contain specific motion. Next,

the i-th patch φt,iego is operated by a spatial average pooling

to generate a vector φt,iego ∈ R2×1. After repeating the above
operations with a fixed Hego and Wego for each frame of the
optical flows, M vectors of each frame are concatenated at
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Figure 1: Optical flow representations. At each time step, optical
flows from center area and pedestrian area are divided into patches
and processed in parallel.

the first dimension and results in the motion representation of
ego-vehicle φe ∈ R2(T−1)×M .

Optical flow is also exploited to compensate the dynam-
ics of pedestrians, like changing direction rapidly. For
the t-th frame of optical flows, a ROI φtped with shape
(2, Ht

ped,W
t
ped) is firstly extracted, where Ht

ped and W t
ped

are chosen from the bounding box annotation of the target in
the frame t. Next, φtped is spatially divided into P patches{
φt,jped

}
j=1,2,...,P

, and the motion representation of target

pedestrian φp ∈ R2(T−1)×P is obtained after the same pro-
cesses like φe. Finally, φe and φp incorporate the fine-grained
dynamic motion and will be merged by the multimodal trans-
former network.

2.2 Multimodal Transformer Network
As is shown in Fig. 2, MTN consists of a coarse-grained fu-
sion stage and a fine-grained fusion stage. The former stage
merges trajectory and speed sequences by a co-attentional
mechanism. The latter stage fuses the former results and rep-
resentations from optical flows to estimate the future trajec-
tories. Following notions are used: Lobs ∈ RT×4 and Sobs ∈
RT×1 represent the observed trajectory and the speed se-
quence, where T is the length of the observation sequence and
the 4 dimensions of Lobs are defined by top-left coordinate
and bottom-right coordinate. φe and φp indicate fine-grained
motion representations of ego-vehicle and pedestrians as de-
scribed in section 2.1.
Coarse-grained fusion. Ego-vehicle speed is usually
closely related to target trajectory. For example, the trajec-
tory usually changes rapidly when the ego-vehicle is driving
at a high speed. Due to such property, the coarse-grained fu-
sion stage combines the observed trajectory with ego-vehicle
speed through a co-attentional mechanism and outputs a hy-
brid representation which contains the relative motion at a
coarse granularity. As is illustrated in the top row of Fig. 2,
the coarse-grained fusion stage includes two fully connected
layers and three blocks that are linked sequentially. Each
block consists of a self-attention module, two cross-attention
modules and two feed-forward layers. Giving input trajec-
tory Lobs and ego-vehicle speed Sobs, the coarse-grained fu-
sion stage separately sends them into two independent fully
connected layers. For Lobs, an initial location representa-
tion with shape (T,C) is generated by a linear transforma-
tion and adding the positional embeddings like [Vaswani et
al., 2017] to provide the order of observed locations. For
Sobs, a fully connected layer transforms speed sequence into
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Figure 2: Overall structure of MTN. The MTN is a transformer-based network that consists of two stages to process and interacts modalities
at different granularity respectively. The ⊕ denotes matrix addition.

a C-dimensional space to capture the overall speed variation
patterns by producing a vector with shape (1, C). After that,
the initial location representation from Lobs is sent into a self-
attention module to extract the long-term temporal dependen-
cies. Then two cross-attention modules are utilized to com-
pute cross-correlations between speed and trajectory in a co-
attentional mechanism. Specifically, the input of each cross-
attention module in Fig. 2 is query, key, and value matri-
ces from top to bottom. Co-attentional mechanism computes
query matrices from their own modalities whereas calculates
key and value matrices from opposite modalities to perform
cross-attention like [Carion et al., 2020]. Next, two inter-
mediate representations that contain the trajectory and speed
patterns are generated through separate feed forward layers.
After transmitting the intermediate representations into the
remaining blocks, the coarse-grained fusion stage finally gen-
erates a coarse-grained motion representationXmix ∈ RT×C

by adding up the outputs from the last block.

Fine-grained fusion. Fine-grained fusion stage exchanges
information between the coarse-grained motion representa-
tion Xmix and fine-grained motion representations of ego-
vehicle φe and pedestrians φp which compensate for the lack
of highly dynamic motion. Concretely, the fine-grained fu-
sion stage contains three blocks and two fully connected lay-
ers. Each block consists of three multi-head attention mod-
ules, an add & norm layer and a feed forward layer. Giv-
ing Xmix, φe and φp as inputs, Xe and Xp are firstly gen-
erated by projecting φe and φp into a C-dimensional space
through two independent fully connected layers. The first
block expects Xmix, Xe, Xp and a trajectory query Xd as
inputs, where Xd ∈ RN×C is a sinusoidal embedding since
the future locations are fixed chronologically and N is the
length of the prediction sequence. Each multi-head attention
block takes in charge of interacting Xd with the correspond-
ing representation. Specifically, the input of each multi-head
attention module from top to bottom is query, key and value
matrices. The attention mechanism mainly extracts the most
dependent motion information for the query matrix Xd. For
example, it can capture ego-vehicle motion more sensitively
and also suppress interference from other factors such as ir-
relevant motion. After that, the output of each multi-head
attention module are added together with Xd,followed by a
layer normalization and a feed-forward layer to generate an
intermediate representation. Then the intermediate represen-

tations are delivered into the left blocks with Xe, Xp and
Xmix to proceed as before. Finally, the output of the last
block is delivered into a fully connected layer, and added by
the last observed location lT to form the trajectory prediction
result L̂pred ∈ RN×4.

2.3 Training
At training stage, we adopt mean squared error (MSE) loss
function for training our MTN:

Loss =
1

N

N∑
t=1

‖l̂T+t − lT+t‖2, (1)

where l̂T+t is the t-th location of L̂pred and lT+t represent
corresponding ground truth.

To make training converge more stable and faster, we ap-
ply a warm-up training strategy. Specifically, we remove the
modules related to ego-vehicle speed in the coarse-grain fu-
sion stage and the modules related to optical flow in the fine-
grained fusion stage. The remaining components of MTN
are firstly pre-trained by only taking Lobs as input for a few
epochs. Next, MTN is initialized by the pre-trained model
and completes the training process after specified epochs.

3 Experiments
Datasets. We evaluate MTN on Pedestrian Intention Esti-
mation (PIE) [Rasouli et al., 2019] and Joint Attention in
Autonomous Driving (JAAD) [Rasouli et al., 2017] datasets.
The PIE consists of 1, 842 pedestrian tracks and 909, 480
bounding boxes in 37 videos, recorded by a HD (1080×1920,
30 fps) camera from a front-view in Canada during daytime.
It also provides dense frame-wise bounding box annotations
and ego-vehicle information. For a fair comparison, we adopt
the same kind of ego-vehicle sensor information e.g. vehicle
speed and train/test splits as in [Rasouli et al., 2019]. The
JAAD includes 2, 856 pedestrian tracks and 82, 032 frames in
346 video clips. We apply the same train/test split as in [Ra-
souli et al., 2019].
Evaluation metrics. The Mean Squared Error (MSE) is
the commonly used evaluation metric. MSE computes each
time step’s average similarity between the predicted bounding
box and ground truth. Besides, CMSE and CFMSE are also
adopted to evaluate similarity over the spatial location and
long-term prediction. CMSE represents the MSE between
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PIE JAAD
Method Para. MSECMSECFMSEMSECMSECFMSE

B-LSTM - 855 811 3259 1535 1447 5615
DTP-MOF11.30 665 566 2373 1158 1014 4143

PIEfull 3.07 559 520 2162 - - -
PIEtraj 1.24 636 596 2477 1248 1183 4780
STED 13.94 461 415 1871 1044 960 4031

MTNtraj 0.11 581 547 2278 1231 1177 4644
MTN 0.13 444 414 1627 1005 951 4010

Table 1: Quantitative comparison on PIE dataset and JAAD
datasets. The number of parameters (Para.) is displayed in M
(million).

the center of the predicted bounding box and the ground truth.
CFMSE is the CMSE at the last time step. All prediction re-
sults are given in pixels. The parameters of different methods
also attend in our comparison to evaluate the deployment po-
tential.
Implementation details. Samples of JAAD and PIE are
generated following [Rasouli et al., 2019]. For each sam-
ple, we employed RAFT [Teed and Deng, 2020] to extract
optical flow per frame, and downsample the results by 2
times. The height Hego and width Wego of the center ROI
are set to be 160 pixels, and the number of patches M and
P are 64 and 9. Each patch owns the same area. The
length of observation sequence T is set to be 15 frames
(0.5s) and the length of prediction sequence N is 45 frames
(1.5s). The number of total training epoch is 80, and ten
epochs are used to warm up parts of the MTN as Sec. 2.3
states. The number of batch size is 128 and the Adam op-
timizer [Kingma and Ba, 2015] is used. All experiments
are conducted on a single GTX 2080Ti. Since the JAAD
dataset do not provide odometry information and most sam-
ples have high visibility, we remove the components related
to the ego-vehicle speed and replace the residual term lT with
the locations of linear prediction like [Styles et al., 2019;
2020]. In the following sections, we take B-LSTM [Bhat-
tacharyya et al., 2018], DTP-MOF [Styles et al., 2019],
PIEfull [Rasouli et al., 2019], PIEtraj (the baseline ver-
sion of PIEfull which only takes trajectory as input), and
STED [Styles et al., 2020] as the comparative state-of-the-
art methods. For DTP-MOF and STED, the length of input
and output sequences are changed for a fair comparison. Be-
sides, the original DTP-MOF only considers the centroid of
bounding boxes. Thus we change it by training and predict-
ing using bounding boxes. Moreover, we introduce MTNtraj ,
a baseline version of MTN which only takes Lobs as input.
MTNtraj is a simple encoder-decoder structure. The encoder
is a transformer encoder which contains three blocks. The de-
coder is also composed of three blocks and each block con-
sists of a cross-attention module and a feed-forward layer.
Then the output of the decoder is sent into a fully connected
layer and added by lT to obtain predictions just like MTN.

3.1 Comparisons with State-of-the-art Methods
Tab. 1 shows the results on PIE and JAAD benchmarks. Com-
pared to state-of-the-art optical flow-based method STED,

Lego Sego Mego Ped MSE CMSE CFMSE

537 506 2041
X 477 445 1835

X 465 433 1771
X 451 420 1748

X 453 422 1790
X X 444 414 1627

Table 2: Investigation of selecting different areas of optical flow on
PIE dataset. Lego, Sego and Mego indicate different areas of the
extracted area. Ped refers to extract from the target pedestrian area.
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Figure 3: Visualization of MSE variations with increasing time steps
on JAAD (top) and PIE (bottom) datasets.

our MTN outperforms it by 17 and 39 MSE on PIE and
JAAD respectively with only 107 × fewer parameters. With
the single trajectory modality, our MTNtraj also outperforms
the PIEtraj 55 and 17 MSE with only 11× fewer parameters.
After introducing optical flows, the MTN further stretches the
advantage than PIEfull, which shows the optical flow is bet-
ter than the representation of semantic intention for trajectory
prediction. Moreover, considering the CMSE and CFMSE

which evaluate the locating and long-term modeling ability,
our MTN also shows the best performance. Fig. 3 demon-
strates detailed comparisons of the MSE with the increasing
time-steps. Two pivots are observed: (1) for each dataset, the
MSE of our method is kept low at all time steps; (2) more im-
portantly, our method greatly outperforms other approaches
in terms of the accuracy of long-term prediction. The visual-
ization of trajectory prediction results is shown in Fig. 4. Our
method generates more reasonable predictions under various
situations, especially for the dynamic motion of ego-vehicle
and pedestrians. This is attributed to (1) optical flow provides
motion of pedestrians and vehicles in a fine-grained level,
which compensates for the absence highly dynamic informa-
tion more effectively; (2) the attention mechanism can better
capture temporal relations of the sequence in a local-global
manner, as we are going to discuss in details in the ablation
experiments.
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DTP-MOF PIEfull
STED MTN (Ours) Groundtruth   Past

Figure 4: Qualitative results on PIE (top) and JAAD (bottom) datasets. Each white bounding box illustrates the target location of the first
frame, and each white line shows the observed trajectory. Other colored boxes represent the final predicted location and colored lines
demonstrate the prediction trajectories of different methods. Images are cropped for better visibility.

(a)

(b)

(c)

Figure 5: Effect of introducing optical flows of ego-vehicle. (a)
shows the last observed frame, and the grey, white and green boxes
show the interested region, current location and the final predicted
location of target pedestrian. (b) illustrates the extracted optical
flows from the interested region. (c) shows the attention map learns
to block out irrelevant motions and compensate motion caused by
ego-vehicle.

3.2 Ablation Study
In this section, we first evaluate the effect of optical flow from
disparate regions and different representing models. Then the
impact of merging methods in the coarse-grained fusion stage
is discussed. After that, we analyze how coarse-grained mo-
tion information guides trajectory prediction from intermedi-
ate attention maps. Finally, we explore the model complexity
from two aspects: (1) number of blocks; (2) selection of em-
bedding size C, and show some failure cases.

Selected area of optical flows. Tab. 2 shows the benefits
from different optical flow areas. The use of pedestrian opti-
cal flow obtain 84 MSE reduction. Also, the optical flow of
ego-vehicle reduces MSE a lot. To evaluate the impact of dif-
ferent heightHego and widthWego of the center ROI, we also
set three different sizes (large Lego = (260× 260), medium
Mego = (160× 160), small Sego = (60× 60)) and the fi-
nal results show with medium area, the best MSE reduction
achieves 86. Fig. 5 visualizes the effect of the fine-grained
motion representation φe. Fig. 5(a) and (b) show the selected
area which is fixed to the lower location of image center

Method MSE CMSE CFMSE

Concatenation 567 536 2161
Addition 556 525 2137

Co-attention 537 506 2041

Table 3: Evaluation of different trajectory-speed fusing methods on
PIE dataset. Components related to optical flows are removed for
more rigor.

area and the captured optical flows of ego-vehicle, respec-
tively, which contains the ego-vehicle motion and movement
of other objects in the scene, e.g. the white van at bottom-
left. Fig. 5(c) shows the attention map (the darker the map,
the lower the attention) ignores the irrelevant movement of
the other vehicles to compensate for the real motion caused
by ego-vehicle.

Investigation of optical flow representations. This part
explores the different models to represent the fine-grained
motion information. A common approach [Styles et al.,
2019] is to exploit a CNN to extract motion features from
stacked optical flows. Here we use the Resnet-18 to process
them and generate the fine-grained motion representations.
Following DTP [Styles et al., 2020], Resnet-18 is firstly pre-
trained to learn a compensation term of constant velocity as-
sumption , and the parameters of the pre-trained network is
fixed when training MTN. Test results on PIE dataset of CNN
structure are 460MSE, 429 CMSE and 1851 CFMSE at the
cost of 11.41M parameters. Compared to the best applied re-
sults using our method in Tab. 2, CNN produces more param-
eters without any performance improvement, which appears
that a fully connected layer is sufficient to extract the motion
features from optical flows.

Fusion methods in the coarse-grained fusion stage. We
discuss the performance of different fusion methods between
ego-vehicle speed and target trajectory in the coarse-grained
fusion stage. In this part, components related to the opti-
cal flow representations are not applied. (1) Concatenation.
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Blocks Para. MSE CMSE CFMSE

1 0.05 500 470 1823
3 0.13 444 414 1627
5 0.22 474 448 1738

Table 4: Investigation of the number of blocks in MTN. The
number of parameters (Para.) is displayed in M (million). We set
the embedding size C to 32. The coarse-grained fusion stage and
the fine-grained fusion stage contain the same number of blocks.
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Figure 6: Attention maps between coarse-grained motion represen-
tations and the predicted trajectory query in the first (top) and third
(bottom) blocks. The left and right columns visualize the maps from
the first and fourth attention heads.

Past trajectory Lobs is concatenated to ego-vehicle speed Sobs

after a fully connected layer and a 3-layers transformer en-
coder, which forms the coarse-grained motion representation
Xmix ∈ RT×(C+1). There is another fully connected layer
in the fine-grained fusion stage to project Xmix into a C-
dimensional space. Such process is similar to [Rasouli et al.,
2019], except we replace future ego-vehicle speed with the
observed speed. (2) Addition. Ego-vehicle speed sequence
Sobs is embedded by a fully-connected layer and then added
with the output of the three transformer encoder blocks which
process Lobs. As is shown in Tab. 3, compared with simple
concatenation, passing the vehicle speed through a fully con-
nected layer ameliorates the performance slightly by 11 MSE.
Our co-attention method further improves the MSE by 19.

Attention maps between motion representation Xmix and
trajectory query Xd. Fig. 6 visualizes attention maps to
show how fusion mechanism works. The first block (top row)
mainly focuses on the local relation between Xmix and Xd.
In detail, the first and fourth heads separately concentrate on
the recent and long ago observation. After subsequent blocks,
the last block tends to capture global temporal context to sup-
plement completeness of pedestrian motion by aggregating
the whole-time observation.

Number of fusion blocks. To investigate the influence of
model complexity, we change the number of blocks in the
distinct fusion stages. As Tab. 4 shows, MTN with only one
block owns a high prediction error with 0.05M parameters.
When the number of blocks increases to 3, the prediction er-
ror reduces by 56 at the cost of an increase of 0.08M pa-
rameters. However, the addition of another two blocks raises
the MSE by 30, which is caused by the imbalance between
the expressive relations between different modalities and the
representation capacity of a deeper network.

Embedding size Para. MSE CMSE CFMSE

16 0.03 532 500 2024
32 0.13 444 414 1627
64 0.41 439 411 1688

Table 5: Investigation of different embedding sizes. The number of
parameters (Para.) is displayed in M (million). The number of
attention heads and dimensionality of inner layers in FFNs are fixed
to 4 and 4 × embedding size.

Figure 7: Failure cases. The failure forecasts are often caused by
randomness of 2D trajectory mutations during prediction period.
The same color coding (see Fig. 4) is used.

Embedding size C. We also explore the impact of embed-
ding size C. As Tab. 5 illustrates, the improvement of predic-
tion performance is significant (88 MSE reduction) when em-
bedding size C is raised from 16 to 32, but larger embedding
size 64 does not bring more meaningful benefits. To obtain
the best trade-off between prediction error and computational
resource consumption, we set the embedding size C as 32.
Failure cases. Failure cases are shown in Fig. 7, due to ran-
domness of 2D trajectory mutations during prediction period.
For example, ego-vehicle is braking in the left situation, or
the pedestrian is changing his direction in the right case.

4 Conclusion
In this work, we have developed a multimodal transformer
network to predict pedestrian trajectory by introducing op-
tical flows to compensate highly dynamic motion between
ego-vehicle and pedestrians. The whole architecture is only-
attention-based and consists of two specially stages to pro-
cess and merge coarse-grained and fine-grained modalities.
The coarse-grained fusion stage models the temporal similar-
ity between vehicle speeds and pedestrian trajectory to aggre-
gate a coarse-grained motion representation. The fine-grained
fusion stage interacts the fine-grained motion representations,
which are extracted from the observed ego-vehicle and pedes-
trian optical flows, with the former coarse features to compen-
sate the highly dynamic motion. This architecture takes the
advantage of attention mechanism to model the long-range
dependencies more efficiently than the common convolution
and recurrent operations, thus achieving a considerable re-
duction of overall prediction error. In future work, it would
be interesting to employ the semantic understanding of traf-
fic scene to further improve the performance by considering
more complex interactions with other objects.
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