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Abstract

Current instance segmentation methods can be
categorized into segmentation-based methods and
proposal-based methods. The former performs
segmentation first and then does clustering, while
the latter detects objects first and then predicts
the mask for each object proposal. In this work,
we propose a single-stage method, named Embed-
Mask, that unifies both methods by taking their ad-
vantages, so it can achieve good performance in
instance segmentation and produce high-resolution
masks in a high speed. EmbedMask introduces
two newly defined embeddings for mask predic-
tion, which are pixel embedding and proposal em-
bedding. During training, we enforce the pixel em-
bedding to be close to its coupled proposal em-
bedding if they belong to the same instance. Dur-
ing inference, pixels are assigned to the mask of
the proposal if their embeddings are similar. This
mechanism brings several benefits. First, the pixel-
level clustering enables EmbedMask to generate
high-resolution masks and avoids the complicated
two-stage mask prediction. Second, the existence
of proposal embedding simplifies and strength-
ens the clustering procedure, so our method can
achieve high speed and better performance than
segmentation-based methods. Without any bell or
whistle, EmbedMask outperforms the state-of-the-
art instance segmentation method Mask R-CNN on
the challenging COCO dataset, obtaining more de-
tailed masks at a higher speed.

1 Introduction

Instance segmentation is a fundamental and important task in
computer vision. It requires finding all the objects with their
categories and masks in an image. In some sense, instance
segmentation can also be regarded as the combination of ob-
ject detection and semantic segmentation. Hence it is a really
challenging task.

Based on the top-down idea, proposal-based methods solve
the object detection first, and then the segmentation task is
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Figure 1: The pipeline of EmbedMask. (a) is an input image. (b)
is the output object proposals extracted from the Proposal Head, at-
tached with the parameters of bounding boxes, class scores, and pro-
posal embeddings (colored dots). (c) is the output pixel embedding
map extracted from Pixel Head. (d) is the final result conducted from
(b) and (c) with embedding coupling. The embeddings in (b) and (c)
are encoded with different colors using PCA.

processed based on the detected locations. As a represen-
tative, Mask R-CNN [He er al., 2017] achieves outstanding
results on many benchmarks to be the most popular method
for instance segmentation. As a two-stage method, it uses
the repooling step to extract the area of interest for the pro-
posed objects. However, this operation results in the loss of
features and the distortion of aspect ratios, so the masks it
produces may not preserve fine details. Different from the
proposal-based methods, segmentation-based methods treat
the instance segmentation in a bottom-up way. Specifically,
these methods predict the embedding for each pixel and then
the clustering process is applied so that pixels with similar
embeddings are grouped to form objects. Since these proce-
dures are all done at the pixel-level directly, they do not suf-
fer from the repooling operation. However, the bottleneck of
such methods is their clustering procedure. That is, the num-
ber of clusters and the positions of cluster centers are quite
difficult to be determined in these methods.

Therefore, in this work, we propose a novel instance seg-



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

mentation method, named EmbedMask. It preserves strong
detection capability as the proposal-based methods, and
meanwhile keeps the details of images as the segmentation-
based methods. As illustrated in Fig. 1, in EmbedMask, we
divide the instance segmentation pipeline into two parallel
branches. “Proposal Head” follows the framework of object
detection to predict object proposals, while “Pixel Head” is
used to generate a pixel-level map for mask generation. To
predict the mask for each object proposal, we introduce two
newly defined embeddings: (1) embedding for object propos-
als, referred to as proposal embedding, which is produced by
“Proposal Head”; and (2) embedding for pixels, referred to as
pixel embedding, which is the output of “Pixel Head”. A pixel
embedding and a proposal embedding are considered coupled
if the pixel falls inside the mask of the object proposal. Dur-
ing training, a pixel embedding is trained to get close to its
coupled proposal embedding, and get away from other pro-
posal embeddings. During inference, the pixel embeddings
close to a proposal embedding will be clustered together to
generate the mask of the object proposal. With this process,
we not only avoid the difficulties in determining the cluster
centers and their number but also remove the requirement
of the repooling operation. To achieve better performance
in embedding coupling, we explicitly divide the embedding
for proposals or pixels into two parts, a spatial-aware embed-
ding and a spatial-free embedding. The spatial-aware embed-
ding provides spatial information, while the spatial-free em-
bedding contains essential complementary context features.
We show such factorization effectively improves the qual-
ity of mask generation. Furthermore, we predict a proposal-
adaptive parameter for the object proposal to produce a cer-
tain margin for the clustering procedure. Such adaptive mar-
gins make it more suitable to conduct instance segmentation
for multi-scale objects.

While being simple but effective, EmbedMask achieves
superior results over Mask R-CNN, with the mask AP (Av-
erage Precision) of 38.3 vs. 38.1 in the challenging COCO
dataset [Lin et al., 2014] and speed of 11.7 fps vs. 6.3 fps (on
an NVIDIA GeForce 2080 Ti GPU), both using the ResNet-
101 [He et al., 2016] as backbone networks and the same
training settings. In summary, the main contributions of our
work are three folds:

1. We propose a framework that unites the proposal-based
and segmentation-based methods, by introducing the
concepts of proposal embedding and pixel embedding.

2. Spatial-aware and spatial-free embeddings are proposed
in our method to improve the quality of mask generation.

3. As a one-stage instance segmentation method, our
method outperforms the state-of-the-art two-stage
method Mask R-CNN in the COCO benchmark, and
meanwhile, it runs at a higher speed and provides masks
with a higher resolution than Mask R-CNN.

2 Related Work

Instance segmentation is a fundamental yet challenging task,
which aims to predict a pixel-level mask with a category label
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for each instance of interest in an image. With the fast de-
velopment of deep learning, a variety of methods have been
proposed to solve this problem.

2.1 Proposal-based Methods

Proposal-based methods start from predicting a set of object
proposals and a segmentation mask is extracted for each of
these object proposals.

One of the most popular implementations for proposal-
based methods is to split the instance segmentation task into
two consecutive stages. Before the rise of the unified frame-
work, [Pinheiro et al., 2015] proposed DeepMask, which uti-
lizes sliding windows to generate proposal regions and then
learns to classify and segment them. Based on Faster R-
CNN [Ren et al., 2015], Mask R-CNN [He et al., 2017]
unites the tasks of region proposing and segmentation us-
ing repooling, making it the representative of two-stage in-
stance segmentation methods. On the basis of Mask R-CNN,
PANet [Liu et al., 2018b] enhances the performance by merg-
ing multi-level information. MS R-CNN [Huang et al., 2019]
simply redefines the grading standard of instance mask. With
the detection models built on top of Feature Pyramid Net-
works (FPN) [Lin er al., 2017] as the baseline, recent two-
stage instance segmentation methods achieve state-of-the-art
performance. However, there still remain problems, such as
the low speed and detail-missing in the masks of large objects
due to the complicated network architectures and the repool-
ing step.

Different from the above two-stage methods that employ
repooling for mask prediction, other proposal-based meth-
ods provide more ideas about mask generation. To avoid
re-extracting features for object proposals, [Dai et al., 2016]
and [Li et al., 2017] generate position-sensitive mask maps
for the image, and the final mask for each object proposal
is fetched by assembling the maps. TensorMask [Chen er
al., 2019] regards the instance segmentation task as a simi-
lar problem to object detection, wherein it replaces the 3D
tensors for representing the bounding boxes with the 4D ten-
sors to represent the masks over the 2D spatial domain. Re-
cently, CondlInst [Tian et al., 2020] and SOLOv2 [Wang et
al., 2020a] make use of conditional convolution to generate
masks conditioned on the instance. CenterMask [Wang et al.,
2020b] predicts the local shape which is a rough mask for
each instance, and then multiplies it with the global saliency
map which is a detailed foreground mask map to fetch the
instance-specific mask. YOLACT [Bolya er al., 2019] and
BlendMask [Chen et al., 2020] are similar in that they predict
mask bases first, and then linearly combine them to produce
masks. Different from the above ones, our method utilizes
embedding coupling for mask generation, which is simpler
and eliminates the need of box cropping or resizing operation
which is required in YOLACT, CenterMask and BlendMask.
Though simple, our method achieves higher scores and higher
speeds than most of the state-of-the-art methods.

2.2 Segmentation-based Methods

The segmentation-based methods consider the task of in-
stance segmentation from another view. Like semantic seg-
mentation, they do pixel-level predictions only. Specifically,
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Figure 2: The detailed network architecture of EmbedMask. EmbedMask uses common backbone networks, e.g., ResNet and FPN to extract
feature maps in different scales. All extracted feature maps are passed through “Proposal Head” for the prediction of proposal attributions,
and the parameters of the head are shared among these feature maps. The feature map with the max size is passed through “Pixel Head”. The
“Embedding Prediction” module is used to predict embeddings for proposals and pixels, but its parameters are not shared between “Proposal
Head” and “Pixel Head”. The spatial-aware embedding and spatial-free embedding in “Embedding Prediction” will be concatenated to form
the output embedding. Before the output layer, the “3 x 3 conv” in“Proposal Head” and “Pixel Head” is followed with group normalization

and ReL.U.

their segmentation module is used to predict the embedding
for each pixel, and then clustering is applied to group the
pixels for generating object masks. For separating pixels
of different objects and clustering pixels of the same ob-
jects, [De Brabandere et al., 2017] utilizes the discriminative
loss while [Neven et al., 2019] introduces a new loss func-
tion that learns extra margins for different objects. Never-
theless, during inference, these methods suffer from difficul-
ties in clustering. To perform clustering among the embed-
dings, [De Brabandere et al., 2017] adopts mean-shift and
[Liang et al., 2017] uses spectral clustering with the pre-
dicted instance number. Meanwhile [Fathi ef al., 2017] and
[Neven et al., 2019] utilize seed generation for finding the
cluster centers. Such bottom-up methods can naturally fetch
high-resolution masks, but their performance in perceiving
instances is worse compared to proposal-based methods. Our
method also uses embedding for mask generation. However,
the coupling of proposal embedding and pixel embedding en-
ables our method to perform efficient pixel clustering and
achieve better performance with high-resolution masks.

3 EmbedMask

3.1 Overview

Different from original proposal-based and segmentation-
based methods, our method applies a novel instance seg-
mentation framework, which is composed of two paral-
lel modules, ‘Proposal Head” for object-level detection and
‘Pixel Head” for pixel-level embedding prediction. “Proposal
Head” serves to extract attributes for object proposals (e.g.
object class and bounding box), and it predicts embedding for
each proposal additionally. Meanwhile, “Pixel Head” aims
to produce a pixel-level embedding map. Then, the proposal
embedding and pixel embedding can be combined to generate
masks. In particular, during inference, if a pixel embedding
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is close enough to the proposal embedding, they are consid-
ered to be coupled. After the embedding coupling is applied
to every pixel and proposal, the masks of object proposals are
generated.

In contrast to the previous segmentation-based methods
which do instance segmentation by clustering pixels with
similar embeddings, our method utilizes the coupling of pro-
posal embedding and pixel embedding, which can effectively
get rid of the difficulties of clustering, such as finding the lo-
cations and number of cluster centers.

3.2 Network Architecture

In practice, we use the state-of-the-art object detection
method FCOS [Tian et al., 2019b] as our detection baseline,
which is the most recent one-stage object detection method.
Please note that our method can also deploy other detection
frameworks.

Figure 2 shows the network architecture of EmbedMask.
After the input image is passed through the ResNet [He et
al., 2016] and FPN (Feature Pyramid Networks) [Lin et al.,
2017], the generated features are fed into two different net-
work branches, i.e., “Proposal Head” and “Pixel Head”. The
“Proposal Head” takes the feature map from each level of
FPN as input, and the features are passed through two sub-
branches with the same hidden layer architecture, which con-
sists of four 3 x 3 conv layers. Five final feature maps are
extracted as the output. Among the five feature maps, three
of these are introduced in FCOS [Tian er al., 2019b], i.e.,
classification, center-ness, and box regression. The other two
feature maps are the new components introduced in our work,
i.e., proposal embedding and proposal margin, referred to as
q and o. These five feature maps are united to represent
the attributions of object proposals. Specifically, the values
at the same location j of these feature maps can be grouped
as a tuple {class;, box;, center;, q;, 0} that represents the
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parameters of one proposal. In parallel with the “Proposal
Head”, “Pixel Head” takes as input the largest feature map
of FPN, i.e., P3, and also consists of four 3 x 3 conv hidden
layers and an output layer. The output is the pixel embedding
map, referred to as p, whose size is one-eighth of the size
of input image. For each location j in the map, its value p,
represents the embedding for the pixel.

3.3 Embedding Coupling

To measure the similarity between proposal embedding and
pixel embedding, we need a function to convert the embed-
ding distance to the probability that the pixel belongs to the
proposal. Inspired by [Neven et al., 2019], we adopt the RBF
(Radial Basis Function) kernel function:

D

_q)2
¢(p,q,0) = exp ( > W)- (1)

%

Here q is the proposal embedding for one proposal and p
is the pixel embedding for one pixel, and o is a standard vari-
ance. All of them are vectors with dimension D. The function
measures the probability based on the L2 distance between
proposal embedding and pixel embedding. When p is close
to g, the probability is close to 1, otherwise 0. The o controls
the shape of the similarity matrix, i.e., to reach a high simi-
larity a larger o can tolerate a larger distance between p and
q. In practice, we predict the o for each object proposal like
the proposal embedding, and we name it as proposal margin
since it determines how close the two embeddings are to treat
the proposal and pixel as coupled in inference. Such flexible
proposal margins are necessary as the pixel embeddings cou-
pled with different proposal embeddings may have different
distributions.

3.4 Spatial-aware Embedding

In EmbedMask, for each proposal embedding g or pixel em-
bedding p, there are two components, i.e., spatial-aware em-
bedding (g, p,,) and spatial-free embedding (g, p).

As illustrated in the top right block of Fig. 2, the spatial-
free embedding (g, or p;) with dimension = D — 2 is ex-
tracted from the fully convolutional networks directly. It is
spatial-free because of the spatial-invariant nature of fully
convolutional networks. The spatial-aware embedding fuses
the coordinate information with the addition operation. For
example, for one pixel embedding p, (dimension = 2) which
is directly predicted from the fully convolutional networks,
the spatial-aware pixel embedding p,, is obtained via:

P, =P, +u. 2

where w is the location of the pixel embedding in the orig-
inal image. This operation is the same for the spatial-aware
proposal embedding q,. To compute the probability for em-
bedding coupling, we also split the proposal margin into o,
(dimension=2) and o ; (dimension=D — 2).

With the spatial-aware and spatial-free pixel embeddings
P, Py and proposal embeddings g, q, as well as the pro-
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Figure 3: Mask probability map from spatial-aware embedding,
spatial-free embedding and the fusion.

posal margins o, o ¢, the final probability that a pixel be-
longs to a proposal is:

P:¢(pa,qa,0'a)'¢(pf7qf70f)' (3)

which is the product of the RBF kernels from spatial-aware
embedding and spatial-free embedding. As shown in Fig-
ure 3, the spatial-aware embedding gives a coarse mask in
the spatial space, and the spatial-free embedding ignores the
spatial information but gives a more detailed mask. The fu-
sion of them gives a mask that is closer to the ground-truth.

3.5 Training and Inference

Equation 3 gives the computation of the probability that one
pixel belongs to one proposal. Consequently, given an in-
stance, when the probability equation is applied to all pixels
in the pixel embedding map, a foreground/background prob-
ability map for the instance is produced. During training, this
probability map can be optimized with a binary classification
loss by comparing it with the ground-truth mask map of the
instance:

Lmask: =L (Pka Mk) . (4)

where k is the index of each instance. Pj represents the
computed foreground/background probability map for the in-
stance k, and M, represents the corresponding ground-truth
mask map. L(-) is the binary classification loss function.
In practice we use the Lovdsz-hinge loss [Yu and Blaschko,
2015] for better performance. The remaining question now is
which proposal is responsible for generating Pj, and to which
ground-truth instance the proposal corresponds. As intro-
duced in Section 3.2, a tuple {class;, box;, center;, q;,0;}
is produced for each location j on the predicted feature maps
from “Proposal Head”. To produce Py, we use the g; and
o ; whose corresponding box; is positive in the training of
FCOS, and the corresponding M, is just from the matched
ground-truth instance. For the alignment of P, and M, when
computing the mask loss during training, we resize the pre-
dicted mask probability map and the ground-truth mask to be
a quarter of the input image in length, using bilinear inter-
polation. We do the same for the mask probability map and
then re-scale it to the initial size to obtain the mask during
inference.

EmbedMask is optimized in an end-to-end way using a
multi-task loss. Apart from the original classification loss
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method backbone ‘ ms ‘ rc ‘ epochs | AP AP5y AP75 | APs APy APg ‘ APYT ‘
Mask R-CNN* | R-50-FPN 12 346 565 366 | 153 363 49.7 | 38.0
Mask R-CNN* | R-101-FPN | v 36 38.1 609 40.7 | 184 402 534 | 426
PANet R-50-FPN | v 22 382 60.2 414 | 191 411 526 -
MS R-CNN | R-101-FPN 18 383 588 415 | 17.8 404 544 -
TensorMask | R-101-FPN | v 72 373 595 395 | 17,5 393 516 | 41.6
YOLACT-700 | R-101-FPN | v | v 48 31.2 50.6 32.8 | 12.1 333 47.1 -
PolarMask R-101-FPN | V 24 32.1 537 331 | 147 338 453 -
CenterMask | R-101-FPN 24 36.1 587 380 | 16,5 384 512 -
EmbedMask R-50-FPN 12 348 551 374 | 155 374 494 | 382
EmbedMask R-101-FPN | V 36 383 593 412 | 181 40.8 539 423

Table 1: Quantitative comparison with the state-of-the-art methods. ‘ms’ and ‘rc’ mean multi-scale augmentation and random cropping
augmentation for training. For a fair comparison, Mask R-CNN* and EmbedMask are both implemented with the maskrcnn-benchmark.

EmbedMask

Mask R-CNN

Figure 4: Qualitative comparison with Mask R-CNN.

Ls, center-ness 108s Lenter and box regression 10ss Loy
in FCOS, the additional loss L, is introduced for mask
prediction. They are jointly optimized by

L= Lcls + Lboz + Lcente’r‘ + )\leask' (5)

Here )\ is a loss weight for mask loss, and we set Ay = 0.5
by default.

During inference, the embedding coupling procedure is
more clear. Given an input image, it will go through the
networks to extract the proposal attributions from “Proposal
Head” and the pixel embedding map from “Pixel Head”. Af-
ter NMS (Non-Maximum Suppression) is applied to the pro-
posal attributions, each surviving proposal is attached with a
bounding box, a category with a related score, a proposal em-
bedding g, and a proposal margin o. For each pixel in the
pixel embedding map, the probability that the pixel belongs
to a proposal is computed as in Equation (3). This probabil-
ity is then converted to a binary value using a fixed thresh-
old. In this way, the final mask for each object proposal is
produced. The selection of the threshold is discussed in the
ablation study.
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4 Experiments

4.1 Experimental Settings

We follow the settings of FCOS [Tian er al., 2019b] in our
experiments, which chooses the large-scale detection bench-
mark COCO, and uses the COCO trainval35k split (115K im-
ages) for training, minival split (5K images) for ablation study
and fest-dev (20K images) for reporting the main results. Un-
less noted, the input images are resized with the shorter side
being 800 while the longer side being no longer than 1333.
Nevertheless, in Table 1 and Table 2, multi-scale augmenta-
tion is applied for fair comparison and better results. Multi-
scale augmentation makes the shorter side of input images
range in [640,800] while the longer side less than or equal to
1333.

We train all the models with SGD using an initial learning
rate of 0.01 and batch size of 16, with constant warm-up of
500 iterations. ResNet-50 [He et al., 2016] is used as our
backbone network for ablation study, and ResNet-101 is used
for comparison with state-of-the-art methods. The backbone
networks are initialized with the pre-trained ImageNet [Deng
et al., 2009] weights. The models are trained for 12 epochs
(90k iterations) by default, but more epochs are applied when
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method backbone | epochs | AP | APsy | AP75 | APs | APy | AP | APY” | time(ms) |
CondInst | R-50-FPN | 12 | 364 | 57.6 | 38.8 | 18.9 | 38.8 | 48.7 | 403 572
BlendMask | R-50-FPN | 12 [36.0 | 569 | 384 | 194 | 38.5 | 47.1 | 405 59.2
SOLOV2 | R-50-FPN | 12 | 356 | 560 | 38.0 | 7.5 | 553 | 70.0 | - 56.8
EmbedMask | R-50-FPN | 12 | 36.3 | 57.0 | 39.0 | 183 | 39.0 | 49.0 | 40.1 56.4
CondInst | R-101-FPN | 36 [ 40.1 | 61.9 | 43.0 | 21.7 | 42.8 | 53.1 | 44.7 75.6
BlendMask | R-101-FPN | 36 | 39.6 | 61.4 | 42.6 | 22.1 | 423 | 511 | 447 76.2
SOLOv2 | R-101-FPN | 36 | 39.6 | 60.5 | 42.8 | 9.9 | 583 | 723 | - 73.3
EmbedMask | R-101-FPN | 36 | 40.0 | 61.6 | 43.0 | 21.1 | 43.1 | 53.6 | 44.6 724

Table 2: Quantitative comparison with the most recent state-of-the-art methods. All these methods are implemented based on AdelaiDet for

a fair comparison.

training with the ResNet-101 backbone, as shown in Table 1.
For 90k training iterations (12 epochs), the learning rate is
reduced by a factor of 10 at iteration 60k and 80k. For 270k
training iterations (36 epochs), the learning rate is reduced by
a factor of 10 at iteration 210k and 250k. In the main results,
we set embedding dim D = 16.

4.2 Main Results

Quantitative Comparison

As shown in Table 1, we compare the quantitative results
of EmbedMask with the state-of-the-art methods, includ-
ing one-stage methods (TensorMask [Chen et al., 2019],
YOLACT [Bolya et al., 20191, PolarMask[Xie et al., 20201,
CenterMask[Wang et al., 2020b]) and two-stage methods
(Mask R-CNN [He et al., 20171, PANet [Liu et al., 2018bl,
MS R-CNN[Huang et al., 2019]). The listed results are all
trained with the ResNet-50 or ResNet-101 as the backbone
for fairness. We evaluate the instance segmentation results us-
ing mask average precision (AP), AP at IoU 0.5 (AP5¢) and
0.75 (AP75), AP for objects at different sizes (APg, APy,
APy1), and box average precision (AP®%). We can see Em-
bedMask achieves the best performance among these meth-
ods. Especially, with the same training settings and under
the same framework (maskrcnn-benchmark [Massa and Gir-
shick, 20181), EmbedMask achieves better results than Mask
R-CNN, which demonstrates the efficiency of our framework.
Please note our framework is a general one, and the perfor-
mance can be further improved if equipped with other supe-
rior network architectures.

Table 2 shows the comparison with the most recent state-
of-the-art methods (CondInst [Tian et al., 2020], Blend-
Mask [Chen et al., 2020], and SOLOv2 [Wang et al., 2020al).
These methods as well as ours all do instance segmenta-
tion from one complete feature map within the proposal-
based framework, but different strategies are utilized to gen-
erate instance-specific masks. For a fair comparison, all the
methods listed in the table are implemented based on Ade-
laiDet [Tian et al., 2019a] with the same training settings. We
further modify our network architecture so that it has the same
architecture units as these methods. Specifically, the methods
of CondlInst, BlendMask and SOLOv2 all fuse the feature
maps from different FPN levels in their “Mask Branch”, so
we do the same in our “Pixel Head”. We also use the auxiliary
semantic segmentation task to help with the mask prediction
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like CondInst and BlendMask. From Table 2, we can find
that our method achieves better results than BlendMask and
SOLOV2 and is comparable with CondInst. Specifically, our
method is slightly better than CondlInst at predicting masks
for large objects, but slightly weaker than CondlInst at small
objects.

Qualitative Comparison

Fig. 4 visualizes the comparison of mask quality between
Mask R-CNN and EmbedMask, and all of these results are
from the models trained with multi-scale augmentation for
36 epochs. We can observe that our method can provide more
detailed masks than Mask R-CNN with sharper and smoother
boundaries. Also for the slim object parts (e.g., dog feet),
our method can generate more accurate masks than Mask R-
CNN. This is because our method does not use the repooling
operation and can avoid missing details.

Speed Analysis

Based on the maskrcnn-benchmark implementation, Embed-
Mask runs in 15.1 fps with the backbone of ResNet-50 and
11.7 fps with the backbone of ResNet-101, using a single
NVIDIA GeForce 2080 Ti GPU. Under the same condition,
the speed of Mask R-CNN is 6.7 fps and 6.3 fps respectively.
Hence our method can run faster than Mask R-CNN. Specif-
ically, when using ResNet-50 as the backbone, the inference
time of EmbedMask is about 66.2 ms, mainly consisting of
the time for backbone networks (26.8 ms), head networks
(25.3 ms), box prediction (8.4 ms), and mask prediction (2.5
ms). Compared to FCOS, the additional time cost of our
method mainly comes from the forward time for “Pixel Head”
(7.3 ms) and the time for mask prediction (2.5 ms), so our
method brings only a little extra time overhead to the detec-
tor, making it possible to run faster than the two-stage meth-
ods. It is also worth noting that we can replace the FCOS
with any other object detector and obtain a similar running
performance as the detector.

The time performance comparison with the most recent
state-of-the-art methods are also reported in Table 2 where
a single NVIDIA GeForce 2080Ti GPU is used. We can see
that our method is the fastest among these methods. In fact,
with similar network architectures, the inference time of all
the methods is similar. The main time difference comes from
mask production. The results show that embedding coupling
is an efficient method for mask prediction.



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

margin | D | AP sa.e. | sfe. | cc | AP
fixed | 8 | 339 % 0.8

4 | 344 v 33.3

learnable | 8 | 34.8 v v 34.8
16 | 34.8 v | 344

Table 3: Left: ablation study of proposal margin and embedding
dimension. Right: ablation study of embedding components and co-
ordconv layer. ‘sa.e.’” means spatial-aware embedding. ‘sf.e.” means
spatial-free embedding. ‘cc’ means coordconv layer.
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Figure 5: Mask AP with different mask thresholds.

4.3 Ablation Study

Learnable Proposal Margin. In EmbedMask, the margin
is adaptive for each object proposal, which essential for good
performance. To prove this, we compare the results of Em-
bedMask with learnable margins and with constant margins
(see the supplementary material for details). Table 3 validates
the adaptive margins can improve the mask generation.

Embedding Dimension. Table 3 also shows the results of
EmbedMask with different embedding dimensions. When the
embedding dimension is increased from 4 to 8, the mask AP
increases by 0.4. When we further increase the dimension to
16, the mask AP remains similar. This shows EmbedMask is
robust to the embedding dimension.

Spatial-aware Embedding. The embedding in Embed-
Mask consists of spatial-aware embedding and spatial-free
embedding. The results in Table 3 show the effects of using
either and both of the two embeddings. We can find that Em-
bedMask performs much better when the two embeddings are
fused. We also compared with CoordConv [Liu et al., 2018a]
which implicitly fuses the spatial information in the convo-
lution layer, where we replace the “Embedding Prediction”
module with the CoorConv layer. The results show that our
explicit fusion of spatial information performs better.

Mask Threshold. During inference, the probability map
needs to be converted to a binary map using a fixed thresh-
old. To obtain a suitable threshold, we evaluate the mask
performance with different mask thresholds, as illustrated in
Figure 5. We find that when the threshold is 0.52 or 0.53, the
mask AP is the highest. Hence we use 0.52 for the ResNet-50
backbone and 0.53 for the ResNet-101 backbone.
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Figure 6: Failure cases.

5 Failure Cases Discussion

Figure 6 shows some of the typical failure cases in our
method. In the left image, we can see that the whole key-
board is segmented into two parts. It is because the keyboard
is overlapped by two bottles in the middle, and each isolated
part is detected as one keyboard wrongly. The top right im-
age shows a difficult case where some parts of the object are
extremely thin. Although our method can produce sharper
masks than Mask R-CNN, the mast of the boat is still a dif-
ficult case for segmentation. In the bottom right image, our
method produces an incomplete mask for the hand of the front
person. We observe there are multiple instance masks near
the hand. The complicated nearby environment may cause the
incorrect pixel embedding prediction and result in a wrong
mask prediction.

6 Conclusion

We have proposed a single-stage instance segmentation
method, named EmbedMask. It unites the advantages of
proposal-based and segmentation-based methods, by intro-
ducing the novel proposal embedding and pixel embedding.
As the key mechanism, embedding coupling measures the
similarity between the pixel embedding and proposal embed-
ding for mask generation, which eliminates the repooling op-
eration and searching for cluster centers, and produces masks
with well-preserved details. We further improve the results
with the proposal-adaptive margins and the explicit division-
and-fusion of spatial-aware and spatial-free embedding. Be-
ing simple but effective, EmbedMask achieves better perfor-
mance than the two-stage methods and runs at a higher speed.
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