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Abstract
Foreground occlusion removal task aims to auto-
matically detect and remove foreground occlusions
and recover background objects. Since for Light
Fields (LFs), background objects occluded in some
views may be seen in other views, the foreground
occlusion removal task for LFs is easy to achieve.
In this paper, we propose a learning-based method
combining ‘seeking’ and ‘generating’ to recover
occluded background. Specifically, the micro-lens
dynamic filters are proposed to ‘seek’ occluded
background points in shifted micro-lens images and
remove occlusions using angular information. The
shifted images are then combined to further ‘gener-
ate’ background regions to supplement more back-
ground details using spatial information. By fully
exploring the angular and spatial information in
LFs, the dense and complex occlusions can be eas-
ily removed. Quantitative and qualitative experi-
mental results show that our method outperforms
other state-of-the-art methods by a large margin.

1 Introduction
Removing the dense and complex occlusions is beneficial for
many high-level computer vision applications, such as ob-
ject detection, recognition and tracking, since the accuracy
may be highly improved if the background objects are recov-
ered.However, it is difficult to automatically detect and re-
move dense and irregular occlusions in one single image. On
one hand, the depth information is unknown and foreground
occlusions are hard to identify. On the other hand, no reli-
able information about the occluded background is provided.
By contrast, the recently developed Light Fields (LFs) con-
tain Sub-Aperture Images (SAIs) that capture scenes in differ-
ent directions, in which background points that are occluded
in the central SAI may be visible in other SAIs. Therefore,
LFs show great potential in the foreground occlusion removal
task.

In recent years, with the rapid development of deep learn-
ing, single image inpainting methods [Liu et al., 2018;
Xie et al., 2019; Li et al., 2020] have made significant
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Figure 1: A real-world occlusion removal example. (a) The input
central view with occlusions. (b) Our occlusion removal result. The
enlarged results of (c) RFR (d) LBAM (e) DeOccNet (f) Ours.

breakthroughs. By learning plausible structures from a large
amount of data, these inpainting methods try to combine sur-
rounding semantical information to ‘generate’ labeled miss-
ing regions. However, for the occlusion removal task in LFs,
it is more important to find and further ‘seek’ occluded re-
gions in different SAIs. Since LFs contain structure informa-
tion among different SAIs, the foreground occlusions can be
identified accordingly and the occluded background is also
possible to find in other SAIs.

Recently, [Wang et al., 2020] developed an end-to-end
learning-based framework to calculate occlusion-free central
SAIs using LFs as input. However, the related results show
blurry background and aliasing effects. The main problems
for LF occlusion removal are: 1) Although lots of LF depth
estimation methods [Tsai et al., 2020] have been proposed, it
is still difficult and costly to find accurate depth information,
especially for occluded points. 2) How to combine all SAIs in
grid-like angular sampling to completely remove occlusions.
3) It is difficult to design one network that has large receptive
fields to find all occluded points in other SAIs.

In this paper, we propose a novel end-to-end learning based
framework to solve the above problems. The angular and spa-
tial information in LFs is fully considered to simultaneously
‘seek’ and ‘generate’ occluded background regions. The LFs
are first shifted to extract effective features so that differ-
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ent disparities are possible to estimate. We then develop the
micro-lens dynamic filters for the shifted LFs to find correct
background points using angular information. The features of
shifted LFs are further integrated to learn surrounding spatial
information to supplement more details. The occlusion-free
central SAIs are finally obtained once the abundant informa-
tion in LFs is fully explored.

One typical example is shown in Fig 1, in which our
method is able to recover the complex scenes without any
prior occlusion information. Our main contributions are sum-
marized as follows:
• We design a novel end-to-end learning-based framework

based on the shift operation for occlusion removal task,
which fully explores the spatial and angular information
of LFs and implicitly learns the disparity information.
• We develop the micro-lens dynamic filter, which is ef-

fective to find occluded pixels from other SAIs.
• Experiments show that our method can automatically

identify and remove occlusions in specified disparities.
Comparisons on both synthetic dataset and real-world
dataset show that our method achieves superior perfor-
mances over the state-of-the-art methods.

2 Related Work
In this section, we briefly overview the related single image
inpainting methods and LF occlusion removal methods.
Single Image Inpainting. If foreground occlusions are ac-
curately masked, the widely developed single image inpaint-
ing methods can be applied to recover the background re-
gions. [Liu et al., 2018] proposed Partial Convolution by
assigning the missing and non-missing pixels in the convo-
lution operation with different weights so that the model fo-
cused more on restoring the missing areas. [Xie et al., 2019]
further extended the Partial Convolution from the encoding
layers to the decoding layers, in order to further improve the
visual effect. [Li et al., 2020] creatively transformed the pro-
cess of inpainting method into an iterative structure. How-
ever, the training of these inpainting methods is quite difficult
since the models need a large amount of dataset to learn the
plausible semantics. Moreover, when occluded background
regions are complex, only using the learned semantic infor-
mation cannot achieve reliable results.
Light Field Occlusions Removal. In order to remove oc-
clusions in LFs, some traditional methods have been pro-
posed. [Vaish et al., 2004] proposed a refocusing method
to warp LFs in spatial domain by a special value and then av-
erage all SAIs to remove occlusions. Then, the median cost
and entropy cost are further proposed in [Vaish et al., 2006]
to improve their method. Because these methods can’t dis-
tinguish the light from occlusion and background very well,
their results are quite blurred. [Pei et al., 2013] used pixel la-
beling via energy minimization to solve this image blur prob-
lem. However, their method cannot get the image clear in all
depth levels. Then they came up with an image matting ap-
proach in [Pei et al., 2018] to get all-in-focus images. [Yang
et al., 2014] presented a depth free all-in-focus method to
remove occlusions. Specifically, they divided the scene into
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Figure 2: The shifted micro-lens images and the proposed Micro-
lens Dynamic Filter.

different visible layers to directly deal with layer-wise occlu-
sions. [Xiao et al., 2017] used the clustering method to dis-
tinguish occlusion layers and background layers. [Pendu et
al., 2018] noted that there is redundancy in different views
so that they removed occlusions via constructing the low-
rank matrix. However, all these methods used handcrafted
features and cannot achieve satisfactory results in complex
background areas. [Wang et al., 2020] recently first pro-
posed to remove foreground occlusions using LFs throughout
an end-to-end network. They constructed their network with
the U-shape structure and used Atrous Spatial Pyramid Pool-
ing (ASPP) [Wang et al., 2019] to extract features from input
SAIs. They also proposed to use LFs and several occlusion
images to construct the training dataset and prove that the
trained model can handle both synthetic and real-world oc-
cluded scenes. However, since all SAIs are simply concate-
nated as the input, the angular information cannot be fully
extracted and the related regions cannot be well recovered.

3 Motivation
In this paper, we use L(u, v, x, y) ∈ RU×V×X×Y to repre-
sent 4D LFs, where (u, v) and (x, y) are the angular and spa-
tial coordinates, respectively. By fixing angular coordinates
(u, v), SAI Iu,v(x, y) is obtained. Similarly, by fixing spa-
tial coordinates (x, y), the micro-lens image is represented as
Mx,y(u, v). LFs occlusion removal task aims to get a clean
center SAI Icleanuc,vc (x, y) from L(u, v, x, y), where uc, vc rep-
resent the center angular coordinates.

In order to find occluded pixels in other views, we fol-
low the shift strategy in LF depth estimation [Tsai et al.,
2020] to construct shifted LFs. Specifically, the shifted LFs
Ld(u, v, x, y) with different disparities d are calculated:

Ld(u, v, x, y) = L(u, v, x+(u−uc)·d, y+(v−vc)·d). (1)

The example shifted LFs with different d, displaying with
micro-lens images, are shown in Fig 2. Following the LF dig-
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Figure 3: The network architecture of our model.

ital refocusing in [Ng et al., 2005], the refocused images can
be obtained by directly summing up each micro-lens image
as one pixel. If we shift LFs with one disparity d∗, the ob-
jects in disparity d∗ are in focus and the pixels in the related
micro-lens image Md∗

x,y(u, v) show consistent color. How-
ever, in Fig 2, the background regions are occluded by dense
and fine objects. The micro-lens image Mdback

x,y (u, v), which
is shifted using background disparity dback, contains not only
background colors but also occlusion colors. If we directly
average the pixels in the micro-lens image, the result refo-
cused image shows the background with blurry occlusions. In
our method, we propose to delete occlusion points and keep
background points in the shifted micro-lens images so that
images without occlusion can be recovered.

Specifically, we first construct D possible shifted LFs
Ld(u, v, x, y). As Fig 2, for one specific point (x, y) in
central SAIs, D shifted micro-lens images Md

x,y(u, v) are
available. In one specific shifted micro-lens image, the oc-
cluded background pixels can be found and further extracted.
Inspired by the dynamic upsampling filters in video super-
resolution [Jo et al., 2018], we design novel micro-lens dy-
namic filters for the LF occlusion removal task. The micro-
lens dynamic filter measures the possibility of each pixel in
shifted micro-lens images belonging to background points
and is calculated for each point in the central SAI. Then, by
summing up the weighted micro-lens images, the pixel is re-
covered with the correct background color.

4 The Proposed Approach
The overview architecture of our proposed method is shown
in Fig 3. The shifted LFs are first fed into the Feature Ex-
traction (FE) module HFE , which explores the latent rela-
tionship between angular domain and spatial domain. The
extracted features are then separately fed into a novel Micro-
lens Dynamic Filter (MDF) module HMDF and U-shape Re-
constructed (UR) module HUR. HMDF is designed to calcu-
late the micro-lens filters so that occluded pixels are effec-
tively found using angular information. HUR aims to recon-
struct images with more details based on spatial information.

4.1 Feature Extraction Module
For each shifted LF, we construct one branch to extract both
spatial and angular features. Specifically, we design a spatial-
angular block, which contains 4 parallel branches, 2 for 2D

convolution with dilation =1, 2 on spatial domain and other
2 for angular domain. The spatial and angular features are
then concatenated in the end of each block. In our method,
2D spatial convolution and 4 spatial-angular blocks are built
in order in each branch HFE to extract effectively features:

F d
FE(u, v, x, y) = HFE(L

d(u, v, x, y)). (2)

In order to reduce the complexity of the network, the weights
are shared in different feature extraction branches.

4.2 Micro-lens Dynamic Filter Module
After feature extraction, we combine all features of dif-
ferent shifted LFs as FFE(d, u, v, x, y). We then design
the MDF module HMDF to calculate the micro-lens filters
Wx,y(d, u, v) ∈ RD×U×V . HMDF contains several angular
convolution in order to fully explore the potential relationship
between pixels in shifted micro-lens images. A softmax layer
is then implemented on the (d, u, v) dimension to normalize
Wx,y:

Wx,y(d, u, v) = HMDF (FFE(d, u, v, x, y)). (3)

Wx,y(d, u, v) represents the possibilities of pixels in shifted
micro-lens images belonging to the occluded background
points. The higher the value, the larger possibility it has.
We calculate Wx,y(d, u, v) for each point (x, y) in the cen-
tral SAI.

As analyzed before, for each point (x, y) in the central SAI,
D shifted micro-lens images are available, which can be ex-
pressed as Mx,y(d, u, v). By multiplying the shifted micro-
lens images Mx,y(d, u, v) with the corresponding micro-lens
filters Wx,y(d, u, v), the pixels belonging to occluded back-
ground are extracted and foreground occlusions are deleted:

FMDF (x, y) =
∑
d

∑
u

∑
v

Mx,y(d, u, v)�Wx,y(d, u, v). (4)

FMDF indicates the calculated occlusion removal images us-
ing local angular information. � denotes the dot product.

4.3 U-shape Reconstructed Module
In MDF module, angular information from the same point of
other SAIs is extracted in order to restore occluded pixels.
We further introduce the UR module to integrate spatial in-
formation from adjacent regions around the occluded points
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Evaluation using Occlusion Masks Evaluation w/o Masks
Method resize disparity RFR LBAM DeOccNet∗ Ours∗ DeOccNet Ours
4-synLFs 1 (-12, 9) 25.73/0.8150 25.00/0.8099 24.56/0.8103 27.09/0.8664 21.42/0.6788 24.98/0.8019
4-synLFs 2/3 (-8, 6) 24.03/0.7560 23.57/0.7499 25.26/0.8219 28.50/0.8691 22.32/0.7256 26.43/0.8104
4-synLFs 1/2 (-6, 4.5) 24.19/0.7720 23.39/0.7663 25.06/0.8124 26.96/0.8233 22.31/0.7270 24.96/0.7561
9-synLFs 1 (-5, 5) 27.94/0.8817 27.85/0.8764 20.92/0.7382 28.39/0.9137 17.73/0.6469 25.70/0.8443

Table 1: Quantitative results (PSNR/SSIM) of different methods on synthetic LFs.

for more details. Specifically, the 2D convolution is first im-
plemented on angular domain without padding in order to re-
duce the angular dimension. The widely used U-Shape struc-
tures [Wang et al., 2020; Ronneberger et al., 2015] is then in-
troduced to enlarge the receptive field and extract multi-scale
spatial features. The U-shape structure includes encoding
layers, decoding layers and skip-connections is constructed
as shown in Fig 3. In order to effectively extract spatial fea-
tures in SAIs, the 2D convolution is performed on the spatial
domain. The output FUR(x, y) is then computed as:

FUR(x, y) = HUR(FFE(d, u, v, x, y)). (5)

Finally, we fuse FMDF (x, y) and FUR(x, y) using 2D spa-
tial convolution to get the final output Icleanuc,vc (x, y).

4.4 Loss Functions
Besides the widely used L1 loss lossL1, we introduce one
mask loss lossmask to make the model focus more on occlu-
sion areas, which is calculated as:

lossmask =
∥∥Icleanuc,vc �mask − Igtuc,vc �mask

∥∥
1
, (6)

where Igtuc,vc denotes the ground truth occlusion-free image.
Since the occlusion mask is available in the training dataset,
the mask can be accordingly set, i.e 1 for occluded areas
and 0 for other regions. We also introduce the perceptual
loss lossvgg in [Wei et al., 2019] based on the VGG-19 Net-
work [Simonyan and Zisserman, 2014] to achieve better vi-
sual effects. The final loss function is calculated as:

losstotal = lossL1 + λ1lossmask + λ2lossvgg, (7)

where λ1 and λ2 denote loss weights and are set as 0.5 and
0.1 in the following experiments, respectively.

5 Experiment
We first introduce the datasets and training details. The pro-
posed method is then compared with other methods. Finally,
the ablation study is taken for further evaluation.
Datasets. We follow [Wang et al., 2020] to use 61 LF
images from [Honauer et al., 2016; Lanman et al., 2011;
Wanner et al., 2013; Vaish and Adams, 2008] and 80 occlu-
sion images to synthesize the training dataset. Since only 4
synthetic LFs with ground truth (4-synLFs) are used in [Wang
et al., 2020] for testing, we further synthesize another LF
dataset (9-synLFs) using 3D MAX and the public 3D models
in [Company, 2013]. The new synthetic dataset contains 9
LFs with complex backgrounds and different foreground oc-
clusions. We further resize the 4-synLFs with different scale
factors so that images with different disparities can be further

evaluated. In our experiment, the original 4-synLFs are used
as the validation set and the model is finally tested on the re-
sized 4-synLFs [Wang et al., 2020], new 9-synLFs and one
real-world dataset [Wang et al., 2020].

Disparity Setting. Following the training strategy in
[Wang et al., 2020], our model is also designed to remove oc-
clusions that have positive disparities and keep background
regions that have negative disparities. In this way, multiple
occlusions in different disparities can be removed step by
step by shifting LFs. In order to find micro-lens images in
background disparities, we choose totally D shifted values d,
which is evenly spaced in d ∈ {dmin, · · · , 0}. In our experi-
ments, we choose dmin=−9 andD = 10, which is able to han-
dle the above dataset with different disparities. Experiments
with different parameters are further analyzed in Sec 5.2.

Training Details. We crop the training images into 5 ×
5 × 64 × 64 pixel patches. The RGB color is put into the
channel dimension in the input and output. Our model has
2.7M parameters, which is 14 times fewer than DeOccNet,
24 times fewer than LBAM, 11 times fewer than RFR. We
perform upsampling, flipping, rotation, color conversion for
data augmentation. The proposed model is optimized using
the Adam [Kingma and Ba, 2014] algorithm with a batch size
of 5. The initial learning rate is set as 1e − 3 in the first 150
epochs and is then divided by 10 every 50 epochs. We im-
plement the model with pyTorch framework and the training
process roughly takes 3 days with an Intel(R) Xeon(R) CPU
E5-2683 v3 @ 2.00GHz with a Titan XP GPU. Occlusions
are removed in one LF with around 10s using our model.

5.1 Comparison with State-of-the-Arts
The only learning-based LF occlusion removal network De-
OccNet [Wang et al., 2020] is compared. The state-of-the-art
inpainting methods LBAM [Xie et al., 2019] and RFR [Li
et al., 2020] are also compared by providing the central SAI
and the ground truth occlusion mask. In order to learn plau-
sible semantics information, the inpainting methods need a
large amount of images (around 15000 images) for training.
LBAM [Xie et al., 2019] and RFR [Li et al., 2020] cannot
achieve comparable results if only our 61 training dataset is
used for training. Therefore, we choose to carefully fine-tune
their pre-trained models on our training dataset.

Synthetic Scenes
We calculate the PSNR and SSIM metrics of the recovered
RGB central view image for quantitative comparison. For the
image inpainting methods, only occlusion regions are recov-
ered and the other regions are directly copied from the origi-
nal images. Therefore, we also replace the non-occluded ar-
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Origin Ground Truth RFR LBAM DeOccNet∗ Ours∗

4-synLFs (01) PSNR/SSIM 24.3939/0.7915 24.1185/0.7873 25.4069/0.7730 27.0840/0.8818

4-synLFs (02) PSNR/SSIM 21.7980/0.8233 21.4343/0.8193 19.6397/0.8183 26.4362/0.9304

9-synLFs (03) PSNR/SSIM 25.9423/0.8546 25.7481/0.8427 13.5831/0.5997 29.8129/0.9284

9-synLFs (06) PSNR/SSIM 28.7169/0.9181 28.4072/0.9143 26.6114/0.8614 29.9674/0.9420

Figure 4: Occlusion removal results on synthetic datasets. The ground truth occlusion masks are provided. Our method integrates information
from the angular domain and is able to find the occluded background and recover accurate complex textures even with the dense occlusions.

eas using the original images in DeOccNet and ours, labelled
with ∗, to give a further evaluation on how these methods per-
form on occluded areas.

Table 1 and Fig 4 show the quantitative and qualitative re-
sults of 4-synLFs and 9-synLFs. Using the occlusion masks,
the related results focus on whether the occluded background
regions are accurately recovered. Note that by resizing LFs in
spatial domain, the disparities also change. Compared with a
small disparity range, removing occlusions in a large dispar-
ity range is more difficult since we need to find more possible
regions in LFs. From Table 1, we can find that the average
PSNR and SSIM of ours∗ are far better than other methods
on different datasets. Qualitative results in Fig 4 also show
that our method can recover the complex background textures
which are fully occluded in the central SAI. By comparison,
other methods produce significant artifacts and wrong tex-
tures. The inpainting methods LBAM [Xie et al., 2019] and
RFR [Li et al., 2020] generate background regions according
to the plausible semantics. It is difficult for them to recover

complex backgrounds. DeOccNet [Wang et al., 2020] is also
designed to use the abundant information of LFs, but their
network cannot find the occluded background since the an-
gular information is not well explored. Moreover, the perfor-
mance of DeOccNet decreases dramatically in the 9-synLFs,
which indicates that their generalization ability is insufficient.

Fig 5 and Table 1 further show the comparison of our
method and DeOccNet, in which no occlusion masks are pro-
vided. Different with the inpainting methods, foreground oc-
clusions are automatically recognized and removed through
the end-to-end network. Numerical results in Table 1 indicate
that our results achieve more than 3 dB higher PSNR than
DeOccNet. Fig 5 further shows our method produces less ar-
tifacts and less color distortion than DeOccNet.

Real-world Scenes
Fig 1 and Fig 6 show the occlusion removal results using the
real-world dataset. In order to compare with the inpainting
methods, we manually label the occlusion masks for them.
By contrast, the results of DeOccNet and ours are directly
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Origin Ground Truth DeOccNet Ours

4-synLFs(03) PSNR/SSIM 22.9970/0.7749 28.2672/0.9211

9-synLFs(01) PSNR/SSIM 17.8309/0.6551 26.1448/0.8264

9-synLFs(02) PSNR/SSIM 21.5212/0.7147 26.4362/0.8460

Figure 5: Qualitative results on synthetic datasets without occlusion
masks. The occlusion-free images are calculated in an end-to-end
manner. Our method is able to automatically detect and remove the
occlusions and recover the rich background textures.

(a) Input (b) RFR-1 (c) LBAM-1

(d) DeOccNet-1 (e) Ours-1 (f) RFR-2

(g) LBAM-2 (h) DeOccNet-2 (i) Ours-2

Figure 6: Qualitative results on the real-word image with different
occlusion removal tasks. The green and red line indicate the 0 dis-
parity of the input LFs and the objects before the line are needed to
remove. Our method outperforms others in different tasks.

produced without occlusion masks. As in Fig 1, our method
is the only one that is able to recover the occluded trees with
rich textures. In Fig 6, we further compare different tasks
in which occlusions in different disparities are removed. As
mentioned before, through the shift operation, positions of
zero disparity can be adjusted and occlusions in specific dis-
parities are removed. As shown, in this complex example, by
shifting the zero disparity to the ‘red’ or ‘green’ lines, the ob-
jects before the line are successfully removed in our method.

Method PSNR SSIM

Parameter dmin = -9, D = 5 23.4753 0.7675
dmin = -4, D = 5 21.5868 0.7032

Structure
w/o HUR 23.8333 0.7949
w/o HMDF 21.3039 0.5959
W ∈ R1×U×V in Equ. 3 24.1922 0.7782
W ∈ RD×1×1 in Equ. 3 20.7103 0.5701

Loss
lossL1 23.4878 0.7870
lossL1 + lossvgg 23.8270 0.7582
lossL1 + lossmask 23.9598 0.7944

Our method 24.9770 0.8019

Table 2: Ablation studies (PSNR/SSIM) on 4-synLFs.

This means our method successfully learns the disparity in-
formation and is able to remove occlusions that we do not
need. Although DeOccNet can also recognize disparity infor-
mation, the results are far less accurate than our method and
have blurry background textures. Other inpainting methods
cannot recover accurate details in this textured background.
Note that in this example, the bottom grass regions are close
to the camera and are identified as the foreground that should
be removed. However, since no background regions behind
the grass can be recovered, all the methods choose to blur the
foreground grass.

5.2 Ablation Study
We conduct several ablation studies on the 4-synLFs with dif-
ferent hyper-parameters, structures and loss functions as in
Table 2. For fair comparisons, the number of parameters of all
these models is kept almost the same. By comparing different
dmin and D, we find that for the 4-synLFs with (−12, 9) dis-
parities, larger disparity range and more shifted numbers pro-
vide more accurate results. We then compare our model with
different structures, in which the proposed HMDF is deleted
or modified. As shown, without HMDF , only HUR cannot
find correct occluded points. Moreover, using dynamic fil-
ters whose size in R1×U×V or RD×1×1 cannot fully use the
abundant information in different shifted LFs or in different
SAIs, respectively. By contrast, without HUR, the spatial in-
formation cannot be fully explored and the performance also
decreases. Finally, combining the proposed mask loss and
the commonly used perceptual loss, the results can be further
improved by 1.4 dB in PSNR.

6 Conclusion
In this paper, we proposed a novel end-to-end learning-based
method for LF occlusion removal, in which depth informa-
tion is implicitly learned. The micro-lens dynamic filter is
designed to remove foreground occlusions and recover back-
ground details. The angular and spatial information in LFs
is fully extracted and integrated in our network. Experiments
on synthetic and real-world datasets prove that our method
achieves obviously higher performances than others.
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