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Abstract
We present a face photo-sketch synthesis model,
which converts a face photo into an artistic face
sketch or recover a photo-realistic facial image
from a sketch portrait. Recent progress has been
made by convolutional neural networks (CNNs)
and generative adversarial networks (GANs), so
that promising results can be obtained through real-
time end-to-end architectures. However, convolu-
tional architectures tend to focus on local infor-
mation and neglect long-range spatial dependency,
which limits the ability of existing approaches in
keeping global structural information. In this pa-
per, we propose a Sketch-Transformer network for
face photo-sketch synthesis, which consists of three
closely-related modules, including a multi-scale
feature and position encoder for patch-level feature
and position embedding, a self-attention module
for capturing long-range spatial dependency, and a
multi-scale spatially-adaptive de-normalization de-
coder for image reconstruction. Such a design en-
ables the model to generate reasonable detail tex-
ture while maintaining global structural informa-
tion. Extensive experiments show that the pro-
posed method achieves significant improvements
over state-of-the-art approaches on both quantita-
tive and qualitative evaluations.

1 Introduction
Generating a face sketch (photo) from a face photo (sketch),
often referred as face photo-sketch synthesis, is an important
task in computer vision. It has many applications in digi-
tal entertainment, animation production and law enforcement
[Wang et al., 2014; Li et al., 2016]. The core challenge of
face photo-sketch synthesis lies in synthesizing visually re-
alistic and semantically plausible images and surpassing the
considerable discrepancies (shape, texture and color) barrier.

Early studies [Liu et al., 2005; Liang Chang et al., 2010;
Zhu et al., 2017b] attempt to solve the problem in an
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Figure 1: A comparision of face photo sketch synthesis re-
sults between the proposed Sketch-Transformer and a state-of-the-
art (SOTA) approach. Sketch-Transformer (ours) can capture long-
range spatial dependency while generate reasonable detail texture.

exemplar-based manner, i.e. matching and combining sam-
ple images (image patches) in a reference set of photo-sketch
pairs to synthesize the target image. These approaches work
well under constrained conditions such as less illumination
variations, pose changes, and deformations, but will fail when
come across more complicate conditions. Moreover, two
main flaws often limit their performance: 1) blurry or over
smooth, i.e not realistic; 2) time-consuming. Rapid progress
in deep convolutional neural networks (CNN), especially in
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generative adversarial networks (GAN) [Goodfellow et al.,
2014], has inspired recent studies [Wang et al., 2018; Yu et
al., 2020; Chen et al., 2018] to formulate face photo sketch
synthesis as a image-to-image translation [Isola et al., 2017;
Zhu et al., 2017a] problem. With the assistance of the adver-
sarial loss, these approaches have capacity to generate images
with realistic textures.

Although promising results have been obtained, the intrin-
sic shortage of convolutional architectures that lacks of the
ability of capturing long-range spatial dependency has lim-
ited the performance of existing approaches, which may re-
sults in the loss of global structure information and thus gen-
erating images with compromised visual quality. As shown
in Figure 1, the results of a state-of-the-art (SOTA) method
[Yu et al., 2020] have undesirable artifacts and distorted
structures. Recently, transformer models [Vaswani et al.,
2017] which mainly based on self-attention mechanism have
demonstrated exemplary performance on natural language
processing (NLP) tasks and intrigued the vision community
to investigate their application to computer vision problems
[Dosovitskiy et al., 2020]. Inspired by the power of trans-
former in NLP and many computer vision tasks, we inves-
tigate its application in face photo-sketch synthesis task in
this work. However, there are three factors that limit the ap-
plication of existing transformer models in this task: 1) The
training samples are limited so that the model should not be
too large; 2) The resolution of the image is relatively large
so that the self-attention module consumes lots of computing
resources; 3) The self-attention module is unable to capture
positional information of the tokens in an image.

To address these problems, we propose a Sketch-
Transformer which can properly introduce the self-attention
mechanism into the face photo-sketch synthesis task. Specif-
ically, three closely-related modules are proposed. First, we
propose a multi-scale feature and position encoder (MFP-
Encoder) which integrates convolutional architectures and
a face parsing model to extract multi-scale feature embed-
dings and positional encodings in each local area. Sec-
ond, we stack several residual self-attention layers in the
bottleneck to capture the long-range spatial dependency be-
tween the tokens (local embeddings). Finally, we pro-
pose a multi-scale spatially-adaptive de-normalization de-
coder (MSPADE-Decoder) which takes as input the output
of the self-attention module, multi-scale feature embeddings
and positional encodings generated by the multi-scale fea-
ture and position encoder to reconstruct the target image.
The overall design enables our Sketch-Transformer to cap-
ture long-range spatial dependency while generate reasonable
detail texture and therefore achieve a better visual result com-
pared with state-of-the-art approaches (as shown in Figure 1).

The contributions of this work are summarized as follows:

• We propose to learn the key elements of the transformer
architecture and adapt them to face photo-sketch synthe-
sis task.

• We propose a Sketch-Transformer with three closely-
related modules to properly introduce the self-attention
mechanism. The proposed model can capture long-
range spatial dependency while generate reasonable de-

tail texture.

• Quantitative and qualitative experiments demonstrate
that the proposed model achieves superior performance
compared with other state-of-the-art methods on public
benchmarks and face images in real scenarios.

2 Related Work
In this section, we review previous studies of face photo-
sketch synthesis and transformer which are the most relevant
to our work.

2.1 Face Photo-Sketch Synthesis

Existing works for face photo-sketch synthesis can be mainly
divided into two categories. Exemplar-based methods recon-
struct target image by mining correspondences between input
image (image patch) and images (image patches) in a refer-
ence set of photo-sketch pairs. Deep learning-based meth-
ods attempt to predict the target image pixels from the source
image pixels through an end-to-end convolutional neural net-
works.

Exemplar-based methods can be further grouped into three
types: subspace learning-based approaches [Liu et al., 2005],
sparse representation-based approaches [Liang Chang et al.,
2010], and Bayesian inference-based approaches [Zhu et al.,
2017b]. A detailed overview of existing exemplar-based
methods can be found in [Wang et al., 2014].

Recently, CNN-based and GAN-based approaches have
emerged as a promising paradigm for face photo-sketch syn-
thesis. Initial effort [Zhang et al., 2015] trains an end-to-end
fully convolutional neural networks (FCN) for directly mod-
eling the nonlinear mapping between face photos and face
sketches. Limited by shallow layers and pixel-level loss,
however, it fails to capture texture details and fails to pre-
serve reasonable structures. Isola et al. [2017] use condi-
tional GAN (cGAN) as a unified solution (pix2pix) for several
image-to-image translation tasks such as edges to photos, la-
bels to street scenes, day to night, etc. Zhu et al. [2017a] pro-
pose a CycleGAN model for unpaired image-to-image trans-
lation by introducing a cycle consistency loss. These two
models can be directly applied to face photo-sketch synthe-
sis task. Several works follow ideas from image-to-image
translation and focus on improving face photo-sketch syn-
thesis performance by adding prior information. Wang et al.
[2018] propose a multi-scale discriminator to provide adver-
sarial supervision on different image resolution. SCAGAN
[Yu et al., 2020] introduces facial composition information
as additional input to help the generation of sketch portraits
and proposes a compositional loss based on facial composi-
tion information. To tackle the problem of insufficient paired
training data, Chen et al. [2018] propose a semi-supervised
learning method to augment paired training samples by syn-
thesizing pseudo sketch features of additional training pho-
tos and learn the mapping function between them. Although
great progress has been made by above approaches, undesir-
able artifacts and distorted structures, however, are still exists,
especially in the results of real scenarios.
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Figure 2: The illustration of the Sketch-Transformer architecture.

2.2 Transformer and Self-attention
Transformer is firstly applied on natural language process-
ing (NLP) tasks, which mainly leverages self-attention mech-
anism to capture long-range dependencies in the input do-
main. The seminal work of Vaswani et al. [2017] pro-
poses to use solely attention mechanisms for machine trans-
lation. Since then, transformer architecture has opened up
a new route. Lots of popular methods have been proposed
and have achieved the state-of-the-art performance in differ-
ent NLP tasks. The breakthroughs achieved by transformer
in NLP domain have attracted lots of interest in the computer
vision community. Many studies have successfully adapted
transformer models to varies computer vision tasks including
image recognition, object detection, image super-resolution
and several other tasks. A comprehensive overview of the vi-
sion transformer literature has been introduced by Han et al.
[2020].

3 Method
Given paired training face photo-sketch samples {(xi, yi) ∈
(X,Y )}Ni=1, our goal is to learn a mapping function G that
maps images from photo domain X to sketch domain Y or
learn a mapping function F that maps images from sketch
domain Y to photo domain X . The pipeline of the pro-
posed Sketch-Transformer is shown in Figure 2. It con-
sists of three closely-related modules, including a multi-
scale feature and position encoder (MFP-Encoder) for patch-
level feature and position embedding, a residual self-attention
module for capturing long-range spatial dependency, and
a multi-scale spatially-adaptive de-normalization decoder
(MSPADE-Decoder) for image reconstruction.

3.1 MFP-Encoder
The MFP-Encoder integrates convolutional architectures and
a face parsing model to extract multi-scale feature embed-
dings and positional encodings in each local area. It consists
of two paths: a feature embedding path and a position em-
bedding path, as shown in Figure 3.

The feature embedding path utilizes a series of convolution
layers (a stride-1 convolution layer and four stride-2 convolu-
tion layers) to gradually extract multi-scale features. There-
fore, the feature vector of each position in the last activation
(FP 5) represents the high-level features of a 16×16 patch in
the corresponding local area of the input image. The position
embedding path utilizes a face parsing model [Yu et al., 2018]
to extract semantic facial labels and scale them to different

Input
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Figure 3: The illustration of the MFP-Encoder.

spatial resolution. Denote semantic facial labels of each layer
as M l, M l ∈ <cl×hl×wl , where cl, hl, wl denote component
number, height and width of the semantic labels of the lth
feature layer. Each value (0 or 1) in M l denotes whether the
position belongs to the c-th component. Such semantic facial
labels actually contain sufficient positional information and
can indicate which semantic component the feature embed-
dings of each position belongs to. We concatenate the feature
embeddings and position embeddings at different level to ob-
tain the multi-scale feature and position embeddings. Then,
the first four feature and position embeddings are passed to
the MSPADE-Decoder as spatial information to help supple-
ment spatial and texture information and the last one is passed
to a residual self-attention model to learn long-range depen-
dencies between the embeddings (tokens) from all positions.

3.2 Residual Self-attention Module

Self-attention is the core component of the transformer ar-
chitecture, which can capture long-range dependency be-
tween tokens. From the MFP-Encoder, we obtain the patch-
level feature and position embeddings of all positions. How-
ever, the relationships between these embeddings are neglect.
Therefore, we introduce a residual self-attention module to
capture their dependencies. The module consists of nine ba-
sic residual self-attention layers. The illustration of each layer
is shown in Figure 4.

The intuition behind this module is to update each vector
at each position of the embeddings by aggregating global in-
formation from all other positions. Through this module, we
can get the revised embeddings ˆFP 5 which have learned the
long-range dependencies.

3.3 MSPADE-Decoder

We utilize the spatially-adaptive de-normalization (SPADE)
block [Park et al., 2019] on multi-scale feature and position
embeddings to gradually reconstruct the target image. More
specifically, we utilize positional normalization (PN) [Li et
al., 2019] instead of batch normalization (BN) to better pre-
serving the structure information synthesized in prior layers.
The illustration of the MSPADE-Decoder is shown in Figure
4.
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Figure 4: The illustration of the residual self-attention mudule.
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Figure 5: The illustration of the SPADE-Decoder.

3.4 Loss Function
The full loss of our model consists of two loss functions: ad-
versarial loss and perceptual loss. For the sake of brevity, we
only describe the losses for photo to sketch synthesis task.
The losses for sketch to photo synthesis has the same form.
For convenience of expression, we denote the SketchTrans-
former as G. In order to provide the adversarial loss, we uti-
lize a 70 × 70 PatchGAN discriminator [Isola et al., 2017],
which is denoted as D.

Adversarial Loss
In this work, instead of using the vanilla GAN[Goodfellow
et al., 2014], we use the Least Squares GAN [Mao et al.,
2017] for stable training. For the mapping function G and its
discriminator D, we express the objective as:

Ladversarial = Ey[(DY (y))
2] +Ex[(1−DY (G(x)))

2] (1)
Perceptual Loss
To ensure that the generated image and its ground truth are
similar in semantic feature level, we introduce the perceptual

Database Training Pairs Testing Pairs

CUFS
CUHK Student 88 100

AR 80 43
XM2VTS 100 195

CUFSF 250 944

Table 1: Partition settings of the databases

loss [Johnson et al., 2016]:

Lperceptual = Ex[
1

CjHjWj
‖ φj(G(x))− φj(y) ‖1] (2)

where φj indicates feature maps of the jth layer of a pre-
trained VGG-19 model [Simonyan and Zisserman, 2014],Cj ,
Hj andWj indicate channel numbers, height and width of the
feature maps, respectively.

Full Loss
By combining above losses, we can achieve our full loss:

Lfull = λ1Ladversarial + λ2Lperceptual (3)
In this work, we set λ1 = 1, λ2 = 5 to keep corresponding

losses in the same order of magnitude.

4 Experiments
In this section, we first discuss the experimental settings. We
will then conduct ablation study to quantify the contribution
of different configurations to overall effectiveness. Finally,
we will compare our results with state-of-the-art methods
both qualitatively and quantitatively.

4.1 Implement Details
All models are trained on a NVIDIA Tesla V100 GPU using
Adam optimizer with β1 = 0.5 and β2 = 0.99. We train all
models with a fixed learning rate of 0.0002 until 300,000 iter-
ations. The batch size is set to 1 for all experiments. Weights
were initialized from a Gaussian distribution with mean 0 and
standard deviation 0.02. We scaled the size of the input im-
ages to 256× 256 and normalized the pixel value to the inter-
val [−1, 1] before putting them into the model. During train-
ing, we updated G and D alternatively at every iteration.

4.2 Database
The experiments are conducted on two public databases: the
CUFS database [Tang and Wang, 2009] and the CUFSF
dataset [Zhang et al., 2011b]. The CUFS database consists
of 188 identities from the Chinese University of Hong Kong
(CUHK) student database [Tang and Wang, 2003], 123 iden-
tities from the AR database [Martinez and Benavente, 1998],
and 295 identities from the XM2VTS database [Messer
et al., 1999]. Each identity has a photo-sketch pair un-
der normal light condition, and with a neutral expression.
The CUFSF database has 1,194 identities from the FERET
database [Phillips et al., 2000]. For each identity, there is
a photo with illumination variation and a sketch with exag-
gerated structure. Therefore, face photo-sketch synthesis on
the CUFSF database is more challenging than on the CUFS
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dataset. All images are processed by aligning the center of
two eyes to the fixed position and cropping to the size of
200×250. The way we divide the training set and the test set
is the same as [Zhu et al., 2017b]. For the CUFS database,
88 face photo-sketch pairs in CUHK database, 80 face photo-
sketch pairs in AR database and 100 face photo-sketch pairs
in XM2VTS database are selected for training and the rest are
used for testing. For the CUFSF database, 250 face photo-
sketch pairs are selected for training and the rest are used for
testing. Table 1 shows the partition settings of the databases.

4.3 Baselines
For fair comparison, we run face photo-sketch synthesis
on our method and all baselines for input images of size
200× 250 under the same partition setting. We compare our
method with seven state-of-the-art methods: DGFL [Zhu et
al., 2017b], FCN [Zhang et al., 2015], pix2pix [Isola et al.,
2017], CycleGAN [Zhu et al., 2017a], PS2MAN [Wang et
al., 2018], Wild [Chen et al., 2018] and SCAGAN [Yu et al.,
2020]. Among these baselines, DGFL is traditional exemplar-
based method which achieves the best performance while the
others are deep learning-based methods. All results are ob-
tained from the source codes provided by the authors except
the results of FCN. We implement FCN by ourselves and get
the results which are consistent with the original work. Be-
cause FCN, DGFL and Wild methods are designed for face
photo → sketch synthesis task, we only compare with their
synthetic face sketches. Other methods have both synthetic
face photos and face sketches that used for comparison.

4.4 Evaluation Metrics
In this paper, we use three types of evaluation metrics to
evaluate the objective quality of the synthetic images: the
learned perceptual image patch similarity (LPIPS) [Zhang et
al., 2018], the Fréchet Inception Distance (FID) [Heusel et
al., 2017] and the feature similarity index (FSIM) [Zhang et
al., 2011a]. The LPIPS takes two images (image patches) as
the input, calculates the L2 distance between their normalized
deep feature embeddings, and predicts the perceptual judg-
ment score through the linear layer. A lower score indicates
better quality of synthetic images. FID is designed to capture
the Fréchet difference of two Gaussians (synthetic and real-
world images). We compute the FID score between the syn-
thetic images and real ones. Lower FID score indicates better
quality of synthetic images. FSIM is a commonly used metric
for full-reference image quality assessment, which captures
the similarity between low-level features of images. It shows
higher consistency with human visual perception. We calcu-
lated the average FSIM score between synthetic images and
real ones. A higher FSIM score indicates better quality of
synthetic images.

4.5 Ablation Study
We compute the LPIPS (alex) score between the synthetic im-
ages and real ones on CUHK database under different con-
figurations to quantify the contribution of different configura-
tions to overall effectiveness. The ablation study is conducted
on four configurations: (a) U-net [Ronneberger et al., 2015]

Configurations Photo-LPIPS(alex) ↓ Sketch-LPIPS(alex) ↓
(a) 0.1686 0.1732
(b) 0.1529 0.1700
(c) 0.1537 0.1657
(d) 0.1511 0.1662

Table 2: Ablation study: LPIPS (alex) scores for different vari-
ants of configurations, evaluated on CUHK photo → sketch and
sketch → photo.

Test Sketch pix2pix CycleGAN PS2MAN SCAGAN Ground TruthOurs

Figure 6: Examples of synthetic face photos on the CUFS dataset
and the CUFSF dataset. From top to bottom, the examples are
selected from the CUHK student database, the AR database, the
XM2VTS database and the CUFSF database, sequentially.

architecture; (b) Using MSPADE-Decoder to replace the ori-
gin decoder in U-net; (c) Adding residual self-attention mod-
ule on the basis of (b); (d) Adding position embeddings on
the basis of (c) (i.e. Full Sketch-Transformer). The evalua-
tion scores are shown in Table 2, from which we can conclude
that all the modifications are critical to the final effectiveness
of the proposed method.

4.6 Comparison with Baselines
Figure 6 presents some synthetic face photos from different
methods on the CUFS dataset and the CUFSF dataset. The
results of pix2pix and CycleGAN have sharp edges but pos-
sess obvious artifacts and noise. PS2MAN produces less ar-
tifacts but its results are blurry. Face photos synthesized by
the SCAGAN have reasonable texture and less artifacts, but
still possess some structure distortions. As shown in the fig-
ure, synthetic photos of the proposed method retain consider-
able structural information and achieve the most reasonable
texture distribution, and therefore has the best visual perfor-
mance.

Some synthetic face sketches from different methods on
the CUFS dataset and the CUFSF dataset are shown in Fig-
ure 7. The results of DGFL and FCN are too blurry. GAN-
based methods (pix2pix, CycleGAN, PS2MAN and SCA-
GAN) can generate sketch-like textures. However, some un-
desirable textures are produced in eye and hair areas. Wild
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Test Photo pix2pix CycleGAN PS2MAN SCAGAN Ours Ground TruthFCN WildDGFL

Figure 7: Examples of synthetic face sketches on the CUFS dataset
and the CUFSF dataset. From top to bottom, the examples are
selected from the CUHK student database, the AR database, the
XM2VTS database and the CUFSF database, sequentially.

Test Photo pix2pix CycleGAN PS2MAN SCAGAN OursWildDGFL

Figure 8: Examples of synthetic face sketches on face photos in the
wild.

has stronger robustness to the environment noises but tends
to generate over smooth results, and the texture distribution
of its synthetic sketches is inconsistent with that of training
sketches. The proposed Sketch-Transformer can generate the
most sketch-like textures while maintain the global structures.

Figure 8 presents some synthetic face sketches from dif-
ferent methods on face photos with deformations and illumi-
nation variations. Results of DGFL are able to preserve de-
sirable structures but lose texture details. Results of pix2pix,
PS2MAN tend to lose structural information and mistake the
shaded area as the hair area. CycleGAN can preserve consid-
erable structures but its synthetic sketches are more like face
photos. Wild has desirable visual performance but the texture
distribution of its synthetic sketches is inconsistent with that
of training sketches. Our results can preserve enough struc-
tural information while generate satisfactory textures.

Table 3 presents the evaluation scores of the synthetic face
photos/sketches on the CUFS dataset and the CUFSF dataset.
The proposed model obtains the best score in most cases,
which indicate that it achieves the best performance.
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LPIPS(alex) ↓ - - 0.1993 0.2096 0.2464 - 0.1727 0.1538
LPIPS(squeeze) ↓ - - 0.1830 0.2094 0.2158 0.1643 0.1310

CUFS
Photo LPIPS(vgg) ↓ - - 0.3525 0.3882 0.3254 - 0.3053 0.2738

FSIM ↑ - - 0.7726 0.7450 0.7819 - 0.7937 0.7851
FID ↓ - - 73.56 80.44 65.04 - 80.53 27.88

LPIPS(alex) ↓ 0.3316 0.4517 0.2263 0.2139 0.2961 0.2807 0.2408 0.1807
LPIPS(squeeze) ↓ 0.2635 0.3596 0.1552 0.1529 0.2265 0.2210 0.1722 0.1233

CUFS
Sketch LPIPS(vgg) ↓ 0.3654 0.4350 0.3734 0.3598 0.3707 0.3639 0.3627 0.3019

FSIM ↑ 0.7079 0.6936 0.7363 0.7219 0.7230 0.7114 0.7086 0.7350
FID ↓ 70.81 69.93 44.91 23.76 48.95 59.26 38.61 20.92

LPIPS(alex) ↓ - - 0.2463 0.2557 0.3145 - 0.1735 0.2199
LPIPS(squeeze) ↓ - - 0.2005 0.2002 0.2853 - 0.1469 0.1714

CUFSF
Photo LPIPS(vgg) ↓ - - 0.4019 0.3791 0.4237 - 0.3128 0.3474

FSIM ↑ - - 0.7777 0.7645 0.7812 - 0.8395 0.7861
FID ↓ - - 39.82 14.46 78.03 - 18.84 15.22

LPIPS(alex) ↓ 0.3524 0.4793 0.2408 0.2371 0.3288 0.3288 0.2188 0.1971
LPIPS(squeeze) ↓ 0.2794 0.3895 0.1628 0.1589 0.2397 0.2473 0.1500 0.1349

CUFSF
Sketch LPIPS(vgg) ↓ 0.3972 0.5305 0.3824 0.3744 0.4170 0.4053 0.3536 0.3400

FSIM ↑ 0.6957 0.6624 0.7283 0.7088 0.7233 0.6821 0.7270 0.7259
FID ↓ 57.33 124.40 35.52 14.62 64.42 59.76 18.32 9.39

Table 3: Quantitative results of the comparison with state-of-the-
art methods on synthetic face photos/sketches of the CUFS database
and CUFSF database.

5 Conclusion
In this paper, we investigate the application potential of trans-
former architecture (especially the self-attention mechanism)
on face photo-sketch synthesis task. For this purpose, we pro-
pose a Sketch-Transformer network which consists of three
closely-related modules: a MFP-Encoder, a self-attention
module, and a MSPADE-Decoder. We compare the proposed
models with recent state-of-the-art methods on two public
datasets and face images in real scenarios. Both qualitative
and quantitative results demonstrate that the proposed method
achieves significant improvements in both retaining structural
information and generating appropriate textures. In the fu-
ture, we intend to further investigate the method of applying
the self-attention module to multi-scale feature embeddings.
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