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Abstract

Graph neural networks (GNNs) have been widely
used in the 3D human pose estimation task, since
the pose representation of a human body can be nat-
urally modeled by the graph structure. Generally,
most of the existing GNN-based models utilize the
restricted receptive fields of filters and single-scale
information, while neglecting the valuable multi-
scale contextual information. To tackle this issue,
we propose a novel model named Graph Trans-
former Encoder-Decoder with Atrous Convolution
(PoseGTAC), to effectively extract multi-scale con-
text and long-range information. Specifically, our
PoseGTAC model has two key components: Graph
Atrous Convolution (GAC) and Graph Transformer
Layer (GTL), which are respectively for the ex-
traction of local multi-scale and global long-range
information. They are combined and stacked in
an encoder-decoder structure, where graph pool-
ing and unpooling are adopted for the interaction
of multi-scale information from local to global as-
pect (e.g., part-scale and body-scale). Extensive ex-
periments on the Human3.6M and MPI-INF-3DHP
datasets demonstrate that the proposed PoseGTAC
model achieves state-of-the-art performance.

1 Introduction
In recent years, 3D human pose estimation is attracting in-
tensive attention in various human-related research fields,
such as action recognition [Yan et al., 2018; Ji et al., 2019],
human-object interaction [Li et al., 2020] and motion predic-
tion [Mao et al., 2019]. Its goal is to estimate 3D coordinates
of human body joints from 2D poses or images. Compared
with the methods [Zhou et al., 2017; Wu and Xiao, 2020] us-
ing RGB images, the 2D-to-3D methods [Zhao et al., 2019;
Liu et al., 2020] using only 2D poses can avoid the influ-
ence of background noise and greatly reduce the computa-
tional complexity, thus achieving competitive performance.

In this paper, we focus on the topic of 2D-to-3D pose es-
timation, which aims to predict 3D poses only given the 2D
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Figure 1: Previous methods commonly adopt the restricted recep-
tive fields of filters and ignore various multi-scale contextual infor-
mation. Differently, our proposed PoseGTAC method enlarges the
receptive fields of filters for capturing multi-scale context.

pose data. Recently, as an extension of the standard convo-
lutional network, graph neural network (GNN) has shown its
natural superiority in capturing the irregular structures in vi-
sual data that CNN cannot handle. For human pose estima-
tion, both the 2D and 3D pose information can be regarded
as a graph and intuitively be modeled by GNN. The GNN-
based methods take the body joints as the nodes and the bones
physically connecting body joints as the edges to build the
graph. Compared with the traditional methods, the GNN-
based methods have achieved better performance. For exam-
ple, ST-GCN [Yan et al., 2018] first utilized graph convolu-
tional network (GCN) to aggregate the skeleton features and
achieved impressive performance. Later, SemGCN [Zhao et
al., 2019] introduced the semantic graph convolutional net-
work to capture local and non-local information. Besides,
SD-HNN [Liu et al., 2020] leveraged hypergraphs to model
the dynamics of the human body for 3D pose estimation.

Though the above approaches have achieved good perfor-
mance in 3D human pose estimation, they generally adopt
the restricted receptive fields of filters and aggregate the
single-scale joint information. As illustrated in Fig. 1,
existing approaches limitedly consider the 1-hop neighbors
when calculating the graph convolution, while neglecting
the valuable multi-scale contextual information. Actually,
the multi-scale contextual information contains rich features
that are essential to facilitate the prediction performance,
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Figure 2: The overall framework of the proposed PoseGTAC model. It is a hierarchical encoder-decoder architecture that consists of stacked
graph atrous convolution (GAC) layers and graph transformer layers (GTL) at different scales. In addition, at the beginning and end of the
model, two graph convolution layers are used for the input encoding and output decoding procedures.

though it implicitly resides among the higher-order neigh-
bors. Moreover, several recent approaches [Zhao et al., 2019;
Liu et al., 2020] attempt to extract non-local information,
but ignore the semantic positional information (i.e., the joint
type). For instance, two joints of the same coordinates with
different semantics may convey totally different information.

To overcome the limitations of existing GNN-based ap-
proaches, we propose a novel Graph Transformer Encoder-
Decoder with Atrous Convolution, dubbed PoseGTAC, to en-
hance the extraction of multi-scale context and long-range re-
lationships in the pose. As the overall framework is shown
in Fig. 2, our proposed PoseGTAC consists of stacked graph
atrous convolution layers and graph transformer layers in an
encoder-decoder structure which exploits multi-scale features
based on human kinetics. Notably, the Graph Atrous Convo-
lution (GAC) can effectively enlarge the receptive fields of
filters and densely learn multi-scale pose context, and Graph
Transformer Layer (GTL) is used to capture global long-
range information. Moreover, graph pooling and graph un-
pooling are adopted in PoseGTAC to ensure the interaction
of multi-scale information from local to global.

Our main contributions are three-fold: (1) We propose a
novel PoseGTAC method that can effectively extract local
multi-scale context and global long-range relationships for
3D human pose estimation. (2) We design an advanced Graph
Atrous Convolution (GAC) to enlarge the receptive fields of
filters and learn multi-scale pose context, and a Graph Trans-
former Layer (GTL) to capture global long-range relation-
ships. The two key components are flexibly combined in an
encoder-decoder structure. (3) We conduct extensive exper-
iments on two widely-used datasets Human3.6M and MPI-
INF-3DHP to demonstrate the superiority of our proposed
PoseGTAC model comparing to the state-of-the-art methods.

2 Related Work
2D-to-3D Pose Estimation. With a lot of research into 3D
human pose estimation, the existing methods can be grouped
into three directions, 2D-to-3D pose estimation [Zhao et al.,
2019; Liu et al., 2020], monocular image-based 3D pose es-
timation [Zhao et al., 2019; Wu and Xiao, 2020] and multi-

view image-based 3D pose estimation [Qiu et al., 2019]. The
recent GNN-based methods have greatly improved prediction
performance in 2D-to-3D pose estimation. ST-GCN [Yan et
al., 2018] first applied graph convolution to aggregate fea-
tures in the skeleton. SemGCN [Zhao et al., 2019] utilized
semantic graph convolution to lift 2D pose to 3D pose by ex-
tracting local and non-local information. SD-HNN [Liu et al.,
2020] introduced static and dynamic hypergraphs to represent
a human body for 3D pose estimation. However, they do not
take full advantage of multi-scale contextual information.
Graph Neural Networks. As a generalization of standard
convolution and pooling, many methods of graph convolu-
tion and graph pooling have recently been proposed. Inspired
by the graph Laplacian methods, [Kipf and Welling, 2017]
proposed graph convolution networks by the Chebyshev ap-
proximation, which is the most widely used form of graph
convolution. GraphSAGE [Hamilton et al., 2017] embedded
node features by sampling and aggregating and introduced
transductive graph convolution. SAGPool [Lee et al., 2019]
attempted to use a learnable mask to select the node features
retained. In this work, we propose a novel graph transformer
encoder-decoder with atrous convolution.
Attention Mechanism. The pioneering work of [Vaswani et
al., 2017] introduced a new attention based network named
Transformer for the machine translation task of natural lan-
guage processing (NLP). Transformer is mainly composed of
multi-head attention module and feedforward network. There
has also been a lot of work based on attention mechanism in
computer vision recently [Wang et al., 2018; Carion et al.,
2020]. Unlike non-local network based methods [Zhao et al.,
2019], our PoseGTAC method introduces the transformer op-
eration on the graph to capture long-range relationships.

3 Proposed Method
3.1 Preliminaries
Graph Definition. The raw pose data, i.e., the joint keypoint
vector, is a set of 2D coordinates. Usually, in GNN-based
approaches, the vector can be represented as a graph G =
(V, E), where the vertices are all joints and edges are physical
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connections between two joints. Here V is the set of N joints
and E is characterized by the adjacency matrix A ∈ RN×N .
In this way, the pose data is transformed into a graph sequence
and specifically represented as a tensor X ∈ RN×C , where
N and C denote the numbers of joints and channels.
Graph Convolution. Based on the above definition, the ex-
isting GNN-based methods generally use the stacked graph
convolution module to extract the high-level skeleton infor-
mation to regress 3D pose. The commonly used graph con-
volution operation can be represented as follows:

X(i+1) = σ(WX(i)(Λ�M)), (1)

where σ(·) denotes the activation function, i is the index of
the current layer and Λ denotes the normalized Laplace ma-
trix. Λ = D− 1

2 AD− 1
2 , where A is the adjacency matrix

with the self-loop, and D denotes the degree matrix of the
graph. W denotes a Cout × Cin × 1 × 1 learnable weight
matrix and M denotes an N × N attention mask matrix. �
denotes the element-level dot product.

In addition to using local GCN to extract skeleton features,
non-local module is introduced to extract long-range infor-
mation, which is generally represented as extracting the rela-
tionships between the current node and all other nodes.

Root
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2-Hop

3-Hop
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MLP
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Figure 3: Illustration of the graph atrous convolution (GAC) layer,
which consists of paralleled graph convolutions and graph pooling.
Here “MLP” denotes multi-layer perceptron.

3.2 Graph Atrous Convolution (GAC)
As shown in Eq. 1, the previous methods use the restricted
filters to convolve only 1-hop neighbors, ignoring the multi-
scale contextual information from higher-order neighbors.
We consider that multi-scale context is indispensable for
3D human pose estimation. To this end, we introduce a
multi-scale graph convolution termed Graph Atrous Convo-
lution (GAC) to capture the multi-scale context residing in
the higher-order neighbors. Inspired by the atrous convolu-
tion [Yu and Koltun, 2016; Chen et al., 2018] in image seg-
mentation, convolution operations with different dilation fac-
tors are used in parallel. As illustrated in Fig. 3, in our graph
convolution, the dilation factor is defined as the distance to
the root node, and graph atrous convolution is represented as

paralleled convolutions with root node, 1-hop, 2-hop and 3-
hop neighbors, etc. We first formally define the k-hop matrix
Ak as follows:

[Ak]i,j =


1 d(vi, vj) = k,
1 d(vi, vj) = 0,
0 otherwise,

(2)

where d(vi, vj) denotes the distance of the shortest path be-
tween vi and vj on the skeleton graph, and Ak is the k-hop
adjacency matrix with the self-loop.

Y
(l)
k = σ(WkX

(l)(Λk �Mk)), (3)

where Λk denotes the normalized k-hop Laplace matrix.
Λk = D

− 1
2

k AkD
− 1

2

k , where Dk denotes the degree matrix
of the graph. Wk denotes a learnable weight matrix for node
embedding and Mk denotes aN×N learnable attention mask
matrix. Y

(l)
k ∈ RN×C denotes the output of k-hop graph

atrous convolution.
Moreover, in order to facilitate global context information,

skeleton features pooled globally are concatenated with the
output of parallel graph atrous convolution in Eq. 3 and then
fed to a multi-layer perceptron (MLP) to aggregate multi-
scale and global context features.

Y
(l)
pool = AvgPool(X(l)),

Y(l) = Cat([Y(l)
0 , ...,Y

(l)
k−1,Y

(l)
pool]),

X(l+1) = WY(l),

(4)

where AvgPool(·) and Cat(·) respectively denote the aver-
age pooling and concatenation operation. Y

(l)
pool ∈ RN×C

represents the output features pooled globally, Y(l) ∈
RN×[(k+1)×C] is the features of concatenating all branches.
W is a learnable weight matrix for feature aggregation and
dimension reduction. X(l+1) denotes the final output features
of the GAC layer.

3.3 Graph Transformer Layer (GTL)
Although the multi-scale contextual information has been
well extracted by the GAC module based on the local physical
connection of the human body, there is a lack of long-range
information that can effectively promote pose representation
learning. To determine whether there is a connection between
two joints and how strong the connection is, we introduce the
graph transformer layer (GTL) to better capture long-range
information.

Since the joints in the pose have no order to uniquely iden-
tify their types from the input, the position encoding needs to
be added to complement the position information. In partic-
ular, we follow the sine and cosine functions as the position
encoding functions in [Vaswani et al., 2017]:

PE(pos,2i) = sin(pos/100002i/Cin),

PE(pos,2i+1) = cos(pos/100002i/Cin),
(5)

where pos is the position and i is the dimension of the posi-
tion encoding vector. As shown in Fig. 4, in the GTL, the raw
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input is first added with the position encoding, and then fed
to two embedding functions (e.g., θ and φ) for obtaining the
high-level features. The dot product is adopted to measure the
similarity of the two joints in an embedding space. Specifi-
cally, we can calculate the attention matrix representing the
strength of the relationships between the joints as follows:

Matt = Softmax(Xin
TWT

θ WφXin), (6)
where Softmax(·) denotes the softmax operation used for nor-
malization, and Matt denotes the attention map. Wθ and
Wφ are the learnable weight matrices of the embedding func-
tions θ and φ, respectively.

In addition, we add an extra N × N global attention ma-
trix Mglobal to pay more attention on unconstrained learning.
Specifically, the global attention matrix is added to the atten-
tion matrix Matt and then multiplied by the original input.
As a result, the multi-head attention and feedforward network
can be used to obtain long-range features with rich attention.

Li
n

e
ar

Attention 
Map

Global
Attention 

Li
n

ea
r

Li
n

e
ar

Position Encoding

c

Element-wise sum Matrix multiply Multi-head concatenationc

𝑿𝒊𝒏
𝑾𝜽

𝑾𝝋 𝑴𝒂𝒕𝒕

𝑴𝒈𝒍𝒐𝒃𝒂𝒍

𝑯

𝑿𝒐𝒖𝒕

Figure 4: Illustration of the graph transformer layer (GTL) that is
composed of H self-attention modules and a feedforward network.

3.4 The PoseGTAC Architecture
To obtain multi-scale (e.g., joint-scale and part-scale) infor-
mation based on human kinetics, graph pooling and graph
unpooling are adopted to capture effectively the interaction
of multi-scale information in the pose. Before graph pool-
ing and unpooling, the nodes of each scale s are divided into
different regions Rs according to the physical priors of the
human body, such as the upper left leg, the lower left leg, the
torso, etc. For the upper scale features, we implement the
pooling by using average pooling to aggregate the point fea-
tures that are divided into a region in the current scale to get
the lower scale features. In other words, multiple points are
averaged into one point. Specifically, the formula is imple-
mented as follows:

Xs+1
i = AvgPool({Xs

j | ∀Xs
j ∈ Rsi}), (7)

where Rsi denotes the region feature under scale s, and Xs
j

denotes a joint feature element belonging to Rsi set. Xs+1
i

denotes a new joint feature under scale s+1 obtained through
graph pooling.

Due to the independence of the partitioned regions, the un-
pooling is realized by copying an upper scale feature multi-
ple times and then concatenating them together in the corre-
sponding lower scale region.

Rsi = Cat({Xs+1
i , . . . ,Xs+1

i }), (8)

where the number of repetitions of Xs+1
i is determined by the

size of the corresponding setRsi .
In addition, the features obtained by unpooling are con-

catenated with the corresponding features on the contraction
path, and then fed to the next layer. The graph atrous con-
volution layer and graph transformer layer are used to extract
local and global information, while pooling and unpooling
are used to facilitate the interaction of information from local
to global. Fig. 2 illustrates the architecture of our proposed
PoseGTAC, which stacks five graph atrous convolution lay-
ers and five graph transformer layers at different scales. Two
graph convolution layers are used for input encoding and out-
put decoding procedures. Each layer is followed by a BN
layer and a ReLU layer. The mean squared error (MSE) be-
tween the predicted pose and the ground-truth is used as our
loss function, which can be trained in an end-to-end manner.

4 Experiments
4.1 Experimental Setup
Datasets and Evaluation Protocols. Following previous
studies [Liu et al., 2020], we adopt two benchmark datasets
Human3.6M and MPI-INF-3DHP in our experiments.

Human3.6M [Ionescu et al., 2014] is the largest 3D human
pose estimation dataset. It contains 3.6 million images, where
11 professional actors perform 15 actions such as walking,
greeting, smoking and making a phone call. Both 2D and 3D
ground-truth data are available for supervised 3D human pose
estimation. We use five subjects (S1, S5, S6, S7, and S8) for
training and two subjects (S9 and S11) for testing. In order to
reduce redundancy, we follow [Zhao et al., 2019] and down-
sample the raw videos from 50fps to 10fps for the training
and testing datasets. MPI-INF-3DHP [Mehta et al., 2017] is
the dataset obtained using MoCap system for 3D human pose
estimation. The test set consists of 2,929 frames from 6 sub-
jects performing 7 actions.

Three evaluation protocols are adopted in our experiments:
Protocol #1 is the mean per-joint position error (MPJPE) in
millimeters which measures the error between the ground-
truth and predictions. Protocol #2 is P-MPJPE which reports
the error between the ground-truth and predictions through
the rigid transformation including translation, rotation and
scale. As an auxiliary, we also measure the mean per-joint
velocity error (MPJVE) as Protocol #3, which is obtained by
the MPJPE of the first derivative and represents the smooth-
ness of predicted results. Two standard metrics of PCK (Per-
centage of Correct Keypoints) under 150mm radius and AUC
(Area under the ROC Curve) are used for quantitative evalu-
ation for MPI-INF-3DHP.
Implement Details. Our PoseGTAC model consists of two
graph convolution layers, five graph transformer layers (GTL)
with three heads and five graph atrous convolution (GAC)
layers. The number of channels for all layers is 128, except
for GTL, which has 32 intermediate channels for reducing
the computational complexity of the model. We set up three
different scales containing 16,10 and 5 joints. The Adam op-
timizer is adopted as our optimizer with the initial learning
rate 0.001 and the decay factor 0.96 per 100K steps. We train
our model for 50 epochs with the batch size 256. All exper-
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Method Direct Discuss Eating Greet Phone Photo Pose Purch Sitting SittingD Smoke Wait WalkD Walk WalkT Avg. ↓
Pavlakos [Pavlakos et al., 2017] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Fang [Fang et al., 2018] 50.1 54.3 57.0 57.1 66.6 73.3 53.4 55.7 72.8 88.6 60.3 57.7 62.7 47.5 50.6 60.4
Yang [Yang et al., 2018] 51.5 58.9 50.4 57.0 62.1 65.4 49.8 52.7 69.2 85.2 57.4 58.4 43.6 60.1 47.7 58.6
Lee [Lee et al., 2018] 43.8 51.7 48.8 53.1 52.2 74.9 52.7 44.6 56.9 74.3 56.7 66.4 47.5 68.4 45.6 55.8
Trumble [Trumble et al., 2018] 41.7 43.2 52.9 70.0 64.9 83.0 57.3 63.5 61.0 95.0 70.0 62.3 66.2 53.7 52.4 62.5
Chen [Chen et al., 2019] 45.9 53.5 50.1 53.2 61.5 72.8 50.7 49.4 68.4 82.1 58.6 53.9 57.6 41.1 46.0 56.9
Wandt [Wandt and Rosenhahn, 2019] 50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9
Zhao [Zhao et al., 2019] 37.8 49.4 37.6 40.9 45.1 41.4 40.1 48.3 50.1 42.2 53.5 44.3 40.5 47.3 39.0 43.8
Zhou [Zhou et al., 2019] 34.4 42.4 36.6 42.1 38.2 39.8 34.7 40.2 45.6 60.8 39.0 42.6 42.0 29.8 31.7 39.9
Wu [Wu and Xiao, 2020] 34.9 40.8 37.5 47.2 41.5 46.6 35.9 39.5 52.6 72.5 42.3 45.8 42.0 31.6 33.8 43.2
Liu [Liu et al., 2020] 42.1 45.6 38.2 41.4 41.5 47.4 45.8 39.9 44.7 53.0 42.6 44.0 42.1 34.0 37.6 42.7
PoseGTAC (Ours) 37.2 42.2 32.6 38.6 38.0 44.0 40.7 35.2 41.0 45.5 38.2 39.5 38.2 29.8 33.0 38.2

Table 1: Quantitative evaluation using Mean Per Joint Position Error (MPJPE) in millimeter between estimated pose and the ground-truth on
Human3.6M under Protocol #1. The best results are in bold and the second-best results are underlined.

Method Direct Discuss Eating Greet Phone Photo Pose Purch Sitting SittingD Smoke Wait WalkD Walk WalkT Avg. ↓
Lee [Lee et al., 2018] 38.0 39.3 46.3 44.4 49.0 55.1 40.2 41.1 53.2 68.9 51.0 39.1 33.9 56.4 38.5 46.2
Fang [Fang et al., 2018] 38.2 41.7 43.7 44.9 48.5 55.3 40.2 38.2 54.5 64.4 47.2 44.3 47.3 36.7 41.7 45.7
Rayat [Hossain and Little, 2018] 35.2 40.8 37.2 37.4 43.2 44.0 38.9 35.6 42.3 44.6 39.7 39.7 40.2 32.8 35.5 39.2
Chen [Chen et al., 2019] 36.5 41.0 40.9 43.9 45.6 53.8 38.5 37.3 53.0 65.2 44.6 40.9 44.3 32.0 38.4 44.1
Wandt [Wandt and Rosenhahn, 2019] 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2
Zhou [Zhou et al., 2019] 29.1 34.9 29.9 32.6 31.2 32.3 27.0 33.3 37.6 45.9 32.2 31.5 34.5 22.9 25.9 32.1
Wu [Wu and Xiao, 2020] 29.9 33.6 31.4 37.1 33.9 36.8 28.4 30.7 42.6 52.2 35.3 35.2 34.0 24.9 27.9 34.6
Liu [Liu et al., 2020] 29.6 34.9 31.7 31.6 32.9 37.4 33.3 30.5 37.6 43.0 34.2 34.3 33.2 27.0 29.2 33.4
PoseGTAC (Ours) 25.8 31.7 25.8 29.3 28.8 34.1 29.6 26.4 33.2 37.2 30.5 30.0 29.8 23.4 25.9 29.4

Table 2: Quantitative evaluation using P-MPJPE in millimeter between estimated pose and the ground-truth on Human3.6M under Protocol
#2. Procrustes alignment is used to preprocess the ground-truth. The best results are in bold and the second-best results are underlined.

iments are conducted on PyTorch deep learning framework
with a single RTX-2080Ti GPU.

Method PCK ↑ AUC ↑
Zhou [Zhou et al., 2017] 69.2 32.5
Yang [Yang et al., 2018] 69.0 32.0
Pavlakos [Pavlakos et al., 2018] 71.9 35.3
Habibie [Habibie et al., 2019] 70.4 36.0
Liu [Liu et al., 2020] 74.9 37.5
PoseGTAC (Ours) 76.4 39.3

Table 3: Quantitative evaluation on MPI-INF-3DHP dataset using
PCK and AUC. The higher values mean better performance. The
best results are in bold and the second-best results are underlined.

4.2 Quantitative Results
To better evaluate the performance of our proposed PoseG-
TAC model, we show quantitative results and compare them
to the state-of-the-art methods on 3D human pose estimation.

Table 1 and Table 2 show the experiment results on the
Human3.6M dataset for Protocol #1 and Protocol #2, respec-
tively. We can observe that the proposed PoseGTAC method
outperforms all the compared models on both two proto-
cols and obtains the best results in terms of the average and
most individual actions. In particular, the MPJPE reduces by
1.7mm with an error reduction of 4.3%, and the P-MPJPE
decreases by 2.7mm with an 8.4% error reduction, respec-
tively. It proves that our PoseGTAC extracts rich multi-scale
context and promotes long-range feature interaction.

Moreover, we also provide supplementary to evaluate the
smoothness of the predicted pose by our PoseGTAC model
as Protocol #3. Additionally, the results on Protocol #3 also
reflect the effectiveness and precision of our model from the
side. As reported in Table 4, the MPJVE in our PoseGTAC
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Figure 5: The learned weight matrices of our PoseGTAC model: (a)
the adjacency matrix of graph atrous convolution (GAC) and (b) the
attention matrix of graph transformer layer (GTL).

model reduces the results of the previous work [Pavllo et al.,
2019] by 80%, which clearly validates that the pose predicted
by our PoseGTAC model is smoother and more precise.

For the MPI-INF-3DHP dataset, we train our model with
Human3.6M data without post-process of fine-tuning or re-
training. As shown in Table 3, comparing to the best coun-
terpart of [Liu et al., 2020], our PoseGTAC model achieves
an improvement of 1.5% PCK and 1.8% AUC, which consis-
tently indicates the effectiveness of our PoseGTAC model.

4.3 Ablation Studies
Effectiveness of Each Module. To verify the effectiveness
of different modules in our proposed model, we conduct a
series of ablation studies on the Human3.6M dataset under
Protocol #1. For the ablation of the overall network architec-
ture, we take SemGCN [Zhao et al., 2019] as our baseline.
We set whether to use or combine graph transformer layer
(GTL) and graph atrous convolution (GAC), and finally com-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1363



Method Direct Discuss Eating Greet Phone Photo Pose Purch Sitting SittingD Smoke Wait WalkD Walk WalkT Avg. ↓
Pavllo* [Pavllo et al., 2019] 12.8 12.6 10.3 14.2 10.2 11.3 11.8 11.3 8.2 10.2 10.3 11.3 13.1 13.4 12.9 11.6
PoseGTAC (Ours) 2.3 2.6 1.9 2.9 1.9 2.1 2.3 2.4 1.3 1.7 1.8 2.2 3.4 3.6 2.9 2.3

Table 4: Quantitative evaluation using Mean Per Joint Velocity Error (MPJVE) between estimated pose and the ground-truth on Human3.6M
under Protocol #3. The best results are in bold. * denotes the methods based on single frame.

Method MPJPE ↓ Branches MPJPE ↓
GTL w/o PE & GA 41.5 4s 39.3
GTL + PE 40.2 4s+pool 38.9
GTL + PE + GA 39.4 6s 39.6

Table 5: The MPJPE obtained by our proposed model with different
configurations of GAC and GTL.

Method MPJPE (mm) ↓
SemGCN [Zhao et al., 2019] 43.8
with GAC 38.9
with GTL 39.4
with GAC & GTL 38.6
PoseGTAC (Ours) 38.2

Table 6: Ablation study on the Human3.6M dataset for the MPJPE
between the predicted pose and the ground-truth.

pare our PoseGTAC model with the encoder-decoder frame-
work. As shown in Table 6, compared to our baseline, adding
only GAC or GTL is able to obtain remarkable error reduc-
tion, and adopting the encoder-decoder framework achieves
the best results.

We further explore the configuration of the two main
modules we designed in detail. Table 5 shows the perfor-
mance comparison of GAC module with different numbers of
branches and whether the pooling is used in GAC. We config-
ure our GAC with four branches (i.e., “4s”) and six branches
(i.e., “6s”). By contrast, the error of our GAC with four
branches is the lowest, and then is further reduced by adding
pooling (i.e., “4s+pool”). We also evaluate the components of
GTL, including the position encoding (PE) and global atten-
tion (GA). Based on our “vanilla” GTL, adding the position
encoding or global attention can obtain 1.3% and 0.8% error
reduction, showing that the position encoding can well com-
plement the semantic information in the joint sequence.
Visualization of the Learned Matrices. Furthermore, to ex-
plore how the information is aggregated between the joints,
we visualize the learned weight matrices of the first GAC and
GTL of our PoseGTAC model. Specifically, we obtain the fi-
nal adjacency matrix in Fig. 5(a) by adding the weight matri-
ces of the four branches of GAC. From the adjacency matrix,
i.e., the GAC filter, we can see that the receptive field of our
filter is sufficiently enlarged and contains all joints from the
root to the 3-hop neighbors. It is probable that our model fo-
cuses more on the wrists and feet that incorporate multi-scale
information. In addition, the attention matrix is obtained by
adding the attention map and global attention matrix in GTL.
As shown in Fig. 5(b), long-range relationships can be effec-
tively extracted in each joint, especially in the hip and spine.
It indicates that our proposed model not only focuses on lo-
cal multi-scale contextual information, but also concentrate

Figure 6: Qualitative results obtained by our proposed PoseGTAC
on the Human3.6M dataset.

on global long-range relationships.
Qualitative Pose Estimation Results. We finally illustrate
typical visualizations of the poses predicted by our PoseG-
TAC model in Fig. 6, where five different actions, “greeting”,
“posing”, “sitting”, and “purchases” are included. We can
observe that the poses for all sequences predicted by PoseG-
TAC are considerably accurate comparing to the ground-truth
annotations, even in the challenging scenario with occlusion
problem (e.g., “purchases”).

5 Conclusion
In this work, we proposed a novel Graph Transformer
Encoder-Decoder with Atrous Convolution named PoseG-
TAC to extract effectively multi-scale contextual information
and capture accurately global long-range relationships for 3D
human pose estimation. Moreover, we designed two modules,
graph atrous convolution (GAC) and graph transformer layer
(GTL), respectively for the extraction of multi-scale and long-
range information, and combine them in the encoder-decoder
structure. The extensive experiments on the Human3.6M and
MPI-INF-3DHP datasets validated that our PoseGTAC model
can extract abundant multi-scale and global long-range infor-
mation, which is beneficial for 3D human pose estimation.
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