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Abstract

Graph pooling is a critical operation to downsam-
ple a graph in graph neural networks. Existing
coarsening pooling methods (e.g. DiffPool) mostly
focus on capturing the global topology structure
by assigning the nodes into several coarse clus-
ters, while dropping pooling methods (e.g. SAG-
Pool) try to preserve the local topology structure
by selecting the top-k representative nodes. How-
ever, there lacks an effective method to integrate
the two types of methods so that both the local
and the global topology structure of a graph can
be well captured. To address this issue, we pro-
pose a Multi-channel Graph Pooling method named
MuchPool, which captures the local structure, the
global structure and node features simultaneously
in graph pooling. Specifically, we use two chan-
nels to conduct dropping pooling based on the lo-
cal topology and node features respectively, and
one channel to conduct coarsening pooling. Then a
cross-channel convolution operation is designed to
refine the graph representations of different chan-
nels. Finally, the pooling results are aggregated as
the final pooled graph. Extensive experiments on
six benchmark datasets present the superior perfor-
mance of MuchPool. The code of this work is pub-
licly available at Github1.

1 Introduction
Convolution Neural Networks (CNNs) [Montavon et al.,
2012] have shown great capability in various machine learn-
ing tasks, such as image recognization [He et al., 2016] and
video classification [Karpathy et al., 2014]. As images and
texts are Euclidean data, which have regular grid-like struc-
tures, convolution and pooling operations can be conveniently
conducted in. Given the powerful capability of CNNs on grid-
like data, it is appealing to generalize convolution and pooling
operations on graph-structured data [Gori et al., 2005]. How-
ever, significantly different from grid-like data, the locality of
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nodes cannot be clearly defined in a graph, making the gen-
eralization of convolution and pooling operations on graphs
extremely challenging.

In recent years, there has been a myriad of attempts to ex-
tend convolution operations to arbitrarily shaped graphs, re-
ferred as Graph Neural Networks (GNNs). The application of
various GNNs for node representation learning [Veličković et
al., 2018] have obtained outstanding performance in graph-
related learning tasks, such as node classification [Veličković
et al., 2018] and link prediction [Schlichtkrull et al., 2018].
However, in some scenarios, the graph-level representa-
tion is also needed to perform graph-level machine learn-
ing tasks such as predicting the physical property of a given
molecule [Wang et al., 2019]. Although considerable ef-
forts have been made in studying the convolution opera-
tion in GNNs, one essential problem in graph representation
learning, how to effectively perform the pooling operation to
downsample the graphs, is not fully studied and remains to be
a challenging research problem.

Early graph representation learning models generally uti-
lize simple readout function (such as mean pooling and max
pooling) [Henaff et al., 2015] to summarize all the nodes’
representations to represent the graph. Such simple readout
function methods are inherently flat [Zhang et al., 2019] as
the graph topology information is largely ignored. To capture
the global topology structure of a graph, coarsening pooling
methods, such as DiffPool [Ying et al., 2018], utilize differen-
tiable pooling operators to learn soft assignment matrices to
map each node into sets of clusters. Then the nodes of a clus-
ter are pooled as one node to form a coarsened graph. Another
line of researchers propose the dropping pooling methods, in-
cluding Graph U-Nets [Gao and Ji, 2019], AttPool [Huang et
al., 2019] and SAGPool [Lee et al., 2019], to better capture
the local topology structure. The general idea behind these
approaches is to first select top-k important nodes of a graph
and then drop all the other nodes to downsample the graph.
However, there lacks an effective method to integrate the two
types of methods so that both the local and the global topol-
ogy structure of a graph can be well captured.

To address the limitations of existing graph pooling meth-
ods, we propose a novel multi-channel graph pooling method
named MuchPool, which can effectively integrate the global
topology structure, the local topology structure and the node
features in graph pooling via using three channels. To be spe-
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cific, we use two channels to conduct dropping pooling based
on the local structure and node features respectively, and one
channel to conduct coarsening pooling based on the global
topology structure. Then a cross-channel graph convolution
operation is proposed to integrate and refine the node repre-
sentations of the three channels. Finally, the pooling results
of different channels are aggregated to form the final pooled
graph. To utilize MuchPool in the task of graph classifica-
tion, we implement an end-to-end architecture by stacking
graph convolution layers and the MuchPool layers to learn a
hierarchical representation for a graph. We conduct extensive
experiments over six widely used graph datasets in GNNs.
The results show that our proposal achieves significant perfor-
mance improvement on graph classification compared with
current state-of-the-art models. We summarize our main con-
tributions as follows.

• We for the first time propose a novel multi-channel
graph pooling method that can capture and integrate lo-
cal patch, coarse-grained structure and node features si-
multaneously.

• We design a cross-channel graph convolution operation
to refine the node representations, and propose a pooling
aggregation operation to integrate the pooling results of
different channels.

• We conduct extensive experiments on multiple public
datasets to demonstrate MuchPool’s capability of learn-
ing effective graph representation by comparing it with
several state-of-the-art methods.

2 Related Work
2.1 Graph Neural Networks
GNNs can be generally divided into two categories: spec-
tral and spatial approaches. Based on spectral graph the-
ory, Bruna et al. [Bruna et al., 2014] first defined convolu-
tion operation in Fourier transform domain. When utilizing
spectral filters, graph Laplacian has to be computed, causing
heavy computation cost, so this method is hard to general-
ize to graphs with large size. To address this challenge, Kipf
and Welling [Kipf and Welling, 2017] proposed a simplified
model by utilizing 1-st approximation of the Chebyshev ex-
pansion. The spatial approaches define convolution by ag-
gregating the information of central node and its neighbors,
aiming at making it work on graphs directly. Among them,
GraphSAGE [Hamilton et al., 2017] generates node embed-
dings via aggregating nodes information from sampling strat-
egy. GAT [Veličković et al., 2018] integrates attention mech-
anism into the process of information aggregation. Both
spectral and spatial methods can fit within the framework of
“neural message-passing” [Gilmer et al., 2017]. Under this
framework, GNN is regarded as a message-passing algorithm
where node representations are computed iteratively by ag-
gregating messages from its neighboring nodes through edges
using a differentiable function.

2.2 Graph Pooling
Pooling operation can downsize inputs, thus reduce the num-
ber of parameters and enlarge receptive fields, leading to bet-

ter generalization performance. Recent graph pooling meth-
ods can be grouped into two big branches: global pooling and
hierarchical pooling.

Global graph pooling, also known as a graph readout op-
eration [Xu et al., 2019; Lee et al., 2019], adopts summa-
tion operation or neural networks to integrate all the node
embeddings into a vector as graph representation. Set2set
[Vinyals et al., 2015] uses the LSTM model to find the im-
portant nodes in a graph and generate graph representation.
DGCNN [Zhang et al., 2018] sorts node embeddings and then
summarizes the graph by concatenating some of the node em-
beddings. Though flexible to apply on graphs with different
sizes, global graph pooling methods perform pooling opera-
tions only based on node features, and thus some structural
information could be lost.

Hierarchical graph pooling methods aim at learning a hier-
archical representation via building hierarchical GNNs. Diff-
Pool [Ying et al., 2018] uses graph neural networks to learn a
soft assignment matrix mapping nodes to a set of clusters, so
it is computation expensive. U-Nets [Gao and Ji, 2019], SAG-
Pool [Lee et al., 2019] and AttPool [Huang et al., 2019] de-
sign top-k node selection strategy to pick out the most impor-
tant nodes to form a pooled graph with them. Such methods
are more effective as they only need to calculate an important
score for each node, but they neglect to consider the graph
topology during this procedure. EdgePool [Diehl, 2019] gets
a pooled graph by contracting the edges in a graph. It is un-
flexible since it can only cut the number of nodes in half each
time. EigenPool [Ma et al., 2019] performs pooling operation
based on graph Fourier transform. Due to operating spectral
clustering, it is very time-consuming. To sum up, there still
lacks an effective method that can combine the top-k based
and graph coarsening based methods to yield a better hierar-
chical graph representation.

3 Problem Statement
In this paper, we focus on the graph classification task, which
maps each graph to a set of labels. Considering an arbitrary
graph G = (A,X), we have A ∈ {0, 1}n×n denotes the
adjacency matrix, and X ∈ Rn×d denotes the feature matrix
in which each row represents a d-dimentional feature vector
of a node. Given a dataset D = {(G1, y1), (G2, y2), ...}, the
task of graph classification is to learn a mapping function f :
G → Y , where G = {G1, G2, ..., Gn} is the set of input
graphs and Y = {y1, y2, ..., yn} is the set of labels associated
with the graphs.

3.1 Graph Convolution Networks
Graph Convolution Network (GCN) [Kipf and Welling, 2017]
is an effective tool to extract discriminative features in graphs
and achieves state-of-the-art performance in many machine
learning tasks. We use GCN as a module of our graph classi-
fication model, which is defined as:

X l+1 = σ(D̂− 1
2 ÂD̂

1
2X(l)W (l)) (1)

where Â = A+I is the adjacency matrix with self-loop added
to each node, D̂ =

∑
j Âi,j is the degree matrix of Â and
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Figure 1: The framework of the proposed MuchPool model.

W (l) is a learnable matrix at layer l. The initial node features
are used at the first graph convolution, i.e., X(0) = X .

4 MuchPool: Multi-Channel Graph Pooling
The main idea of MuchPool is to use three channels to per-
form graph pooling to capture different characteristics of a
graph, and then aggregate the three channels’ pooling results.
The original graph is first fed into three GCN layers to learn
node embeddings. Based on the intermediate result, we gen-
erate two fine-grained pooled graphs Gfine1 and Gfine2, and
a coarse-grained graph Gcoarse as shown in step 1 of Figure
1. At step 2, we conduct cross-channel convolution between
channel 2 and channels 1 and 3, respectively. At step 3, we
aggregate the outputs of channel 1 and channel 3 to form the
final pooled graph Gpool.

4.1 Multi-Channel Pooling
Channel 1: Local topology based pooling. In channel 1,
we propose to use the local topology-based mask method to
generate a fine-grained pooled graph Gfine1. Specifically,
we use the degree measurement to rank the importance of
the nodes. In other words, the larger the degree of a node,
the more important it is to the entire graph. For example, the
nodes with high degrees in road networks may represent some
central or important areas and these nodes can better repre-
sent the outline of the whole road network [Song et al., 2020;
Wang et al., 2020]. The following equations are applied to
get the importance scores of each node:

si = sum(A[i, :]) (2)
Idx1 = rank(s1, k) (3)

where si denotes the degree of i-th node of original graph,
s1 = [s1, s2, ..., sn], A denotes the adjacency matrix of the
graph, k is the number of nodes selected to reserve in the
fine-grained pooled graph. rank(s, k) function is used to sort
nodes based on their degree, and it returns the index set of the
k-largest values in s.

Channel 2: Global topology based pooling. In channel 2,
we aim at forming a coarse-grained graph Gcoarse. Many
graphs have rich hierarchical structures [Ma et al., 2018], and
capturing this kind of structural information is significant for
downstream graph classification tasks. Motivated by Diff-
Pool [Ying et al., 2018], we adopt a graph clustering method
that uses a GNN to learn a cluster assignment matrix for gen-
erating Gcoarse. The assignment matrix is generated by the
following equation:

S = softmax(GNNpool(A,X)) ∈ Rn×c (4)
where n is the number of nodes in the input graph and c is
the predefined cluster number, GNNpool is the GNN used to
cluster nodes, X and A are the feature and adjacency matri-
ces of the input graph, respectively. Based on the assignment
matrix, we can obtain Gcoarse by the following formulas:

Xcoarse = S
T

Z ∈ Rc×d (5)

Acoarse = STAS ∈ Rc×c (6)

Z = GNNembed(A,X) ∈ Rn×d (7)
where Z ∈ Rn×d denotes the node embeddings learned from
the input graph, Xcoarse and Acoarse denote the feature and
adjacency matrices of Gcoarse. S and Z are both obtained
by GNN modules, and the softmax function is used in row-
wise manner on ST to determine the assignment probability
of each node of the input graph to the clusters.
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Figure 2: Hierarchical graph representation learning framework with MuchPool model for graph classification.

Channel 3: Node feature based pooling. In channel 3, we
select the most important nodes based on their feature embed-
dings. To be specific, we first use a readout module to get a
representation of the current graph, and then transform it with
a learnable matrix. The process can be formulated as:

Z = readout(X(l)), Z ∈ R1×d (8)

Z̃ = σ(ZW ), Z̃ ∈ R1×d (9)
where Z is the shallow graph representation obtained by us-
ing the mean readout operation and Z̃ is its variant through a
nonlinear transformation, W ∈ Rd×d is a learnable parame-
ter matrix. To select the top-k important nodes in the current
graph based on features, we calculate an importance score for
each node by applying the following formula.

si = X[i] · Z̃ (10)
where i is the index of node vi, si denotes the importance
score of it, s2 = [s1, s2, ..., sn], and · denotes the operation
of inner-product. With this score, a fraction of most impor-
tant nodes from the aspect of features can be selected, whose
indexes are obtained with the same rank(s, k) function:

Idx2 = rank(s, k) (11)

4.2 Cross-Channel Convolution
As shown in step 2 of Figure 1, with the outputs of channels 1
to 3, we get three pooled graphsGfine1, Gfine2 andGcoarse.
Since the three pooled graphs reflect the different aspects of
the initial input graph, we next need to fuse them. To this end,
we propose a cross-channel convolution operation between
Gfine1 and Gcoarse, Gfine2 and Gcoarse. The cross-channel
convolution operation is defined as follows.

Hfine = σ([Hfine +Across ·Hcoarse] ·W ) (12)
Hfine ∈ Rk×d denotes the node embedding matrix of the
fine-grained graph Gfine1 or Gfine2, Hcoarse denotes the
node embedding matrix of Gcoarse, and Across ∈ Rk×c de-
notes the connection relationship between coarse- and fine-
grained pooled graphs, where k and c are the node numbers in
the two pooled graphs, respectively. In particular, we obtain
Across by utilizing the assignment matrix S and the important
node indices via applying the following equation:

Across[i] = S[i], i ∈ Idx1 or Idx2 (13)
The GNNs within the message-passing scheme can be ex-
pressed as:

Hk = σ([Hk−1 +AHk−1] ·Wk) ∈ Rn×d (14)
where Hk denotes the hidden node embeddings after k steps
of graph convolution, A ∈ {0, 1}n×n denotes the adjacent
matrix, and Wk ∈ Rn×d denotes a learnable weight matrix,

which needs to operate on the same graph. Compared with
the formula (12), we replace the adjacency matrix and embed-
ding matrix of the fine-grained graph by Across and Hcoarse

separately.

4.3 Pooling Aggregation
With the above operations, we have two refined pooled graphs
from channels 1 and 3 as shown in the right part of Figure
1. To reduce the loss of discriminative information for graph
classification, we need to aggregate them. We denote the
indices of the selected nodes in channel 1 as Idx1 and the
embedding matrix after the cross-channel convolution step as
X1. Likewise, the indices of selected nodes and the embed-
ding matrix in channel 3 are Idx2 and X2, respectively. The
pooled graphs aggregation process can be performed by the
following formulations:

Idx = Idx1 ∪ Idx2 (15)
With the index, a subgraph that consists of the most repre-
sentative nodes of the original graph can be extracted, whose
adjacency matrix is denoted as:

Â = A[Idx, :] ∈ {0, 1}K×N (16)
where K = |Idx| is the order of the indices set of nodes in
the original graph that will be reserved, N is the total number
of nodes in the original graph. Then, we apply the following
two formulas to generate the final pooled graph:

Ap = ÂAÂT (17)

Xp[i, :] =


X1[i, :] if i in Idx− Idx2

X1[i,:]+X2[i,:]
2 if i in Idx1 ∩ Idx2
X2[i, :] if i in Idx− Idx1

(18)

where Xp ∈ RK×d is the node feature matrix for the aggre-
gated pooled graph, and Ap ∈ {0, 1}K×K is its adjacency
matrix accordingly.

4.4 Hierarchical Pooling Framework with
MuchPool

To use MuchPool in the graph classification task, we imple-
ment an end-to-end trainable model by stacking several GCN
layers with MuchPool module inserted. The model frame-
work is illustrated in Figure 2. Concretely, we view a GCN
layer followed by a MuchPool layer as a complete function
unit and name it MuchPool GCN layer for convenience. For
a MuchPool GCN layer, it takes a graph as input and outputs
a pooled graph that is represented with a new feature matrix
and adjacency matrix. Then, the pooled graph is fed into the
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Datasets Gavg Cavg Vavg Eavg

PROTEINS 344 2 14.29 715.66
ENZYMES 600 6 32.63 62.14

D&D 1178 2 284.32 14.69
NCI1 4110 2 29.87 32.30

NCI109 4127 2 29.68 32.13
COLLAB 5000 3 74.49 2457.78

Table 1: Statistics of the datasets. Gavg , Cavg , Vavg and Eavg de-
note the average number of graphs, classes, nodes and edges, respec-
tively.

next MuchPool GCN layer, and it is fed into a readout module
at the same time, in which the embedding is added up as the
graph embedding in this layer. Finally, the graph embeddings
in all layers are added up to generate the final graph repre-
sentation, and it is taken as the input of a MLP classifier to
predict the label of the original graph.

5 Experiments
5.1 Datasets and Baselines
We use the following 6 widely used datasets in the classifica-
tion tasks to evaluate the performance of our proposed model.
D&D and PROTEINS [Dobson and Doig, 2003] are two pro-
tein graph datasets, where nodes represent the aminoacids.
The label indicates whether or not a protein is a non-enzyme.
NCI1 and NCI109 [Shervashidze et al., 2011] are two bi-
ological datasets for anticancer activity classification, where
each graph is a compound graph with nodes and edges rep-
resenting atoms and chemical bonds separately. ENZYMES
is a dataset of protein tertiary structures, and each enzyme
belongs to one of the 6 EC top-level classes. COLLAB
[Leskovec et al., 2005] is a scientific collaboration dataset,
where nodes represent scientists and edges represent collab-
oration relation between two scientists; each graph is labeled
to a physics field that the researcher belongs to. Statistics of
the datasets are shown in Table 1.

We take three kinds of methods as baselines: (1) the kernel-
based methods including WL [Morris et al., 2019] subtree;
(2) GNN-based methods including GCN [Kipf and Welling,
2017], GIN [Xu et al., 2019], GAT [Veličković et al., 2018],
GRAPHSAGE [Hamilton et al., 2017], Set2Set [Vinyals et
al., 2015] and DGCNN [Zhang et al., 2018]; (3) hierar-
chical graph pooling methods including DiffPool [Ying et
al., 2018], Graph U-Nets [Gao and Ji, 2019] and AttPool
[Huang et al., 2019].

5.2 Implementation and Experiment Settings
We implement our MuchPool model with the PyTorch frame-
work. The part of cluster formation in channel 2 follows the
implementation of DiffPool [Ying et al., 2018] and we make
some adjustments according to our problem setting. The di-
mensions of node representation and graph representation are
set as 64. The node retention ratio r is set as 0.5 for three
channels in all layers. We adopt the mean pooling function to
read out the graph representation. GCN is used as our back-
bone network. The first MuchPool GCN layer uses 2 GCN
layers while the subsequent MuchPool GCN layers use only

1 GCN layer for aggregating information. A MLP consisting
of two fully connected layers with 128 neurons is set to follow
the final MuchPool GCN layer, followed by a softmax classi-
fier. It takes the graph representation as input and outputs the
categories probability to finish the prediction task.

We follow the experiment setting of the state-of-the-art
model Graph U-Nets [Gao and Ji, 2019] and evaluate our
model over 20 random seeds using 10-fold cross validation.
A total of 200 testing results are used to report the aver-
age accuracy and standard deviation for each model on each
dataset. We use Xavier normal distribution [Glorot and Ben-
gio, 2010] for weight initialization, Adam optimizer to ini-
tialize our model and negative log-likelihood loss function
is utilized to train our model. For all datasets, we train our
model for 300 epochs and the batch size is set to 16 or 32
(depending on the graph size). The optimal hyperparameters
are obtained by applying the strategy of grid search.

5.3 Performance Comparison
We compare the performance of our proposed MuchPool with
baseline methods on the 6 benchmark datasets for the graph
classification task, and the accuracy and standard deviation
are reported in Table 2. First, one can observe that the per-
formance of MuchPool is superior to its counterparts on five
out of six benchmarks. To be specific, MuchPool improves
the performance by 3.72% and 5.66% over the best base-
lines DiffPool and AttPool on ENZYMES and PROTEINS
datasets respectively, which demonstrates the effectiveness of
MuchPool. Next, MuchPool consistently outperforms GCN
on all the datasets significantly, indicating the necessity of
adding pooling modules in the learning process. This is be-
cause MuchPool can extract more useful graph topology in-
formation than the global pooling based GCN. By comparing
with other GNN based models including GCN, GAT, GIN
and GraphSAGE, both DiffPool and MuchPool achieve bet-
ter performance. It reals that capturing coarse-grained struc-
ture is helpful for graph representation learning, especially
for those graphs with obvious community structure. One
can also see that DiffPool does not always show better re-
sults than local topology and feature based pooling methods
AttPool and Graph U-Nets. This further verifies the effec-
tiveness of combining the node features, local topology and
global topology. Moreover, compared with AttPool, Much-
Pool scores relatively moderately on COLLAB datasets. This
is because many collaboration graphs in COLLAB show only
single-layer community structures. MuchPool uses three lay-
ers model to learn the graph representation, which is too com-
plex and may lead to overfitting.

5.4 Ablation Study
In this subsection, we conduct an ablation study to verify that
all three channels are helpful to graph pooling. We compare
the complete MuchPool model with its variants by removing
one of the three channels in it and keep other parts the same.
For convenience, we name the MuchPool model without local
topology, global topology and feature based pool channel as
MuchPoolNL, MuchPoolNG and MuchPoolNF , respectively.
As shown in Figure 3, the performances of the three vari-
ants are all inferior to MuchPool over the four datasets EN-
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Methods Datasets

ENZYMES DD PROTEINS NCI1 NCI109 COLLAB

WL 40.97± 4.05 73.64± 3.84 75.75± 4.57 75.21± 1.64 72.40± 1.86 78.90± 1.90
GCN 50.00± 5.87 75.13± 4.14 74.75± 4.63 79.68± 2.05 78.05± 1.59 71.92± 3.24
GAT 51.00± 5.23 72.65± 3.18 77.37± 2.95 79.88± 0.88 79.93± 1.52 75.80± 1.60
GIN 31.11± 1.92 65.94± 1.87 68.17± 2.39 57.49± 0.73 56.62± 0.61 80.20± 1.90
GraphSAGE 53.33± 3.42 77.48± 3.20 76.73± 3.00 78.98± 1.84 77.27± 1.66 79.70± 1.70
Set2Set 38.00± 7.81 64.00± 6.82 70.26± 4.06 68.95± 2.51 66.37± 6.18 65.34± 6.44
DGCNN 49.67± 4.27 77.50± 2.87 78.08± 3.38 75.72± 1.77 74.02± 2.08 73.82± 1.74
Graph U-Nets 40.50± 3.88 82.51± 3.17 78.26± 4.52 69.73± 1.91 70.25± 2.09 69.94± 1.54
AttPool 50.17± 4.04 81.07± 3.21 79.52± 3.52 81.17± 2.24 80.23± 0.72 77.08± 2.26
DiffPool 62.83± 7.07 80.99± 2.98 77.62± 4.97 80.36± 1.56 78.51± 1.20 73.94± 3.28
MuchPool 65.17± 3.98 85.06± 3.34 84.01± 1.73 81.29± 1.31 80.50± 1.48 74.58± 2.63

Table 2: Mean accuracy (10 folds) and standard deviation on the 6 graph classification datasets. We use bold to highlight the best result.

Figure 3: Comparison between MuchPool and its variations.

ZYMES, PROTEINS, NCI1 and NCI109. This demonstrates
the effectiveness of the three channels. Especially, Much-
Pool outperforms MuchPoolNG by 36.64%, 4.63%, 5.08%
and 3.90% on four datasets, respectively. The result sug-
gests that global topology is significantly important in some
graphs (for instance, protein molecule graphs), and capturing
the global structure is especially useful for the classifier to
distinguish the graphs with fixed functional units. One can
also see that the results of MuchPoolNL and MuchPoolNF

are close to each other. It is probably because some nodes are
important in terms of both local topology and node features,
which leads to the large overlap between the selected nodes
from channels 1 and 3.

5.5 Parameter Sensitivity Analysis
We further investigate the effects of some important hyper-
parameters on MuchPool. In detail, we study how the number
of neural network layers k, graph representation dimension d
will affect the graph classification performance. As shown in
Figure 4, MuchPool achieves better performance when set-
ting d = 64 and k = 2, respectively. One can also observe
that with the dimension d increasing, the classification accu-
racy presents a slight increase trend accordingly. This is be-

Figure 4: Classification accuracy curve on ENZYMNS and PRO-
TEINS datasets with different values of d and k.

cause different types of graphs have larger margins in higher-
dimensional representation space, making it easier to distin-
guish their categories. Considering the neural network layer
k, a larger k provides a more accurate classification result, but
too large a k will hurt the performance.

6 Conclusion

In this paper, we propose a novel multi-channel graph pool-
ing method MuchPool. MuchPool uses three channels to cap-
ture the local topology, the global topology and node features
separately, and then uses a cross-channel convolution opera-
tion to integrate them. Based on MuchPool, we construct an
end-to-end hierarchical graph representation learning model
for graph classification. We evaluate our proposal on several
graph classification benchmark datasets. The result shows
that MuchPool achieves superior or comparable results com-
pared with state-of-the-art methods.
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