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Abstract
Role-based network embedding methods aim to
preserve node-centric connectivity patterns, which
are expressions of node roles, into low-dimensional
vectors. However, almost all the existing methods
are designed for capturing a relaxation of automor-
phic equivalence or regular equivalence. They may
be good at structure identification but could show
poorer performance on role identification. Be-
cause automorphic equivalence and regular equiv-
alence strictly tie the role of a node to the identi-
ties of all its neighbors. To mitigate this problem,
we construct a framework called Curvature-based
Network Embedding with Stochastic Equivalence
(CNESE) to embed stochastic equivalence. More
specifically, we estimate the role distribution of
nodes based on discrete Ricci curvature for its ex-
cellent ability to concisely representing local topol-
ogy. We use a Variational Auto-Encoder to gener-
ate embeddings while a degree-guided regularizer
and a contrastive learning regularizer are leveraged
to improving both its robustness and discrimination
ability. The effectiveness of our proposed CNESE
is demonstrated by extensive experiments on real-
world networks.

1 Introduction
Role is a sociological concept at first, and is introduced into
network science later to indicating the functions or behav-
iors of nodes in a network [Zhao et al., 2013]. Learning roles
has crucial importance for network mining and analysis, since
roles have great potential for shedding light on the underly-
ing characteristics of nodes and the evolution mechanism of
networks. Therefore, role has gradually shown its importance
on a number of tasks such as node classification [Ribeiro et
al., 2017], link prediction [Ahmed et al., 2019] and visualiza-
tion [Rossi et al., 2018].

It is believed that nodes in the same role have highly similar
node-centric connectivity patterns [Rossi and Ahmed, 2014].
A simple example is shown in Fig. 1, in which the nodes are
partitioned into different roles noted by their colors. In this
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Figure 1: An example of roles in a network. The color of nodes
denotes their structural traits, which determine their roles. And the
color of edges denotes their α-Ricci-curvature.

example, nodes 6, 7, 8, and 9 are clustered into the same roles
with only 1-hop neighborhood structures considered. These
nodes are all star-edge-like, but they are significantly different
when more hops of neighborhoods are considered. To prac-
tically capture higher-order node-centric structural similar-
ity, early graph-based methods defined and leveraged differ-
ent role equivalences including structural equivalence [Lor-
rain and White, 1971], automorphic equivalence [Holland
and Leinhardt, 1981], regular equivalence [White and Reitz,
1983] and stochastic equivalence [Holland and Leinhardt,
1981; Nowicki and Snijders, 2001]. In specific, two nodes
are structurally equivalent if they are connected to the same
neighbors. Obviously, structural equivalence is too strict and
only effective for nodes very close to each other (For exam-
ple, nodes 1 and 2 in Fig. 1 are assigned into a role while
nodes 11 and 12 are assigned into another role). Automorphic
equivalence is a relaxation of structural equivalence as it is
based on whether two nodes’ node-centric subgraphs are iso-
morphic. Regular equivalence is relaxed further, as it states
that nodes in the same role are connected to role-equivalent
neighbors. Thus, regular equivalence is often used through
recursive approximate manners [Jin et al., 2011]. Both au-
tomorphic equivalence and regular equivalence can be used
to distinguish node 6, 9 and node 7, 8 in Fig. 1. However,
they make the role of each node strictly tied to neighbors’
identities and roles, which leads to low generalization ability.
Stochastic equivalence states that nodes in the same role have
the same probability distribution of edges or node roles in
their neighborhoods. With the distributions, stochastic equiv-
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alence reveals more essential structural traits of nodes and is
more robust to noises than the other equivalences.

Recently, roles have been getting much more attention in
the field of network embedding, as those classic methods
only preserve proximity [Perozzi et al., 2014; Grover and
Leskovec, 2016] and can’t work well for role/structure-based
tasks. Though not all the role-based network embedding
algorithms explicitly define role equivalence, most of their
methods of acquiring structural similarity can be analogized
to the above role equivalences. Some methods capture struc-
tural similarity via higher-order structural features. For ex-
ample, RolX [Henderson et al., 2012] leverages a feature ex-
traction method that recursively aggregates simple structural
features of neighbors for each node. Struc2vec [Ribeiro et
al., 2017] biases random walks by constructing a hierarchical
network in which the weight of edges are transformed from
the degree-based distances between nodes. Role2vec [Ahmed
et al., 2019] uses motif-based features instead of node ids to
generate sequences as input of Skip-Gram [Mikolov et al.,
2013] . Since these methods calculate similarity and map it
into embedding space in different ways, it could be consid-
ered that they can capture a relaxation automorphic equiva-
lence in different degrees. Besides the aforementioned meth-
ods, a few methods that leverage graph kernels to measuring
structural similarities between node-centric subgraphs [Ma et
al., 2019; Nikolentzos and Vazirgiannis, 2019] can also be re-
garded as implements of automorphic equivalence. There are
also some methods capturing regular equivalence. DRNE [Tu
et al., 2018] proposes a layer normalized LSTM to learn
regular equivalence by recursive aggregating neighbors’ rep-
resentations for each node. Struc2gauss [Pei et al., 2020]
applies RoleSim [Jin et al., 2011], a metric method satis-
fies Axiomatic Role Similarity Properties and regular equiva-
lence. In summary, almost all the network embedding meth-
ods could achieve capturing role equivalences that are stricter
than stochastic equivalence and more relaxed than the auto-
morphic equivalence. As far as we know, there are so few
previous network embedding methods satisfying a stochastic
equivalence criterion, which could be more flexible and ro-
bust for role-based tasks.

Therefore, we introduce stochastic equivalence into net-
work embedding algorithms. The key is to choose a proper
representation method of edges, which should satisfy the fol-
lowing properties: (1) The representation of an edge can
concisely generalize its local topology. (2) The representa-
tions are easy to utilize for learning latent role distributions
of nodes. To meet above two requirements, we choose dis-
crete Ricci curvature [Chung and Yau, 1996; Ollivier, 2009;
Lin et al., 2011] to represent edges. Ricci curvature of an
edge is a real value that measures its importance to the close-
ness of the two neighborhoods. Thus, Ricci curvature can
be used to distinguish edge roles such as near-clique edges,
bridge edges, and star edges. Specifically, we leverage α-
Ricci-curvature [Lin et al., 2011] (as denoted by edge color
in Fig. 1) for it can not only generalize local topology but
also use a balance parameter α to control the influence of
neighbors. To further take advantages of α-Ricci-curvature,
we use a Variational Auto-Encoder (VAE) [Kingma and
Welling, 2014] to learn the latent representations of role dis-

tributions for each node while a contrastive learning reg-
ularizer and a degree-guided regularizer [Tu et al., 2018;
Zhang et al., 2021] are applied to enhance its robustness
and ability of discrimination. Therefore, we can preserve the
stochastic equivalence into embedding space with this frame-
work called Curvature-based Network Embedding with
Stochastic Equivalence (CNESE)1.

Our main contributions can be summarized as follows:

• We first explicitly propose the idea of bestowing network
embedding with the ability to capture stochastic equiv-
alence. We are also the first to introduce discrete Ricci
curvature to capture stochastic equivalence and elucidate
why discrete Ricci curvature works.

• We propose a framework CNESE based on a Variational
Auto-Encoder regularized by both a contrastive learning
regularizer and a degree-guided regularizer. It can ef-
fectively leverage α-Ricci-curvature to generating high-
quality role-based embeddings.

• Extensive experiments on real-world datasets demon-
strate that our proposed method CNESE achieves state-
of-the-art performance.

2 Preliminaries
2.1 Notations and Problem Definition
An unweighted undirected network is usually represented as a
graphG = (V,E), where V = {v1, ..., vn} is the set of nodes
and E ⊆ V ×V is the set of edges. For each node v ∈ V , the
set of its neighbors is represented as Γ(v) = {u|(v, u) ∈ E}
and its degree is kv = |Γ(v)|.

Role-based network embedding aims to learning a function
mapping nodes inG to into a low-dimensional space, denoted
as f : V → Z ∈ Rn×d, where Zi is the embedding of node
vi preserving its node-centric connectivity patterns.

2.2 Discrete Ricci Curvature on Graphs
In this paper, we use the notion of coarse Ricci curvature in-
troduced by Ollivier [Ollivier, 2009]. Given probability mea-
sures mu and mv : V → [0, 1] for nodes u, v ∈ V with mass
1 respectively, a mass-preserving transportation plan between
themA : V ×V → [0, 1] meets

∑
y∈V A(x, y) = mu(x) and∑

x∈V A(x, y) = mv(y). The transportation distance be-
tween the two probability distributions mu and mv is defined
as the Wasserstein distance between them, i.e., the minimum
average traveling distance via any transportation plan:

W (mu,mv) = inf
A

∑
x,y∈V

A(x, y)d(x, y), (1)

where d(x, y) is the graph distance between x and y. Then
Ollivier’s coarse Ricci curvature for any two nodes u, v ∈ V
is defined as:

κ(u, v) = 1− W (mu,mv)

d(u, v)
. (2)

By comparing the transportation distance and the graph dis-
tance between node u and v, Ricci curvature measures how

1https://github.com/cspjiao/CNESE
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important the shortest path between the two nodes is for mak-
ing them closer.

We follow [Lin et al., 2011] to define the probability dis-
tribution for node v ∈ V with a parameter α ∈ [0, 1]:

mα
v (x) =


α if x = v

(1− α)/kv if x ∈ Γ(v)

0 otherwise.
(3)

Through (3) we can define α-Ricci-curvature for any u, v ∈
V as κα(u, v) = 1−W (mα

u ,m
α
v )/d(u, v). We can tune α to

balance the influence of node v itself and its neighborhood.
It make sense for real-world networks as the role of an node
depends on both itself and its relations to neighbors.

For an edge in G, α-Ricci-curvature can measure not
only its importance for the closeness between the endpoints’
neighborhoods but also the endpoints’ degrees. α-Ricci-
curvature not only concisely generalizes the local topology
of an edge, but also allows for easy estimation of the role dis-
tributions as a real value. Thus, we leverage it to capturing
stochastic equivalence.

3 Method
In this section, our proposed framework Curvature-based
Network Embedding with Stochastic Equivalence (CNESE)
is introduced. An overview of CNESE is illustrated in Fig. 2.

3.1 Computation of Ricci Curvature
We efficiently and effectively compute W (mα

u ,m
α
v ) via lin-

ear programming as in [Ni et al., 2015]:

min
∑
y∈V

∑
x∈V

d(x, y)ρx,ym
α
u(x), (4)

s.t. 0 ≤ ρxy ≤ 1 ∀x, y ∈ V,∑
y∈V

ρxy = 1 ∀x ∈ V,

∑
x∈V

ρxym
α
u(x) = mα

v (y) ∀y ∈ V,

where the matrix ρ represents the transportation plan. Then,
we can obtain the α-Ricci-curvature for all the edges in G.
To capture stochastic equivalence, we estimate the distribu-
tions of Ricci curvatures using a fuzzy but effective method,
histogram, on the connected edges for all the nodes.

3.2 Variational Auto-Encoder
To preserve stochastic equivalence into low-dimensional vec-
tor space, we utilize a Variational Auto-Encoder through re-
constructing Ricci curvature histograms.

We assume that the latent representationZi of node vi ∈ V
is an d-dimensional independent random vector matching a
multivariate Gaussian distribution N (µi,Σi). The diagonal
entries of Σi is represented as a vector σi. Then we generate
Zi as follows:

p(Zi|Hi) =
d∏
j=1

p(Zij |Hi),

p(Zij |Hi) = N (Zij |µij ,σ2
ij),

(5)

where H is the Ricci curvature histogram matrix for all the
nodes.

The mean vector µi and variance vector σi are learned as
follows:

Z ′i = MLPenc1(Hi),

µi = MLPenc2(Z ′i),

logσi = MLPenc3(Z ′i).

(6)

Here, MLP means a multi-layer perceptron model. Thus our
variational encoder G(·) is composed of (5) and (6).

We also use a multi-layer perceptron as our decoder to re-
constructH:

Ĥi = MLPdec(Zi). (7)
The loss of reconstruction is:

Lvae =
∥∥∥Ĥ −H∥∥∥2

F
. (8)

where ‖·‖F denotes the Frobenius norm.

3.3 Degree-Guided Regularizer
The Ricci curvature histograms could be a double-edged
sword on embeddding generation sometimes. Though the
fuzziness of histograms makes estimating stochastic equiv-
alence easier, it could abate the structure information con-
tained in Ricci curvatures. This problem is particularly prone
to occur on very small or sparse networks. To mitigate
this problem, we leverage a degree-guided regularizer as in
DRNE [Tu et al., 2018]. In detail, we use a multi-layer per-
ceptron as an Approximator, i.e., A(·) = MLPapp(·), to ap-
proximate the degree of each node. Our degree-guided regu-
larizer is designed as follows:

Ldeg =

n∑
i=1

(log(kvi + 1)−A(G(Hi)))
2. (9)

Thus, the degree-guided regularizer can bestow the embed-
dings with guidance information of degrees.

3.4 Contrastive Learning Regularizer
To generate more robust embeddings, we construct a con-
trastive learning regularizer for our framework. We build a
Discriminator using a multi-layer perceptron, i.e., D(·) =
MLPdis(·), which is essentially a binary classifier for dis-
tinguishing negative samples Z− and latent representations
generated by G(Hi). As many negative samples are sampled
from the standard Gaussian distribution q(Z−

j ) = N (0, I)
as positive samples (node embeddings). The objective of the
contrastive learning regularizer is as follows:

Lcon =
1

2n
(
n∑
i=1

EZ− log(D(Z−
i ))

+
n∑
j=1

EH log(1−D(G(Hj)))).

(10)

The Discriminator D(·) is trained as follows:

min
G

max
D
Lcon. (11)
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Figure 2: An overview of Curvature-based Network Embedding with Stochastic Equivalence (CNESE). (A) Compute Ricci curvature for
all the edges and represent each node with a Ricci curvatures histogram on all the edges connected to it. (B) Generate embeddings via a
Variational Auto-Encoder. (C) Enhance the embeddings with a contrastive learning regularizer and a degree-guided regularizer.

Dataset # nodes # edges # classes

Brazil 131 1, 003 4
Enron 143 2, 583 7
Europe 399 5, 993 4
USA 1, 190 13, 599 4
Reality 6, 809 7, 680 3
Actor 7, 758 26, 646 4

Dataset # nodes # edges # bots

br-Wiki-talk 1, 049 2, 330 35
cy-Wiki-talk 2, 101 3, 610 31

Table 1: Statistics of datasets.

In total, we embed Ricci curvature histogram matrix H
into a low-dimensional vector space by minimizing a com-
bined loss function as follows:

L = Lvae + βLdeg + γLcon. (12)

where β and γ are the weights of the degree-guided regular-
izer and the contrastive learning regularizer.

4 Experiments
In this section, we want to validate the role discrimination
ability of our CNESE through experiments on role-based
node classification, bot detection and visualization.

4.1 Experimental Setup
Datasets and Baselines
We conduct the role-based node classification experiments on
Air-traffic networks (USA, Brazil, and Europe) [Ribeiro et

MLP layer number activation functions

MLPenc1 2 tanh(·)
MLPenc2 1 −†
MLPenc3 1 −
MLPdec 3 tanh(·), −‡
MLPapp 2 ReLu(·)
MLPdis 3 ReLu(·), sigmoid(·)
† − means no activation function is applied.
‡ The second activation function is applied on the last
layer, while the first is applied on the other layers.

Table 2: Configuration of multi-layer perceptrons.

al., 2017], Actor co-occurrence network [Ma et al., 2019],
Reality phone call network [Guo et al., 2020], and Enron
email network [Klimt and Yang, 2004]. We also do an ex-
periment to detect bot users in two Wikipedia user interaction
networks (br-Wiki-talk and cy-Wiki-talk) [Sun et al., 2016].
Some statistics of these datasets are provided in Table 1.

We compare our CNESE with a set of baselines includ-
ing classic (community-based) and the state-of-the-art role-
based network embedding methods. For classic methods, we
use DeepWalk [Perozzi et al., 2014] and node2vec [Grover
and Leskovec, 2016]. For role-based methods, we use
RolX [Henderson et al., 2012], struc2vec [Ribeiro et al.,
2017], GraphWave [Donnat et al., 2018], DRNE [Tu et al.,
2018] and struc2gauss [Pei et al., 2020]. The parameters of
all these methods are well tuned for the best performance.

Model Configuration
MLPs with different layer numbers and different activation
functions are applied on different parts of CNESE accord-
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Method Brazil Enron Europe USA Reality Actor
Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro Micro Macro

DeepWalk 41.45 39.94 29.73 19.96 37.77 37.01 52.46 51.81 49.71 32.40 36.09 34.73
node2vec 40.50 40.09 28.43 20.30 40.50 40.09 50.02 49.63 50.98 33.32 35.60 34.56
RolX 71.07 70.53 31.77 18.71 54.95 53.64 64.24 63.52 65.38 42.90 46.63 45.23
struc2vec 72.62 72.05 28.20 17.17 57.88 57.52 61.13 60.36 60.74 38.74 46.79 46.11
GraphWave 73.00 71.44 36.17 19.07 53.31 49.53 51.80 47.30 83.55 51.80 OM OM
DRNE 77.58 76.87 31.43 16.42 54.14 52.38 59.31 57.95 83.89 52.44 48.27 45.90
struc2gauss 74.60 73.24 31.00 16.85 55.17 55.10 62.83 62.22 60.32 39.29 44.95 44.18
CNESE 77.37 76.37 36.33 22.26 60.48 60.13 63.18 61.96 84.02 51.61 48.80 47.99

To save space, Micro-F1 and Macro-F1 are shortly denoted as Micro and Macro respectively. OM indicates out-of-memory error.

Table 3: Node classification average F1 score (%) on different networks.

ing to their different purposes, as shown in TABLE 2. The
bin number of curvature histograms is set to 80. The width
of MLPs and embedding dimension are set to 64. We apply
Adam SGD optimizer [Kingma and Ba, 2015] with learning
rate 0.001 and batch size 32 for at most 50 epochs. L2 reg-
ularization with weight 0.001 is adopted to avoid overfitting.
In later experiments, unless otherwise stated, parameter α of
α-Ricci-curvature is set as 0.05, and 0.5 on Brazil and the
other datasets respectively. β is set to 5 and γ is set to and 2.

4.2 Role-based Node Classification
We conduct node classification tasks on 6 datasets: Brazil,
Enron, Europe, USA, Reality, and Actor. Specifically, a lin-
ear logistic regression classifier is trained and tested on em-
beddings for each dataset. We sample 70% node embeddings
as a training set and the other embeddings are used as the
test set. We run all the baselines and CNESE 25 times on
each network and calculate the average of micro-averaged F1
score (Micro-F1) and macro-averaged F1 score (Macro-F1)
for every method. We report the results in TABLE 3 and the
best results are indicated in bold.

From these results, we can observe that all the role-based
network embedding methods outperform classic methods on
almost all the networks except for Enron network. On most
datasets, results of role-based methods are at least 10% higher
than those of DeepWalk and node2vec. This demonstrates
that methods preserving node proximity are not appropriate
to role-based node classification tasks.

Our proposed CNESE achieves better performance than the
other role-based methods on most datasets. CNESE performs
very closely to the best results in the cases where CNESE
is not the top. This demonstrates the stability and effec-
tiveness of our CNESE. On Brazil dataset, DRNE gives the
best results, because the network is too small to estimate
the equivalence between distributions while node labels and
node degrees are highly correlated. RolX yields the best re-
sults on USA network as the roles are more similar to au-
tomorphic equivalence. On Enron network, DeepWalk and
node2vec perform closely to some role-based methods. This
is because node labels in Enron denote real employee titles
unlike those of the other networks based on specific func-
tion measures. In this case, methods capturing automor-
phic equivalence and regular equivalence lose effectiveness
while CNESE and GraphWave still perform greatly. Thus,

Method br-Wiki-talk cy-Wiki-talk
P@5 P@25 P@5 P@25

DeepWalk 0.0629 0.0491 0.1290 0.0852
node2vec 0.0286 0.0423 0.0581 0.0645
RolX 0.2171 0.1291 0.0968 0.1019
struc2vec 0.1543 0.1257 0.1097 0.0981
GraphWave 0.2114 0.1211 0.1484 0.1084
DRNE 0.1714 0.1371 0.1355 0.0929
struc2gauss 0.1886 0.1543 0.1484 0.1123
CNESE 0.2229 0.1577 0.1613 0.1213

Table 4: Precision at K selected users (P@K) on bot detection task.

our CNESE shows its wide applicability.

4.3 Bot Detection
In this section, we investigate whether our CNESE is able to
find the nodes playing rare roles. We carry out a bot detection
experiment on the two Wikipedia user interaction networks.
First, we exert network embedding methods to generate rep-
resentations for all the users. Then we calculate the euclidean
distance between users and take out K closest users for each
bot. Finally, we compute the P@K, i.e., the average precision
on the selected K users for all bots. The results are given in
TABLE 4 and the best results are indicated in bold.

On br-Wiki-talk network, all results of role-based meth-
ods are at least twice as good as those of DeepWalk and
node2vec. Our results are even three times as precise as
theirs. These results demonstrate that bots in br-Wiki-talk
network are strongly structurally similar to each other and
our CNESE is better at capturing this structural similarity.
As for cy-Wiki-talk network, the results of DeepWalk and
node2vec improve while those of role-based methods deteri-
orate. Some role-based methods perform worse than Deep-
Walk and node2vec but CNESE still achieves the best results.
It shows that bots in cy-Wiki-talk network are less structurally
identical and our CNESE have favorable adaptability on the
task with weaker structural characteristics.

4.4 Parameter Sensitivity Analysis
Here, we investigate the influence of parameters including
the balance parameter of α-Ricci-curvature α, the weights of
two regularizers β and γ, and the dimension of embeddings
d. We conduct role-based node classification on Brazil, Eu-
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(a) DeepWalk (b) node2vec (c) RolX (d) struc2vec (e) GraphWave (f) struc2gauss (g) DRNE (h) CNESE

Figure 3: t-SNE visualization of embeddings on Brazil network. The node labels are indicated by their colors.
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Figure 4: Parameter sensitivity on several networks with respect to
(a) the balance parameter of α-Ricci-curvature α, (b) the weight of
degree-guided regularizer β, (c) the weight of contrastive learning
regularizer γ and (d) the dimension of embeddings d.

rope, USA, and Reality networks and report only the Micro-
F1 score in Fig. 4 for brevity. We set α = 0.5 (α = 0.05 on
Brazil), β = 1, γ = 1, and d = 64 when they are control
variables. In Fig. 4(a), the performance deteriorates firstly
and then raises slightly when α increases on Brazil. The op-
posite trend is shown on other networks. This indicates that
nodes express their functions not only on the relations to their
neighbors but also on themselves. As shown in Fig. 4(b) and
Fig. 4(c), we illustrate the influence of the weights of two
regularizers β and γ. As β gets larger, the performance of
CNESE gets better, while on Brazil, it gets the best perfor-
mance at β = 3. It demonstrates that node degree can help
capture stochastic equivalence, but when it is large enough,
the original information may lose. In Fig. 4(c), the perfor-
mance jumps up to the best at γ = 2 and drops when γ is
larger on Brazil network. The reason is that contrastive learn-
ing with negative samples can prevent CNESE learning wrong
distributions. It may mislead the learning process on small
size networks like Brazil, since too few positive samples can
be used for training. And for embedding dimension d shown
in Fig. 4(d), the performance raises when d increases, and we
can obtain good enough result with d = 64.

We also take ablation analysis of the contrastive learning
and degree-guided regularizer. In Fig. 4(b), when the pa-
rameter β is set to 0, it denotes the model CNESE without
regularizer of node degree. We observe a noticeable increase

when this regularizer is added to our model, which means that
degree has a significant contribution to the role of nodes, and
the process of extracting features and encoding loses the in-
formation. As for the part of contrastive learning, we report
the effectiveness in Fig. 4(c) when γ = 0. In this situation,
the model only consists of VAE and degree-guided regular-
izer, and we find that the performance decreases firstly but
gets best when γ = 2.

4.5 Visualization
In this section, we compared our CNESE with baselines on
visualization tasks. We apply t-SNE to reduce the dimension
of embeddings learned by different methods. All the embed-
dings on Brazil network are mapped as two-dimensional vec-
tors. The results are illustrated in Fig. 3. Each node is repre-
sented by a point while the node label is denoted by the color
of the corresponding point. Ideally, the points in the same
color should be close to each other and those in different col-
ors should be far from each other. From the subfigures of
DeepWalk and node2vec, it can be observed that the points
in four colors are mixed together. In the subfigures of role-
based methods, the points form areas based on color. Fur-
thermore, GraphWave, DRNE, struc2gauss, and our CNESE
achieve more ideal results. However, the points generated
by GraphWave, DRNE, and struc2gauss are almost lined up.
This indicates that these methods may overfit only one struc-
tural property. For example, DRNE could be over-dependent
on degree guidance. Though we leverage a degree-guided
regularizer to CNESE as well, our method can contain more
structure information as Ricci curvature does.

5 Conclusion
In this paper, we provide and explain the idea of preserving
stochastic equivalence into network embeddings. To imple-
ment the idea, we leverage Ricci curvature to generalize lo-
cal topology and explain why it works. Then we construct
a role-based embedding framework CNESE that combines
Variational Auto-Encoder with a degree-guided regularizer
and a contrastive learning regularizer and treat Ricci curva-
ture histograms as input. Finally, we verify the effectiveness
of CNESE with extensive experiments. Though we design
our CNESE for undirected networks, it is easy to extend it on
directed networks.
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