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Abstract

Heterogeneous information network (HIN) embed-
ding, learning the low-dimensional representation
of multi-type nodes, has been applied widely and
achieved excellent performance. However, most
of the previous works focus more on static HINs
or learning node embeddings within specific snap-
shots, and seldom attention has been paid to the
whole evolution process and capturing all dynam-
ics. In order to fill the gap of obtaining multi-
type node embeddings by considering all tempo-
ral dynamics during the evolution, we propose a
novel temporal HIN embedding method (THINE).
THINE not only uses attention mechanism and
meta-path to preserve structures and semantics in
HIN but also combines the Hawkes process to
simulate the evolution of the temporal network.
Our extensive evaluations with various real-world
temporal HINs demonstrate that THINE achieves
the SOTA performance in both static and dynamic
tasks, including node classification, link prediction,
and temporal link recommendation.

1 Introduction

In recent years, network embedding has attracted more and
more attention on account of its outstanding performance. It
maps nodes to a low-dimensional space and preserves the fea-
tures and structures of the network simultaneously. A lot of
excellent algorithms such as Deepwalk [Perozzi et al., 2014],
LINE [Tang er al., 2015b] have been successfully applied
in various network-related tasks, such as node classification,
node clustering, and link prediction.

However, these methods all focus on homogeneous net-
works, while most real-world data are heterogeneous infor-
mation networks (HINs) with multiple types of nodes and
relations. For example, an academic network generally has
three types of nodes: Author (A), Paper (P), Conference (C);
and multiple types of relations: co-author relations, reference
relations, write/written relations between authors and papers,
publish/published relations between papers and conferences.
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In HIN, different types of nodes and edges could generate var-
ious embeddings and contain more complex structures and in-
terrelations. Therefore, more and more researchers have paid
attention to HINs such as PTE [Tang et al., 2015a], Metap-
ath2Vec [Dong et al., 2017], and MAGNN [Fu et al., 2020].

Nonetheless, most of the current works are proposed for
static HIN, which in contrast to the reality, where the HIN
actually evolves over time. Examples include academic net-
works where authors may publish different papers in different
years, and the grade of business varies according to users’ re-
views with time changing in Yelp. Therefore, simply treating
a temporal HIN as a static HIN will inevitably not accurately
capture the structure and semantics when HIN changes.

As a result, there is a growing need to understand temporal
HIN. However, it faces two serious challenges. First, how fo
effectively preserve the structural and semantic dynamics in
temporal HINs? Dynamics describe all the changes of nodes
and edges in HINs during its evolution, including the nodes’
addition, edges’ deletion, etc. Thus, accurately capturing the
dynamics is critical to study temporal HIN. However, most
previous works like DHNE [Yin ez al., 20191, model temporal
HINs using snapshots by simply dividing the time into several
periods, which would lose dynamics within snapshots.

Another challenge is how to capture the temporal influ-
ence between heterogeneous nodes? Unlike homogeneous
networks, HINs contain multiple types of nodes and edges,
thus preserve more complex semantics and structures. For
example, in an academic network, we usually consider the
temporal influence from the same types of nodes like author-
author or paper-paper. Moreover, in HINs, we should also
consider the temporal effects from different types of nodes
like author-paper. But due to the difficulty of simulating the
influence between heterogeneous nodes, the majority of pre-
vious works like HDGAN [Li et al., 2020], DyHNE [Wang et
al., 2020] only consider the temporal influence from the same
types of nodes merely.

To this end, we propose THINE, a novel temporal HIN em-
bedding model for capturing the dynamics among all types of
nodes. We first define various meta-paths to capture the se-
mantics and structures of a HIN. Then for a specific down-
stream task, we generate candidate meta-path sets related
to the task. By modeling the temporal influence between
nodes with the Hawkes process, we obtain each node’s em-
bedding. Moreover, two levels of attention mechanisms are
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applied to distinguish weight in various aspects. One is for

different types of meta-path, and the other is for the distance

of the neighbor nodes. Experiments on various real-world

datasets show that, compared with several SOTA methods,

our THINE performs better in both static and dynamic tasks.
The contributions can be summarized as follows:

o We study the problem of temporal HIN embedding by con-
sidering the evolutionary dynamics.

e We initiate a novel temporal HIN embedding model, which
uses meta-path to capture structural and semantic informa-
tion of HIN, leverages the Hawkes process to model net-
work evolution, and applies two levels of attention to cap-
ture structural and semantic differences respectively.

e Experimental results on three real-world datasets show that
THINE outperforms several SOTA methods.

2 Preliminaries

The evolution of a HIN can be regarded as the addition and
deletion of nodes or edges at different times. Traditionally,
we define temporal HIN in the following:

Definition 1: Temporal HIN. A temporal HIN is defined
asG = (V,E,T,¢,p), where V indicates the set of nodes, £
indicates the set of edges and 7 denotes the set of timestamps.
Besides, there are two mapping functions ¢ : V — A, ¢ :
& — R, while A, R indicate the set of types for nodes and
edges. For each HIN, it satisfies that | A| + |R| > 2.
Especially, an edge eﬁj € & represents a relation estab-
lished between nodes v; and v; at time ¢. It is worth noting
that two nodes may establish multiple relations at different
times. For instance, conference (C) may publish multiple pa-
pers by the same author (A), so it is probable that there exist
numerous relations between A and C in academic networks.

Definition 2: Influence of Node Pairs. The influence of
node pairs indicates the contribution of two nodes to estab-
lish a connection between them. Given a node pair (v, vy),
where v,,v, € V and V is the set of nodes, the influence of
node pair is 7, ,. Formally, we have:

2
Moy = —[lue — uyll” (D
where u,,, u, represent the embeddings of nodes v, and v,,.

Definition 3:  Meta-path. Given a temporal HIN
G=0W,ET,0,¢), meta-path M is a path which is

defined as a; — as 2 az —> ... RN a;, where r; € R,
a; € A, and A, R indicate the set of types for nodes and
edges. Obviously, a meta-path describes a complex relation
between types a; and a;. Especially, a sequence of nodes
(v1,v2,...,v;) that satisfies the law of meta-path M is a
path instance m of meta-path M.

Definition 4: Candidate Meta-path Set. The candidate
meta-path set S(t) of a temporal edge ef; € &, is a set that
includes all the path instances which involve source node v;
and are generated before time ¢. Note that a path instance
formed before time ¢ means that all of the temporal edges it
included generated before time .

In this paper, our goal is to obtain multi-type node embed-
dings with consideration of temporal dynamics. Formally, we
define our problem as follows:

1471

Problem. Temporal HIN Embedding. Given a temporal
HING = (V,E, T, d,p), the goal is to learn a mapping func-
tion f : V —RY, where d < |V| and d represents the number
of embedding dimensions. The function f needs to not only
capture the temporal dynamics of the network but also con-
sider the influences between all types of nodes.

3 The Proposed Model
3.1 Model Overview

In this section, we will explain the details of our proposed
model THINE, which can capture the structures and seman-
tics of HIN and combine the impact of temporal dynamics si-
multaneously. As Figure 1 shown, THINE gets the structural
interactions between different types of nodes by meta-path
based random walk. Then, we obtain the candidate meta-path
set for each edge to model the dynamic structures and se-
mantics of temporal HIN with the Hawkes process [Hawkes,
1971].  Furthermore, optimizing with structural-level and
semantic-level attention mechanisms that distinguish the im-
pacts of different relations, we aggregate the effects for every
node to obtain multi-type node embeddings.

3.2 THINE Model

Capturing semantics with meta-path. THINE first uses
meta-path based random walk to extract information of HIN.
The construction of meta-path determines what semantics and
structures we can capture. Therefore, the selection of meta-
path is critical to study HINs. The key to defining meta-path
is to contain as many semantics as possible. For example, for
academic networks, besides the mate-path of author-paper
relation that considered by previous models, we also consider
the meta-path of paper-paper relation, written as APPA. In to-
tal, the meta-path we defined are listed in Table 1. With those
meta-paths, we can well preserve the semantics in HINs.
Moreover, the nodes and edges in the network are influenced
by the nodes themselves and the related candidate meta-path
set. Hence, based on the influence of node pairs, we model
the influence of candidate set to understand temporal HIN.

Modeling dynamics of candidate meta-path set. Further-
more, we model the influence of candidate meta-path set to
capture semantics and structures of temporal HIN with the
Hawkes process. Generally, the Hawkes process is used to
simulate the impact of past events on the present. Obvi-
ously, the older events are, the fewer impacts they have on
today. Specifically, for THINE, we apply an attention with
the Hawkes process for every influence. Therefore, the in-
fluence of candidate meta-path set, to wit the influence of all
related meta-path instances, is formally defined as

ne(t) =Y nm(t), )

tim <t

where m is one meta-path instance, and ¢,, < t indicates
the meta-path instance m generated before time ¢. For con-
venience, we use 7);,7 € (s,m,e) to represent the influence
of candidate meta-path set, one meta-path, and one temporal
edge. Therefore, 1;(t), 7, (t), and 7 (t) indicate correspond-
ing influence before time ¢. So that we need to primarily
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Figure 1: The overall architecture of the proposed THINE
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model the influence of one meta-path instance 7,,(t), which
can be considered as the influence of all the edges it included.
Thus, it is defined as

Z 776Z P 7

eijEmM

77m 3)

where e;; represents an edge between nodes v; and v;. One
edge can be represented by two nodes it connects. So we
model the influence of one temporal edge by using the influ-
ence of node pairs and the Hawkes process, which means

Nei; (t) =M, X Z Ii(t —1; )

ti,; <t
where t; ; represents the timestamp of edge el s K(t — ti, j)
describes the time decay effect and we define x(t — t; ;) =

e(=9i(t=t:7))  Moreover, ¢ is a trainable parameter related to
nodes and adjusts the ratio of time decay effect.

Note that we select a subset of the candidate meta-path set
for training due to the computational complexity. Specifi-
cally, we choose n meta-path instances generated most re-
cently from the time ¢ while n is a hyperparameter. Likely,
for one meta-path instance, we select z candidate edges clos-
est to the source node to train and z is also a hyperparameter.

Optimization with attention mechanism. Specifically, we
show how THINE calculates the influence of the candidate
meta-path set in detail. As shown in Figure 1 (c), the candi-
date meta-path set of ¢t sps includes my : (a1, p2,c1,p3,a3),
ms : (a2, ps,as), etc. Thus, ng(t) = N, (£) + 7im, (). Obvi-
ously, m; and mo are generated following different meta-path
APCPA and APA, which dissimilarly affect different tasks.
To catch this subtle distinction, we apply a semantic-level at-
tention mechanism [Bahdanau et al., 2015]. Formally, we
define the weights for different types of meta-path as follows:

ewr
—_ 5
> ©
where c is the set of all meta-path defined in the task, and
wy, represents the weight of b-th meta-path. Taking account

of the semantics of different meta-path, we reformulate the
influence of candidate meta-path set as

) =) wum X nm(t),

t’ﬂL <t

Wy =

(6)
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where w4 is the weight of meta-path M, and meta-path in-
stance m belongs to M. As we defined above, 7, (t)
Neaypy (E) + Nepyey (&) + e (8) + 7e,,, 0, (). Clearly, the in-
fluence of every edge shoul& be different on account of the
hop counts to training edge ea3p4 Therefore, a structural-
level attention mechanism is used to capture this difference,
and we denote the weights related to the hop counts as

eghoq

= 422/ eeh )

where h,q represents the hop counts of edge e, to the source
node, while the weight of h,-th hop is indicated as 6, . 2’ is
positively related to the number of candidate edges z. There-
fore, the influence of one meta-path instance is re-defined as

= > On, X7, (1),

eijEmM

6y, (N

oq

T]m

(®)

With the meta-path, two-level attention mechanisms, and
Hawkes process, we model the evolution of every temporal
edge. In this way, THINE is able to obtain multi-type node
embedding with preserving semantics and structures in both
static and dynamic networks. Based on the formulas above,
we define the conditional intensity function X, ,(t) to rep-
resent the intensity of generating a temporal edge between
nodes v; and v, at time ¢ as

Az,y (t) = N,y + 1s (t)

=1y + Z Wpm X Z eh,, Xneu())'

eijEM

©))

Considering that the conditional intensity function should
return a positive real number, an exponential function is used

to transfer Xzy(t) which can be formulated as A, ,(t) =

exp(xx,y(t)). Moreover, \; ,(t) is squeezed between 0 and
1 simultaneously to indicate the probability of establishing a
relation between nodes v, and v,,.

Loss function. Therefore, we can represent the probability
of establishing a connection between nodes v, and v, at time
t. Especially, with the consideration of conditional intensity
function and candidate meta-path set S(t) before time ¢, we
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Datasets ‘ Node Types #Nodes  Meta-path ~ Time Steps
Author(A) 10206 APA
Aminer Paper(P) 10457 APPA 10
Conference(C) 2584 APCPA
Author(A) 22662 APA
DBLP Paper(P) 22670 APPA 15
Conference(C) 2938 APCPA
Usu
Star(S) 5 BSB
Yelp User(U) 24586 BUB 15
Business(B) 800 BSUSB
UBSBU
Table 1: Data statistics
define this probability as
Aay(t)
Y
P(vz, vy|S(1)) (10)

B Zy/ )\.’L‘,y/ (t) ’

where 3’ denotes all nodes except v, in temporal HIN, and
the log likelihood of all node pairs can be indicated as

Z logp(vz, vy|S(1)). (11)

(vo,vy)EE

logL =

Obviously, the calculation of p(v,,v,|S(t)) needs to sum-
marise the information of the whole network nodes. We apply
negative sampling techniques [Zuo et al., 2018] to make our
model more effective to mitigate huge computing overhead.
So the loss function can be reformulated as

K
—logo(Aey(t) = Y Epep, (llogo(—Xe ()], (12)
k=1

where K is the number of negative nodes sampled according
to P, (v). P, (v) is positive correlated with d¥* while d,, de-
notes the degree of node v. Furthermore, o is a sigmoid func-
tion which can be represented as o(x) = H% Finally, we

optimize our model by Adaptive Moment Estimation (Adam).

4 Experiments and Discussions

4.1 Experimental Setup

Datasets. In order to demonstrate the effectiveness of
THINE, we evaluate it on three real-world datasets. They are
Aminer [Tang et al., 2008], DBLP!, and Yelp?, respectively.
The statistics of these datasets are shown in Table 1.

Baselines. We compare THINE with several state-of-the-
art network embedding methods, including nine shallow and
two deep embedding models, which are listed in Table 2.

Experimental settings. We evaluate THINE and other
baselines on a server with Intel Xeon CPU E5-2680, Tesla
V100 GPUs, and 250GB Memory. The experimental envi-
ronment of software is Ubuntu 18.04 with CUDA 10.2. To
be fair, the embedding dimension d is set as 100 for all meth-
ods. For THINE, the learning rate of Adam is set as 0.003

"https://dblp.org
Zhttps://www.yelp.com/dataset

Methods ‘ Heterogeneous ‘ Temporal

Deepwalk [Perozzi et al., 2014] X
LINE [Tang ef al., 2015b]
DySAT [Sankar er al., 2020]
HTNE [Zuo et al., 2018]
MTNE [Huang et al., 2020]
Metapath2vec [Dong et al., 2017]
StHNE [Wang er al., 2020]
DHNE [Yin ez al., 2019]
DyHNE [Wang et al., 2020]

MAGNN [Fu et al., 2020]
HDGNN [Zhou et al., 20201

Shallow

Deep

LU X XX X X
XU X XX

Table 2: Baselines

while the batch size is 500. Moreover, we set the number
of walks per node as 10, the walk length is 30, the number
n of candidate meta-path instances is 20, the number z of
candidate edges is 4, and the negative samples is set to be 5.
Furthermore, we use the default parameter settings for other
baselines. To ensure experiments more reliable, we take the
average of ten results as the final result for each experiment.

4.2 Experiment Performance

We first obtain node embeddings of THINE and other base-
lines. After that, we evaluate it by both static and dynamic
tasks. For static tasks, we use two traditional measures, node
classification and link prediction. Further, we use temporal
link recommendation to test for dynamic effectiveness.

Node classification. We first apply all the methods to get
node embeddings respectively, which are viewed as features
to train a Logistic Regression classifier. Especially, the size of
the training set is set as 60%, 80% and the remaining nodes as
the test set. We use micro-fl and macro-f1 to evaluate results.
As we can see in Table 3, THINE outperforms other meth-
ods on three datasets, which demonstrates that capturing all
dynamics and the influence between different types of nodes
is helpful for understanding structures of HIN. Moreover, our
model has similar results when using 60 or 80 percent of the
training set, which also shows the robustness of THINE.

Link prediction. We denote the representation of edge e, ,,
is |ug —uy|, Where u, and u, are embeddings of nodes v, and
vy. We also train a Logistic Regression classifier, in which
input is the representation of edges. For Aminer and DBLP,
we focus on co-author relations. Therefore, we hide 25% AP
randomly since co-author information is implicit in meta-path
APA. For Yelp, we hide 25% UR to predict the connection
between users. On each dataset, we randomly choose 25,000
edges as positive ones while generating 25,000 negative ones.
The results of link prediction are listed in Table 4.

We can observe that THINE outperforms all the baselines,
and most dynamic methods have a good effect on link predic-
tion, which further indicates that temporal information helps
extract the structures and semantics of temporal HINs.

Temporal link recommendation. We do a temporal link
recommendation experiment to test dynamic effectiveness.
Especially, we train all the methods on HINs before time
t. Then we make recommendations after time ¢. For each
dataset, the first 80% of the period is used for training while
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| Aminer \ DBLP \ Yelp
Meth
ethods | micro-f1 | macro-f1 | micro-f1 | macro-f1 | micro-f1 | macro-f1
‘ 60% 80% ‘ 60% 80% ‘ 60% 80% ‘ 60% 80% ‘ 60% 80% ‘ 60% 80%
Deepwalk 44.50% 44.67% 44.48% 44.73% 34.25% 36.00% 34.21% 35.49% 64.38% 65.93% 64.37% 65.91%
LINE 36.33% 38.33% 34.96% 36.21% 29.75% 30.38% 29.73% 30.36% 56.43% 61.75% 55.30% 59.73%
DySAT 43.00% 42.66% 45.00% 44.74% 31.50% 32.25% 31.26% 32.30% 68.44% 69.99% 68.37% 69.70%
HTNE 37.50% 40.83% 35.81% 39.08% 30.75% 32.63% 30.73% 32.68% 61.50% 65.00% 61.22% 64.75%
MTNE 41.33% 45.08% 40.51% 45.67% 31.25% 33.88% 31.04% 33.89% 65.00% 68.75% 64.99% 68.67%
Metapath2vec 38.17% 40.33% 38.12% 40.13% 30.50% 34.50% 30.47% 34.28% 50.87% 60.88% 49.51% 59.80%
StHNE 35.00% 40.00% 25.50% 34.22% 22.00% 19.25% 9.03% 8.44% 67.81% 66.25% 67.04% 65.99%
DHNE 43.62% 39.64% 41.19% 35.97% 37.50% 39.75% 36.90% 38.35% 60.94% 70.00% 60.80% 69.98%
DyHNE 36.33% 42.00% 35.30% 41.31% 22.13% 19.50% 9.06% 8.99% 68.44% 68.13% 67.74% 67.76%
MAGNN 36.67% 39.67% 36.18% 39.61% 24.50% 25.25% 23.85% 25.43% 46.56% 48.75% 46.54% 48.71%
HDGNN 41.67% 44.83% 41.57% 44.61% 37.25% 37.50% 36.89% 36.85% 62.18% 61.87% 62.10% 61.80%
THINE 48.33%  48.67% | 48.03%  48.58% | 38.50%  39.89% | 37.43%  39.64% | 70.37% 71.25% | 7023%  71.24%
Table 3: Performance on node classification
Datasets \ Metrics \ Deepwalk LINE DySAT HTNE MTNE Metapath2vec StHNE DHNE DyHNE MAGNN  HDGNN MTNE
auc 77.07% 68.49% 80.25% 76.53% 82.78% 70.20% 79.19% 63.86% 72.06% 66.34% 89.80% 91.16%
Aminer fl 71.19% 64.79% 67.91% 73.18% 75.23% 65.43% 73.66% 76.89% 74.25% 63.90% 82.33% 88.08 %
acc 71.09% 63.54% 66.14% 72.55% 74.72% 64.83% 69.61% 64.97% 74.25% 62.83% 82.09% 88.25%
auc 85.59% 75.11% 82.16% 90.77% 94.06% 79.17% 81.58% 75.46% 82.77% 67.80% 92.03% 94.65%
DBLP fl 81.28% 71.24% 75.61% 83.16% 86.74% 74.02% 76.02% 70.82% 76.54% 70.02% 84.37% 90.66 %
acc 81.28% 70.09% 75.03% 82.87% 86.61% 73.17% 72.47% 69.27% 72.97% 63.62% 84.17% 90.71%
auc 50.32% 58.30% 53.67% 65.27% 67.75% 51.18% 73.60% 50.41% 75.58% 73.29% 76.87% 79.33%
Yelp fl 63.28% 57.56% 54.27% 64.77% 65.34% 46.99% 70.30% 50.52% 71.33% 69.19% 71.86% 72.36%
acc 52.78% 55.57% 52.88% 60.65% 61.69% 51.03% 63.50% 50.53% 66.67% 60.88% 71.04% 72.51%

Table 4: Performance on link prediction

remaining as a test set. Using negative squared Euclidean
distance, we predict the top-5, 10 (top-2, 4) connection after
time ¢ for test nodes. We then estimate results with precision
and recall.

We first make recommendations between nodes of the
same type since some heterogeneous baselines only obtain
one type of node embedding. From Table 5, THINE has the
best performance in this dynamic task. Furthermore, we can
see methods for homogeneous networks generally are better
than the previous HIN embedding model.

To make our results more convincing, we also make recom-
mendations between multi-type nodes. Note that we remove
some baselines or datasets that do not fit for this task. As
shown in Table 6, THINE achieves the highest precision and
recall among competitors. Furthermore, the methods for HIN
perform better than models for homogeneous networks. This
may indicate that the methods for HIN should also pay atten-
tion to the influence between nodes of the same type, which
helps obtain better performance in downstream tasks.

4.3 Parameter Analysis

Besides, we analyze several important parameters of THINE:
the number of candidate meta-path instances n, the number
of candidate edges z, and the number of negative samples.

The number of candidate meta-path instances n. We
show how the number of candidate meta-path instances n in-
fluences THINE. As shown in Figure 2 (a), with the increase
of candidate meta-path instances, the performance first im-
proves and then decreases, which means that THINE does not
need too little or too superfluous information from the past.

The number of candidate edges z. Obviously, the influ-
ence of neighbor nodes is related to the number of candidate
edges z. From Figure 2 (b), similarly, THINE does not need
too much or too little neighbor information. For a balance
between complexity and performance, we set the number of
candidate edges as 4.

The number of negative samples. Finally, we test the im-
pact of the number of negative samples on model perfor-
mance. The experiment results are listed in Figure 2 (c).
From the results, THINE achieves the best performance when
the number of negative samples is around 5.

5 Related Work

Network embedding, namely graph embedding, aims to rep-
resent nodes in a low-dimensional space while preserving the
properties and structures of the network. Incipiently, inspired
by natural language processing [Mikolov et al., 2013], a lot
of researchers focus on applying embedding on the network.
Mainly, models at that time aimed to represent nodes by using
the information of neighbor nodes such as Deepwalk [Perozzi
et al., 2014] and LINE [Tang er al., 2015b]. However, these
methods are mainly proposed for homogeneous networks and
do not consider the temporal information.

Since then, network embedding goes in different direc-
tions: HIN and temporal network. For HIN, plenty of meth-
ods capture semantics and structures based on meta-path
[Sun and Han, 2012] and have got powerful performance
(i.e., Meta-path2vec [Dong er al., 2017], HAN [Wang et al.,
2019]). Towards temporal network, some of works use ma-
trix decomposition (DHPE [Zhu et al., 2018]), and others
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\ Aminer \ DBLP \ Yelp
Methods . .. ..
precision recall precision recall ‘ precision recall
| top@5 top@10 | top@5  top@l0 | top@5  top@l0 | top@5  top@I0 | top@5  top@l10 | top@5 top@10
Deepwalk 9.81% 8.03% | 229%  4.50% 9.80% 7.98% | 2.19%  425% | 021%  034% | 0.065%  0.120%
LINE 7.51% 6.11% | 224%  3.66% 5.23% 4.12% | 147%  231% | 017%  0.14% | 0.049%  0.058%
DySAT 3.35% 274% | 096%  1.59% 1.80% 1.13% | 048%  0.62% | 039%  020% | 0.061%  0.064%
HTNE 9.98% 820% | 3.01%  4.94% 7.75% 6.46% | 225%  3.68% | 033%  027% | 0.078%  0.156%
MTNE 1045%  838% | 3.15%  5.06% 7.96% 639% | 230%  3.65% | 0.05%  021% | 0.014%  0.122%
Metapath2vec | 2.21% 246% | 0.67%  1.49% 2.33% 207% | 0.69%  123% | 0.11%  021% | 0.027%  0.122%
StHNE 4.60% 340% | 140%  2.03% 3.67% 291% | 1.01%  1.60% | 039%  020% | 0.064%  0.069%
DHNE 3.32% 2.24% 1.02%  1.34% 6.34% 487% | 196%  291% | 023%  0.11% | 0.033%  0.033%
DyHNE 6.04% 404% | 174%  2.40% 3.89% 3.09% | 1.12%  175% | 024%  030% | 0.035%  0.122%
MAGNN 2.65% 218% | 081%  1.33% 1.62% 126% | 045%  0.69% | 032%  034% | 0.055%  0.167%
HDGNN 12.04%  1085% | 3.82%  6.45% 9.13% 879% | 2.03%  478% | 039%  040% | 0.090%  0.175%
THINE 14.05% 1207% | 431%  125% | 11.67% 947% | 348% 551% | 040%  041% | 0105% 0.217%
Table 5: Performance on temporal link recommendation between nodes of the same type
Datasets \ Metrics \ top \ Deepwalk LINE DySAT  HTNE MTNE Metapath2vec  DHNE ~ MAGNN  HDGNN MTNE
ecision | @2 | 1033%  628%  1046%  8.60%  10.46% 17.44% 9.43% 8.47% 1830%  22.79%
Aminer Precision | @4 | 1021%  3.60% 756%  651%  6.98% 13.83% 723%  635% 1437%  18.62%
1 @2 2.28% 197%  3.84%  2.98%  3.24% 5.96% 4.12% 3.14% 6.68% 8.31%
reca @ | 675%  221%  564%  461%  473% 9.76% 511%  4.23% 1094%  12.91%
- @2 1.76% 1.65%  3.90%  1.95%  2.20% 2.72% 3.40% 3.18% 4.23% 4.55%
DBLP precision - @4 2.55% 102%  339%  129%  1.76% 2.57% 323%  2.97% 3.87% 4.08%
recall @2 0.54% 046%  096%  0.55%  0.64% 0.83% 0.84% 0.79% 1.26% 1.53%
cea @4 1.65% 0.63%  2.09%  0.72%  1.03% 1.68% 1.84% 1.51% 2.41% 2.70%
Table 6: Performance on temporal link recommendation between the multi-type nodes
0.90 0.90 0.90
0.88 - e 0.88 — —p | 088 1 e
A= — 0.86
0.86 - ~ 0.86 - ~ 0.8a |
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Figure 2: Experimental results of the influence with different parameters: the number of candidate meta-path instances n (a), the number of
candidate edges z (b), and negative samples (c). The X-axis is epochs, while the Y-axis represents the micro-f1 of link prediction on Aminer.

divide networks into different subgraphs of snapshots, and
then aggregate the information of each subgraph, like DySAT
[Sankar et al., 2020]. Fortunately, a few methods like HTNE
[Zuo et al., 2018], M?DNE [Lu et al., 2019], and MTNE
[Huang er al., 2020] simulate the evolution of networks.
Currently, there is an increasing trend that focuses on tem-
poral HIN embedding. Most of such works use meta-path
to capture semantics in HIN and divide time into snapshots
to obtain node embeddings, like DHNE [Yin et al., 20191,
Change2vec [Bian et al., 2019], and DyHNE [Wang et al.,
2020]. Besides, HDGAN [Li er al., 2020] takes advantage
of time-level attention mechanism to simulate network evo-
lution. Furthermore, a few semi-supervised methods are de-
signed for HIN, such as static method MAGNN [Fu et al.,
2020] and dynamic model HDGNN [Zhou et al., 20201, but
there is still a lack of deep methods for temporal HINs. More-

over, none of them considers the dynamics of network evolu-
tion and multi-types node embeddings simultaneously.

6 Conclusion

In this paper, we propose THINE for investigating the prob-
lem of temporal HINs embedding. THINE takes advantage of
the candidate meta-path set to capture structures and seman-
tics, and uses the Hawkes process to simulate the evolution
of networks simultaneously. Extensive experiments on three
real-world temporal HINs show that THINE achieves the best
performance in both static and dynamic tasks.
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