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Abstract
Graph edit distance (GED) is a fundamental mea-
sure for graph similarity analysis in many real ap-
plications. GED computation has known to be
NP-hard and many heuristic methods are proposed.
GED has two inherent characteristics: multiple op-
timum node matchings and one-to-one node match-
ing constraints. However, these two characteris-
tics have not been well considered in the existing
learning-based methods, which leads to suboptimal
models. In this paper, we propose a novel GED-
specific loss function that simultaneously encodes
the two characteristics. First, we propose an opti-
mal partial node matching-based regularizer to en-
code multiple optimum node matchings. Second,
we propose a plane intersection-based regularizer
to impose the one-to-one constraints for the en-
coded node matchings. We use the graph neural
network on the association graph of the two input
graphs to learn the cross-graph representation. Our
experiments show that our method is 4.2x-103.8x
more accurate than the state-of-the-art methods on
real-world benchmark graphs.

1 Introduction
Graphs are ubiquitous and have been used in a wide range of
applications, such as bioinformatics [Peng et al., 2015], soft-
ware engineering [Xu et al., 2017], computer vision [Yan et
al., 2020] and so on. A fundamental problem in graph data
analysis is to compute the similarity between graphs. For ex-
ample, in bioinformatics, molecules with similar graphs often
have similar functions. Computing the similarity of molecu-
lar graphs is widely used in virtual screening of molecules. In
software engineering, the control-flow of a code fragment can
be modeled as a graph. Detecting the similarity of control-
flow graphs is useful for code plagiarism detection and code
vulnerability search.

Many graph similarity measures are proposed to measure
the similarity of graphs. Among others, graph edit distance
(GED), i.e., the minimum edit cost of transforming one graph
to another, is widely used and domain-agnostic [Bai et al.,
2020; Li et al., 2019; Chang et al., 2020; Zhao et al., 2018].
However, computing GED is NP-hard [Zeng et al., 2009].

A recent work [Blumenthal and Gamper, 2020] shows that
the exact GED between graphs of more than 16 nodes cannot
be computed reliably by the state-of-the-art algorithms in a
reasonable time. Therefore, many inexact GED computation
methods have been proposed [Blumenthal et al., 2020]. How-
ever, it is challenging to handcraft optimal algorithms, even
by experts, for different definitions of edit cost.

Meanwhile, with the success of deep learning, learning-
based graph similarity/matching computation methods have
been receiving increasing research attention [Ma et al., 2019;
Yan et al., 2020]. They learn graph similarity/matching mod-
els from data by minimizing the loss between the predicted
graph similarity/matching and the ground-truth. When used
for inference, the learned models can effectively predict the
similarity/matching of unseen graphs.

It is well known that GED has two inherent characteristics:
multiple optimum node matchings, i.e., two graphs have many
node matchings that are optimum to produce their GED, and
one-to-one node matching constraints, i.e., one node of a
graph can match only one node of another graph in an op-
timum node matching. However, these two characteristics
have not been well considered in the loss functions of exist-
ing graph similarity/matching learning works. For instance,
GraphSim [Bai et al., 2020], the state-of-the-art graph simi-
larity learning method, employs the mean-square error (MSE)
of the predicted graph similarity as its loss function. This
generic loss function allows GraphSim to support different
types of graph similarity measures. Nevertheless, GraphSim
can only make a suboptimal prediction of GED, as the in-
herent characteristics of GED are not encoded. On the other
hand, GLMNet [Jiang et al., 2019] has encoded the one-to-one
node matching constraints in the loss function. Let a binary
matrixX denote the node matching between two input graphs
and X̂ denote the prediction. A one-to-one node matching re-
quires that each row and column of X should have just a 1.
GLMNet proposes the constraint regularizer Lcr that forces
the product of each pair of elements in each row or column
of X̂ to be 0. Lcr itself cannot constrain the one-to-one node
matching, as it says nothing to the 1’s in X̂ . But, the sum of
Lcr and the cross entropy between X̂ andX can constrain the
one-to-one node matching. However, GED may have multi-
ple optimum node matchings. If we just select one optimum
node matching as the ground-truth, all other optimum node
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matchings are overkilled and the model trained is subopti-
mal. Moreover, it is non-trivial to modify the loss function of
GLMNet to work with multiple optimum node matchings. The
main reason is that Lcr needs the cross entropy to constrain
the one-to-one node matching, but the cross entropy does not
work when there are multiple optimum node matchings.

In this paper, we propose a novel GED-specific loss func-
tion to address the deficiency of existing works. First, we pro-
pose a new partial node matching-based regularizer Lm to
encode multiple optimum node matchings. Lm is inspired by
the Branch-and-Bound (BnB) search for exact GED computa-
tion and the Monte Carlo tree search (MCTS). The main ideas
are as follows. i) We encode all the optimum node matchings
covered by a sub-tree of the BnB tree in the ground-truth. The
optimum node matchings are leaves of the BnB tree and each
internal node is a partial node matching. We use the partial
node matching of an internal node as the ground-truth and
just penalize the mispredicted 1’s in the partial node match-
ing. All the optimum node matchings covered by the sub-tree
are not penalized by the regularizer. ii) We select the optimal
internal node to balance the mispenalty and the restraint of
the regularizer. The reason is that with larger coverage of the
internal node, fewer optimum node matchings not covered
are mispenalized, which benefits the learning of the model.
However, the regularizer is less restrictive, which is adverse
to the learning of the model. An internal node is given a score.
Inspired by the MCTS, the score is computed by random roll-
outs. If the rollouts from an internal node reach more opti-
mum node matchings, the internal node has a higher score. If
two internal nodes have the same score, we select the one hav-
ing larger coverage. Using only one optimum node matching
as the ground-truth is a special case of our regularizer.

Second, we propose a plane intersection-based regular-
izer Lc to encode the one-to-one constraints for the node
matchings encoded by Lm. Specifically, we leverage the
constrained binary quadratic programming (CBQP) formula-
tion of GED. The one-to-one node maching constraints in the
CBQP can be modeled as the quadratic infeasibility penalty
term Lqip in the loss function [Kochenberger et al., 2014].
However, Lqip becomes not effective to constrain the one-to-
one node matching after the binary variables in the CBQP are
relaxed to be continuous in [0, 1]. We observe that the inter-
section of the solution plane of minimizing Lqip and that of
minimizing the constraint regularizer Lcr is effective to con-
strain the one-to-one node matching. Therefore, we combine
Lqip and Lcr as our plane intersection-based regularizer.

To learn the cross-graph representation of two input graphs
G1 and G2, we build an association graph GX from the CBQP
of G1 and G2. The nodes in GX model the variables of the
CBQP and the edges model the relationship between the vari-
ables. GX can also be regarded as the “product” of G1 and
G2. The graph neural network on GX is used to learn the
embeddings of the nodes in GX . The node embeddings are
fed into fully-connected layers to predict the GED. Our ex-
periments show that our method is 4.2x-103.8x more accu-
rate than the existing graph similarity learning methods and
heuristic GED algorithms. In summary, this paper’s contribu-
tions are as follows.

• We propose a novel partial node matching-based regu-
larizer to encode multiple optimum node matchings. An
optimal partial node matching selection method is pro-
posed.

• We propose a plane intersection-based regularizer to im-
pose the one-to-one constraints for the node matchings
encoded by the partial node matching-based regularizer.

• We conduct extensive experiments to verify that our pro-
posed techniques significantly outperform the state-of-
the-art methods on several benchmark datasets.

The rest of this paper is organized as follows. Section 2
summarizes the related work. Section 3 presents the prelim-
inaries. The GED-specific loss function and model architec-
ture are proposed in Section 4. Section 5 presents the experi-
mental results and Section 6 concludes this paper.

2 Related Work
This section discusses the recent works that are closely re-
lated to this paper.

2.1 Graph Similarity Learning
Most recent graph similarity learning works use the graph
neural networks (GNNs) to learn the embeddings of the
graphs. The embeddings are fed into multilayer perceptrons
(MLPs) or convolutional neural networks (CNNs) to predict
the graph similarity. For example, the work [Wang et al.,
2019b] uses a Siamese GNN model to predict the graph sim-
ilarity by regression. The work [Xu et al., 2017] uses a
Siamese GNN model to predict if two graphs are similar by
binary classification. Different from fusing the embeddings
of the two graphs at the very end of learning in above meth-
ods, the state-of-the-art works fuse the embeddings of the two
graphs early via cross-graph learning. The work [Li et al.,
2019] proposes a cross-graph attention network GMN. The loss
function of GMN is the classification error of predicting if two
graphs are similar. The work GraphSim [Bai et al., 2020]
combines GNN and CNN. The loss function of GraphSim
is the MSE of the predicted graph similarity. However, as
the two inherent characteristics of GED have not been con-
sidered, GMN and GraphSim produce a suboptimal prediction.
Interested readers are referred to [Ma et al., 2019] for a recent
survey.

2.2 Deep Graph Matching
Graph matching is widely studied in computer vision to
match images. For example, the work [Wang et al., 2019a]
conducts cross-graph learning on the association graph built
from the graphs extracted from two images. The embeddings
of the nodes of the association graph are fed into the Sinkhorn
layer to predict the node matching. The cross entropy of the
predicted node matching and the ground-truth is used as the
loss. In [Yu et al., 2020], the Hungarian attention is proposed
to pay more attention to the mismatched nodes to address the
overfitting issue caused by the cross entropy loss. The work
[Jiang et al., 2019] introduces a constraint regularizer to en-
code the one-to-one node matching constraints.

The graph matching methods cannot be directly adopted
for GED learning as they do not consider multiple optimum
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node matchings. In addition, graph matching has an inherent
characteristic of neighborhood consensus [Fey et al., 2020],
whereas GED does not.

There are also some works studying learning-based meth-
ods to solve the quadratic programming and other problems
that can be modeled by the quadratic programming [Vesseli-
nova et al., 2020]. However, the inherent characteristics of
GED are also not considered.

3 Preliminaries
This paper studies undirected graphs, or simply called
graphs. A graph is denoted as G = (V,E), where V and
E are the node set and the edge set of G, respectively. The
label of a node u and an edge (u, u′) is denoted by `(u) and
`(u, u′), respectively. N(u) denotes the neighbors of u ∈ V .
The size of G, denoted by |G|, is the number of nodes in G.

A graph G1 can be transformed to another graph G2 by a
sequence of six types of edit operations: node/edge insertion,
node/edge deletion, and node/edge relabeling. The sequence
of edit operations is called as the edit path. The cost of the
edit path is the total cost of the edit operations in it. Graph
edit distance (GED) of G1 and G2, denoted by d(G1, G2), is
the minimum cost of an edit path that transformsG1 toG2. In
this paper, we assume that the cost of each edit operation is 1,
yet our technique can be easily extended to other costs. In an
optimum edit path, each node/edge ofG1 is edited at most for
one time, as otherwise the edit path’s cost is not minimum.

We assume G1 and G2 have the same number of nodes, as
otherwise we can add dummy nodes with a special label to
the smaller graph as in [Chang et al., 2020]. An example of
adding dummy nodes is shown in Figure 1(a)-(b).

An optimum edit path is equivalent to an optimum node
matching between G1 and G2 [Blumenthal et al., 2020]. The
intuition is as follows. If a node u or an edge (ui, uj) of G1

is matched to a node or an edge in G2 that has a different
label, u or (ui, uj) is relabeled. If an edge (ui, uj) of G1 is
matched to a non-existing edge of G2, (ui, uj) is deleted. If
a non-existing edge of G1 is matched to an edge (vk, vl) of
G2, (vk, vl) is inserted to G1.

Let a binary matrix X denote the node matching between
G1 and G2. The optimum X can be computed by the con-
strained binary quadratic programming (CBQP) as follows.

min
X

dist =
∑

ui∈G1
vk∈G2

ci,kXi,k +
∑

ui,uj∈G1

vk,vl∈G2

ci,k,j,lXi,kXj,l (1)

s.t.
∑

vk∈G2

Xi,k = 1, ∀ui ∈ G1 (2)

∑
ui∈G1

Xi,k = 1, ∀vk ∈ G2 (3)

Xi,k ∈ {0, 1}, ∀ui ∈ G1, vk ∈ G2, (4)

where ci,k is the edit cost of matching ui in G1 and vk in G2.
ci,k = 1 if `(ui) 6= `(vk) and 0 otherwise. ci,j,k,l is the edit
cost of matching the edge (ui, uj) inG1 and the edge (vk, vl)
in G2. ci,j,k,l = 1 if `(ui, uj) 6= `(vk, vl) and 0 otherwise.

Equations (2-4) constrain that the optimum node matching
must be a one-to-one node matching. Otherwise, the node
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Figure 1: An example of two graphs and node matchings. Node
labels are marked by gray levels. u3 is a dummy node with a special
label.
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Figure 2: A Brand-and-Bound (BnB) tree for computing the GED
of the two graphs in Figure 1(b). Subtrees that do not cover any
optimum node matching are pruned during the BnB search. The
circled leaves are optimum node matchings.

matching cannot transform G1 to G2 or the edit cost is not
the minimum. Two graphs can have multiple optimum node
matchings, as shown in Figure 1(c), as there are many ways
to transform a graph to another with the same minimum edit
cost. A predicted node matching is shown in Figure 1(d).

The Brand-and-Bound (BnB) tree for computing the exact
GED betweenG1 andG2 in Figure 1(b) is shown in Figure 2.
Each internal node is a partial node matching. π is the order
to processing the nodes in G1, which is decided by heuristics
in the latest methods [Chang et al., 2020].

4 Graph Edit Distance Learning
Following the CBQP of GED, we formulate a GED learning
problem. The key idea is to design a GED-specific loss func-
tion. Then, we use a graph neural network on the association
graph built from the variables of the CBQP to minimize the
GED-specific loss.

4.1 Problem Transformation
We transform the CBQP to a graph learning problem, which
can model the two inherent characteristics of GED. Specif-
ically, the CBQP is equivalent to the unconstrained binary
quadratic programming (UBQP) by moving the node matching
constraints (Equations (2) and (3)) as the quadratic infeasibil-
ity penalty to the objective, as follows.

min
X

dist+ αLqip (5)

Lqip =
∑

ui∈G1

(1−
∑

vk∈G2

Xi,k)
2 +

∑
vk∈G2

(1−
∑

ui∈G1

Xi,k)
2 (6)

where Lqip is the quadratic infeasibility penalty and α is the
weight.
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We further relax the binary variables in the UBQP to [0, 1] to
obtain an unconstrained quadratic programming (UQP) such
that the variables are differentiable. Then, a GED learning
problem can be obtained by minimizing the loss function cor-
responding to the objective of the UQP as follows.

minLd + αLqip, (7)

where Ld is the mean-square error (MSE) of dist and the
ground-truth GED.

4.2 GED-specific Loss Function
Regularizer For Multiple Optimum Node Matchings
The main ideas of the regularizer are as follows. i) We use
a partial node matching as the ground-truth, s.t. all the op-
timum node matchings covered by the partial node match-
ing are not penalized. In this way, multiple optimum node
matchings are encoded. ii) We select the optimal partial node
matching to balance the mispenality and the restraint of the
regularizer.

Specifically, let a binary matrix P denote the partial node
matching of an internal node of the BnB tree. P has at most a
1 in each row and column. Our regularizer just penalizes the
mispredicted 1’s in P as follows.

Lm = −P log X̂, (8)

where X̂ is the predicted node matching. Since the 0’s in P
are not penalized, all the optimum node matchings covered
by the internal node are not penalized. Note that Lm is not
the cross entropy and it is different from the Hungarian loss in
[Yu et al., 2020], as only the mispredicted 1’s are penalized.

We propose a random rollout-based method to select the
optimal P . LetX denote an optimum node matching between
G1 and G2. X is a leaf of the BnB tree. Let path denote the
path from the root of the BnB tree to the leaf X . At the i-
th node in path, denoted by path[i], we conduct k random
rollouts. In each rollout, we find a random path from path[i]
to a leaf of the BnB tree. If the leaf reached is an optimum
node matching, the rollout is called positive. The score of
path[i] is the percentage of positive rollouts. If path[i] and
path[j] with i < j has the same score, we select path[i] as
the optimal internal node, because path[i] is closer to the root
of the BnB tree and the subtree rooted at path[i] has a larger
coverage.
Lm cannot constrain the node matchings to satisfy the one-

to-one constraints. We next propose another regularizer to
encode the one-to-one node matching constraints.

Regularizer To Constrain One-to-one Node Matching
When the variables in the quadratic programming are binary,
Lqip can constrain the one-to-one node matching. However,
after the variables are relaxed to be continuous in [0, 1], Lqip

is not effective. We use an example in the 3D space to show
the shortcoming.
Example 1. Suppose we have three binary variables x, y, z ∈
{0, 1} and we expect there is only one 1 in x, y, z. The so-
lution points are sol = {(0, 0, 1), (0, 1, 0), (1, 0, 0)} in 3D
space. If we use the constraint x+y+z = 1, the valid points
are exactly sol. However, if we relax x, y, z to [0, 1] and min-
imize (1−(x+y+z))2, all points on the plane x+y+z = 1
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Figure 3: An example showing the effectiveness of Lc and Lm

are valid. sol are the intersection points of the plane with the
X, Y and Z axes. It is not easy to find sol by only minimizing
(1− (x+ y + z))2 with x, y, z ∈ [0, 1].

The work [Jiang et al., 2019] proposes the constraint reg-
ularizer Lcr to encode the one-to-one node matching con-
straints as follows.

Lcr =
∑

ui,uj∈G1,vk,vl∈G2

wi,j,k,lXi,kXj,l, (9)

where wi,j,k,l = 1 if i = j, k 6= l or i 6= j, k = l and 0
otherwise. Intuitively, Lcr is to force the product of each pair
of elements in each row/column inX to be 0. However,Lcr is
also not effective to constrain the one-to-one node matching
after the continuous relaxation, as shown by the following
example.
Example 2. Continuing Example 1, when x, y, z ∈ {0, 1},
sol can be obtained by minimizing xy+xz+ yz. However, if
we relax x, y, z to [0, 1], minimizing xy + xz + yz produces
the X, Y and Z axes. It is also not easy to find sol. However,
sol are exactly the intersection points of the solution of mini-
mizing xy+xz+yz and that of minimizing (1−(x+y+z))2.

From Examples 1 and 2, we can observe that after relaxing
the variables to [0, 1], either Lqip or Lcr does not constrain
the one-to-one node matching, but the intersection of their
solution planes is a desired choice. Therefore, we propose a
plane intersection-based regularizer for encoding the one-to-
one node matching constraints as follows.

Lc = Lqip + Lcr (10)

Finally, our overall loss function is as follows.

L = Ld + αLc + βLm, (11)

where α and β are two hyperparameters.

Discussion
Lc and Lm are crucial for GED learning and should be used
together to train an effective model. We illustrate the merits
of our method by examples as shown in Figure 3.

• If we only use Lc and do not use Lm, we will obtain a
suboptimal model. For example, given two graphs with
GED = 1 as shown in Figure 3(a), the model converges
at the node matching as shown in Figure 3(b) and the
predicted GED is ∼2.3.
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• If we use both Lc and Lm, but use the full node match-
ing as the ground-truth in Lm, we will again obtain a
suboptimal model. For example, if we use the samples
in Figure 3(e) as the training data, the model converges
at the node matching as shown in Figure 3(c) and the
predicted GED is ∼1.5.

• We propose to use both Lc and Lm, and use the par-
tial node matching as the ground-truth in Lm. We will
obtain an effective model. For example, if we use sam-
ples (G1, G2, X5), (G1, G2, X5) and (G1, G2, X6) in
the training data (X5 and X6 are partial node matchings
shown in Figure 3(f)), the predicted GED is 0.99.

4.3 Graph Neural Network-based Model
We follow the method of [Jiang et al., 2019] to build an asso-
ciation graph ofG1 andG2 and then use graph convolution on
the association graph to learn the representation crossing G1

and G2. The embeddings of the nodes are fed into multilayer
perceptrons (MLPs) for GED prediction.

The association graph GX is built from the UBQP of G1

and G2. Specifically, for each variable in the UBQP, GX has a
node. If ci,k = 1, the node Xi,k is of type 1 and 0 otherwise.
Let t(·) denote the type of a node. If ci,k,j,l = 1, GX has
an edge (Xi,k, Xj,l). Assume |VG1 | ≤ |VG2 | and let n =
|VG2
|. GX has n2 nodes and |EG1

|n2 + |EG2
|n2 edges. If

G1 and G2 are sparse, i.e., |EG1
| = O(|VG1

|) and |EG2
| =

O(|VG2
|), GX is also sparse and GX has O(n3) edges.

The graph convolution on GX differentiates the types of
the nodes as follows.

~hL+1
u = σ(

∑
u′∈N(u)
t(u′)=0

W0
~hLu′ +

∑
u′′∈N(u)
t(u′′)=1

W1
~hLu′′), (12)

where u is a node in GX , ~hu is the embedding vector of u,
N(u) is the neighbors of u inGX , L is the layer of graph con-
volution, W0 and W1 are trainable parameters for the nodes
of type 0 and type 1, respectively, and σ is the activation func-
tion.

The time complexity of the graph convolution on GX

is O(n3). Although it is larger than O(n2) of GMN and
GraphSim, our model has a higher capacity and can produce
more accurate GED prediction.

5 Experimental Evaluation
We evaluate our method against a number of state-of-the-art
methods for GED computation, with the major goals of ad-
dressing the following questions:

Q1: How effective is our method compared to the state-of-
the-art methods of GED computation, including both
heuristic algorithms and neural network based models?

Q2: How do the regularizer Lm for encoding multiple op-
timum node matchings and the regularizer Lc for node
mapping constraints help with the GED learning?

Q3: How our method can generalize to larger graphs that
have different distributions of GED and are not seen dur-
ing training?

Dataset #graphs min max avg |G≤30|
AIDS 42687 2 222 25.6 33013
LINUX 47239 4 2764 35.5 32793
IMDB 1500 7 89 13.0 1423
PTC 344 2 109 25.6 258

Table 1: Statistics of datasets (min, max and avg are the smallest,
largest and average graph size, respectively. |G≤30| and |G>30| are
the number of graphs whose size ≤ 30 and > 30, respectively.)

Datasets. We use four real graph datasets AIDS, IMDB,
LINUX and PTC that are from different domains in our ex-
periments. The datasets are the same as those used in [Bai
et al., 2020]. We use G≤30 and G>30 to denote the graphs
of no more than and more than 30 nodes, respectively. We
use G≤30 to answer Q1 and Q2, and use G>30 to answer Q3.
Table 1 shows the statistics of the datasets. The GEDs and op-
timum node matchings are computed by the latest exact GED
method [Chang et al., 2020].

Baseline methods. We follow GraphSim to compare with
three well-known heuristic GED computation algorithms
Beam [Neuhaus et al., 2006], Hung [Riesen and Bunke, 2009],
and VJ [Fankhauser et al., 2011]. We also compare with two
state-of-the-art GED learning methods GMN [Li et al., 2019]
and GraphSim [Bai et al., 2020].

Parameter settings. We use two graph convolution layers
and ReLU as the activation function. We use the one-hot en-
coding of node degree as the initial node embedding. The em-
bedding dimensions are 32. The embedding of a nodeXu,v in
the association graph GX is fed into a fully-connected layer
followed by a sigmoid function to predict Xu,v . The mean
of the embeddings of all nodes in GX is fed into a fully-
connected layer to predict GED. The average mean-square er-
ror (MSE) of the predicted GED and the ground-truth on the
test data is used as the performance metric. α and β are set
by grid search. We set the batch size to 1 and use the Adam
optimizer. The initial learning rate is 0.005 and reduced by
0.96 for each 5 epochs. We set the number of epochs to 600,
and select the best model based on the lowest MSE of GED
on validation data. The experiments are conducted using Py-
Torch on a server with Intel CPU Xeon Gold 6230R, 768G
RAM, and a GPU card NVIDIA Tesla K80. The source code
is available online.1

5.1 Comparison with Baseline Methods
To answer Q1 with this experiment, we sample 6k, 2k, 2k
pairs of graphs in G≤30 as the training data, the validation
data and the test data, respectively. The MSE of GED pre-
diction on the test data is shown in Table 2. From Table 2,
we can observe that our method significantly outperforms
the state-of-the-art GED learning methods on all datasets.
Specifically, the prediction error of our method is respectively
10.6x, 30.2x, 5.4x, and 103.8x smaller than GraphSim and
even smaller than GMN on AIDS, LINUX, IMDB and PTC. Our
method is 21.2x, 4.2x, and 4.9x better than the approximate

1https://github.com/csypeng/graph edit distance learning
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Methods AIDS LINUX IMDB PTC

Beam 28.04 4.92 64.16 25.96
Hung 255.32 59.52 79.36 136.36
VJ 337.12 109.08 77.96 142.01
GMN 349.47 266.02 3712.06 567.26
GraphSim 13.96 35.14 363.20 547.19
Ours 1.32 1.16 67.55 5.27

Table 2: MSE of GED on test data

Methods AIDS LINUX IMDB PTC

Beam 5.59 2.13 3.27 3.23
Hung 2.69 1.56 12.41 3.08
VJ 3.15 1.27 14.04 1.59
GMN 4.69 2.45 7.34 6.55
GraphSim 6.7 6.03 6.12 6.22
Ours 18.17 21.95 20.33 18.51

Table 3: Running time on test data (ms)

algorithms on AIDS, LINUX and PTC, respectively, and is
on par with them on IMDB. The IMDB dataset is harder as
the graphs are much denser. The average density of IMDB is
0.83, whereas that of AIDS is only 0.09. We also compare
with GLMNet. For example, the MSE of GLMNet on AIDS
is 265.6. The average GED of the test data is 23.75, 22.92,
52.77, and 35.2 on AIDS, LINUX, IMDB, and PTC, respec-
tively. Our MSEs 1.32 and 1.16 are very small comparing to
the GEDs on AIDS and LINUX.

Besides the MSE, we examine the Spearman’s rank corre-
lation coefficient ρ, Kendall’s rank correlation coefficient τ ,
and precision at 10 (p@10). For example, on AIDS, ρ, τ , and
p@10 of our method is 0.89, 0.85, and 0.73, whereas those of
GraphSim are 0.86, 0.81, and 0.61, respectively.

We also compare the efficiency and the result is shown in
Table 3. From Table 3, we can observe that the approximate
GED algorithms are faster than the learning-based methods.
Our method is slower than the latest GED learning methods.
The reason is that the time complexity of the graph convolu-
tion of our method is O(n3), where n is the number of nodes
in the larger one of the two input graphs. The time complex-
ities of GraphSim and GMN are O(n2). Our method is still
practical as n is small in many real applications.

5.2 Ablation Study
To investigate Q2, in this experiment, we examine the effec-
tiveness of our proposed regularizer Lm and Lc. The result is
shown in Table 4. From Table 4, we can observe that Lm is
important for GED learning. The best results on all datasets
are achieved with using Lm in the loss function. We can ob-
serve that Lc is also important for GED learning. On LINUX
and IMDB, the best results are achieved with incorporating Lc

in the loss function.
We also examine the effectiveness of combining Lqip and

Lcr. On AIDS, the MSE of using Ld + Lm + Lqip is 1.56
and the MSE of using Ld +Lm +Lcr is 1.61. It verifies that

Methods AIDS LINUX IMDB PTC

Ld 1.89 7.46 104.84 7.11
Ld + Lm 1.73 1.16 97.12 5.27
Ld + Lc 1.85 4.46 79.53 6.63
Ld + Lm + Lc 1.32 1.44 67.55 6.79

Table 4: MSE of GED prediction of different loss functions

Beam Hung VJ GraphSim Ours

MSE 35.4 390.6 590.6 30.9 5.27
time(ms) 7.9 4.45 7.42 10.8 37.2

Table 5: Generalization performance

using either Lqip or Lcr is worse than combining them in the
loss function.

5.3 Generalization Analysis
We answer Q3 in this experiment. We focus on AIDS and
examine the graphs whose node number is more than 30 and
no more than 50, denoted by G30 50, due to the time cost of
computing the exact GEDs. G≤30 and G30 50 have very dif-
ferent distributions of GEDs: the mean of GEDs ofG≤30 and
G30 50 is 23.57 and 47.22; the standard deviation of GEDs of
G≤30 and G30 50 is 7.83 and 14.17, respectively.

For G30 50, we use 6k pairs of graphs in G≤30 as the train-
ing data and 2k and 2k pairs of graphs in G30 50 as the vali-
dation and test data, respectively. The generalization perfor-
mance is shown in Table 5. Comparing with Table 2, we can
observe that MSE increases with the growth of graph size. It
is reasonable as the distributions of GEDs are different. Our
method outperforms existing methods with a small time cost.

6 Conclusion
In this paper, we propose a deep learning-based graph edit
distance (GED) computation method. A novel GED-specific
loss function is proposed to model the two inherent char-
acteristics of GED. Specifically, we propose a partial node
matching-based regularizer to encode multiple optimum node
matchings. A partial node matching is used as the ground-
truth and all the optimum node matchings covered by the par-
tial node matching are encoded. We can also tune the number
of optimum node matchings included to balance the overkill
and restraint of the regularizer. We also propose a plane
intersection-based regularizer to encode the one-to-one con-
straints for the node matchings included by the partial node
matching-based regularizer. We build an association graph
of the two input graphs and use the graph neural network
on the association graph to learn the cross-graph represen-
tation. Our experiments show that our method is effective
and significantly outperforms the state-of-the-art GED learn-
ing methods and the heuristic GED algorithms on real-world
benchmark graphs.
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