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Abstract
Real-world networked systems often show dy-
namic properties with continuously evolving net-
work nodes and topology over time. When learn-
ing from dynamic networks, it is beneficial to cor-
relate all temporal networks to fully capture the
similarity/relevance between nodes. Recent work
for dynamic network representation learning typi-
cally trains each single network independently and
imposes relevance regularization on the network
learning at different time steps. Such a snapshot
scheme fails to leverage topology similarity be-
tween temporal networks for progressive training.
In addition to the static node relationships within
each network, nodes could show similar variation
patterns (e.g., change of local structures) within the
temporal network sequence. Both static node struc-
tures and temporal variation patterns can be com-
bined to better characterize node affinities for uni-
fied embedding learning. In this paper, we propose
Graph Attention Evolving Networks (GAEN) for
dynamic network embedding with preserved sim-
ilarities between nodes derived from their tempo-
ral variation patterns. Instead of training graph at-
tention weights for each network independently, we
allow model weights to share and evolve across all
temporal networks based on their respective topol-
ogy discrepancies. Experiments and validations, on
four real-world dynamic graphs, demonstrate that
GAEN outperforms the state-of-the-art in both link
prediction and node classification tasks.

1 Introduction
Networks are ubiquitous to organize real-world data and sys-
tems, such as social networks, citation networks, communi-
cation networks, and protein interaction networks [Zhang et
al., 2020]. The past few years have witnessed many success-
ful graph-based applications such as text classification [Yao
et al., 2019], image recognition [Chen et al., 2019] and traf-
fic prediction [Zhao et al., 2019], which are largely benefited
from the fruitful network embedding techniques. Given a
network, the key to designing a successful network embed-
ding framework lies in the high-efficient mechanism to fully

capture the complex relationships (e.g., structure and feature
similarities) among nodes, such that nodes with close rela-
tionships are represented with similar embedding vectors.

Traditional methods, including DeepWalk [Perozzi et al.,
2014] and Node2vec [Grover and Leskovec, 2016], perform
truncated random walks over the entire network to capture
the neighborhood relationships between nodes. Recent work
mainly focuses on the graph neural networks [Wu et al.,
2020], where the idea is that nodes can aggregate features
from their respective neighbors (e.g., first-order and second-
order) to preserve structure relationships in the embedding
space with multiple graph convolution kernels or filters [Kipf
and Welling, 2017; Veličković et al., 2017]. While existing
methods are designed to characterize relationships between
nodes from different views and levels, i.e., local and global
neighborhood relationships, for quality node representation
learning, they are specialized in modeling static networks
with invariable node sets and topology structures.

In reality, most real-world networked systems are in an
evolving process [Fournier-Viger et al., 2020], where net-
work nodes and structures are continuously changing over
time. For example, the dynamic social network arises from
new edges and nodes being frequently created when new ac-
tors join the network or new friendships are being established.
Analogically, new Web pages and their links are interminably
added and old ones are deleted, resulting in a highly dynamic
Web page citation network. In the biological domain, the
physical interactions among proteins will change with the age
of proteins, resulting in an evolving protein-protein interac-
tion network [Hegele et al., 2012]. In the dynamic environ-
ment, the network evolution trajectory can be recorded and
streaming networked data can be organized in a temporal se-
quence composed of multiple varying networks at different
time steps. Compared with a single static network, dynamic
networks inherently reflect more complex relationships be-
tween nodes, i.e., the node structure evolutionary patterns. As
a result, in addition to the structural node relationships ob-
served from the most recent static network, the correlations
between the current network with all its historical networks
within a temporal sequence can be modeled to enhance the
representation learning of dynamic networks.

To capture network dynamics, existing methods typically
impose some regularization/constrain on embedding learning
of networks at different time steps. For example, in the litera-
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ture [Seo et al., 2018; Manessi et al., 2020], Long Short-Term
Memory (LSTM) networks are used to model a sequence of
temporal networks, i.e., each node can utilize its past node
features for enriched embedding learning, where the static
network at each time step is modeled by independent Graph
Convolutional Networks (GCN) [Kipf and Welling, 2017].
Similarly, dynamic attention network [Sankar et al., 2019] is
also proposed to capture temporal dynamics where each node
can use its historical representations, while each static net-
work is modeled based on a respective Graph Attention Net-
works (GAT) [Veličković et al., 2017]. Despite both network
dynamics and structures can be preserved, above methods fail
to consider the following two attractive properties of dynamic
networks:

• Similar Network Topologies: While a network Gt at
time t evolves to network Gt+1 at time (t + 1), the net-
work topologies between Gt and Gt+1 are usually simi-
lar. Instead of learning the two networks independently,
weights of the learning model (e.g., GCN) for Gt can
be evolved to the model for Gt+1, thereby making the
training across all temporal networks more efficient.

• Temporal Variation Patterns: While a network
changes over time, nodes would demonstrate some tem-
poral variation (e.g., change of local structures) patterns,
i.e., adding or removing a link with a neighborhood,
observed from a fixed number of sequential evolution
steps. Such pattern information can be explicitly mod-
eled in that nodes with similar patterns being close in the
embedding space.

To this end, in this paper we propose a novel network
representation learning framework, Graph Attention Evolv-
ing Networks (GAEN), for dynamic networks organized as a
sequence of evolving networks at different time steps. In-
stead of learning the static networks at each time step in-
dependently as most existing methods do, GAEN learns to
evolve and share model weights across all temporal networks
based on a Gated Recurrent Unit (GRU) [Cho et al., 2014] by
learning the topological discrepancies between networks. To
model temporal node variation patterns, we first stack each
network (e.g., adjacency matrix) with all its historical net-
works to form a three-way tensor, from which node temporal
variation pattern similarities are derived based on the tensor
factorization technique. Then, the pattern information is ex-
plicitly incorporated into the respective neighborhood atten-
tion calculation for enhanced network representation learn-
ing at each dynamic time point. Experimental results on four
real-world datasets in both dynamic link prediction and node
classification tasks demonstrate the effectiveness of the pro-
posed approach.

It is necessary to mention that a recent work [Pareja et al.,
2020], along a similar direction, proposes to evolve GCN
weights with a recurrent neural network by taking the node
features at different time steps as inputs. In comparison, our
model considers the topological discrepancies between tem-
poral networks to evolve and share multi-head graph atten-
tion network learning weights. In addition, to the best of our
knowledge, this is the first work to explicitly represent and

incorporate dynamic node variation patterns for learning dy-
namic graph attention networks.

In summary, our contribution is threefold: 1) We propose a
novel graph attention network called GAEN for learning tem-
poral networks; 2) We propose to evolve and share multi-head
graph attention network weights by using a GRU to learn
the topology discrepancies between temporal networks; and
3) We propose to represent temporal node variation patterns
and explicitly incorporate pattern information for enhanced
neighborhood attention and network embedding learning.

2 Related Work
Graph Neural Networks. Inspired by the success of Con-
volutional Neural Networks (CNN) which typically focus on
the grid-like data, Graph Neural Networks (GNN) for learn-
ing irregular networked data have seen an explosion in atten-
tion over the past few years [Wu et al., 2020]. The incredible
embedding learning ability of GNN lies in various efficient
graph convolution filters. GCN adopts a spectral-based filter
where each node generates the representation by aggregating
features from its neighborhoods [Kipf and Welling, 2017].
Graph Attention Networks (GAT) extend to learn additional
importance weights so that important neighborhoods will be
given higher attention [Veličković et al., 2017]. GraphSAGE
learns a set of aggregation functions for each node to flexibly
aggregate information from neighborhoods of different hops.
[Hamilton et al., 2017]. To select the appropriate convolu-
tion filter for a specific graph learning task, some researchers
propose the GNN architecture search which can identify the
optimal one from a set of candidate models [Shi et al., 2020].
Temporal Network Learning. Recently, some works seek
to extend existing GNN models to handle temporal networks,
where node sets and edge connections can evolve over time.
STGCN employs a GCN layer to model the spatial depen-
dency among network nodes at each time step, followed by a
CNN layer to capture the temporal dependencies of networks
at different time steps [Yu et al., 2017]. DySAT designs a
self-attention mechanism in two directions namely structural
neighborhood and temporal dynamics to respectively capture
node dependency relationships within and between networks
[Sankar et al., 2019]. EvolveGCN adapts GCN along the tem-
poral dimension by using a recurrent neural network to evolve
the GCN learning weights [Pareja et al., 2020]. In compar-
ison, in this paper we focus on evolving the graph attention
networks with multiple attention heads. Different from exist-
ing works that typically enforce some regularization on the
multiple dynamic networks to capture the temporal node re-
lationships, we propose to first represent the temporal node
variation patterns and then explicitly incorporate them into
each time step for enhanced node relationships modeling and
network embedding learning.

3 Problem Definition
In this work, we extend graph attention networks to study
an evolutionary graph attention network learning problem.
An evolving network can be represented as a sequence of
graph snapshots G = {G1, · · · , GT }, where T is the num-
ber of time steps. Each snapshot at time step t ∈ [1, T ]
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Figure 1: Calculation of pairwise node variation pattern similarities based on the PARAFAC model. For each graph Gt, a three-way tensor
St is built by stacking all the adjacency matrices till time t, encoding the correlations of three modes, namely nodes, nodes and times.

is an undirected graph represented by Gt = (Vt, Et,Xt),
where Vt = {vi}i=1,··· ,|Vt| is a set of unique nodes, Et =

{eij}i,j=1,··· ,|Vt| is a set of edges which can be encoded in
an adjacency matrix At ∈ R|Vt|×|Vt|, and Xt ∈ R|Vt|×d con-
tains all |Vt| nodes and their d-dimensional feature vectors.

The objective of this paper is to map graph Gt ∈ G to a
low-dimensional embedding space Ot ∈ R|Vt|×h while tak-
ing all its historical graphs G1, G2, · · · , Gt−1 into consider-
ation. It is worth noting that node sets of underlying graphs
may be different. In this case, we are able to uniform node
sets of these graphs by aligning them to the largest graph
with maximum number of nodes n. Therefore, in the follow-
ing we assume that adjacency matrices for graphs at different
time steps have the same size n × n. In this work, we fo-
cus on evolving the graph attention networks to capture the
dependency relationships across all input graphs and mean-
while explicitly preserve node variation or changing patterns
derived from the temporal graph evolution sequence.

4 The Proposed Method
The proposed approach includes two major parts. First, we
propose to extract temporal node variation pattern similarities
from the respective graph topology evolution sequence based
on the non-negative tensor factorization. Then, node variation
pattern similarities are explicitly incorporated into the graph
evolving attention network learning, where a neural model,
GAEN shown in Fig.2, is proposed to evolve graph attention
network weights across all temporal graphs. Details of the
above processes are illustrated in the following sections.

4.1 Node Variation Pattern Similarity Calculation
Nodes often demonstrate implicit variation patterns as graph
evolves over time [Fournier-Viger et al., 2020]. We are in-
terested in the variation of graph structures, where graph
nodes in the dynamic process of creating and removing con-
nections with neighborhoods could exhibit similar structure
changing patterns. For a given graph Gt at time t ∈ [1, T ],
its current topology structure together with all past topology
structures can be organized in a three-way array or tensor by
St = [A0,A1, · · ·At] ∈ Rn×n×t, where the structural de-
pendencies between nodes are encoded in the frontal slice
St[:: t] ∈ Rn×n and the structure variations of each node vi
are encoded in the respective horizontal slice St[i ::] ∈ Rn×t

along the time axis. Then, as shown in Fig.1 we aim to calcu-
late the pairwise node variation pattern similarities by mod-

eling above structure dependencies and variations simultane-
ously with tensor factorization (TF) [Kolda and Bader, 2009].

TF has been widely utilized to model high-order variable
correlations and further discover temporal variation patterns
of objects [Takeuchi et al., 2017]. In this paper, we con-
sider non-negative TF (e.g., both input and output are non-
negative) based on the PARAFAC model given that its factor-
ization results are deterministic [Kolda and Bader, 2009].
Definition 1 (rank-one): A tensor T ∈ RI1×I2×···×IN of
orderN has rank-one if it can be written as the outer product
(notation ◦) of N vectors, i.e., T = b(1) ◦ b(2) ◦ · · · ◦ b(N) or
Ti1,i2,··· ,iN = b(1)

i1
b(2)i2
· · · b(N)

iN
for all 1 ≤ in ≤ IN .

Formally, TF aims to decompose tensor St ∈ Rn×n×t (t ∈
[1, T ]) into a sum of component rank-one tensors as:

St =

R∑
r=1

er ◦ qr ◦ fr = [[Et,Qt,Ft]], s.t. er, qr, fr ≥ 0 (1)

where R is a parameter denoting the number of latent factors.
Et = [e1, e2, · · · , eR] ∈ Rn×R, Qt = [q1, q2, · · · , qR] ∈
Rn×R and Ft = [f1, f2, · · · , fR] ∈ Rt×R are latent factor
matrices, i.e., combination of rank-one components, where
Et and Qt are equivalent since St is symmetric for undirected
graphs. Et or Qt can be interpreted as that nodes along the
1st or 2nd mode (shown in Fig.1) are conceptually mapped
in a shared space with R latent factors, while Ft reveals the
variation patterns of these latent factors along the time axis
(3rd mode). Then, we further derive the structural variation
patterns H1

t (1st mode) and H2
t (2nd mode) of all nodes as:

H1
t = EtFT

t ,H
2
t = QtF

T
t = EtFT

t (2)

where T denotes transpose. Finally, the pairwise node varia-
tion pattern similarities Ct ∈ Rn×n are computed by:

Ct = softmax(H1
tH2

t

T
) (3)

4.2 Temporal Graph Attention Network Learning
In this part, we incorporate the node variation pattern sim-
ilarities for structure-based graph attention network embed-
ding learning, where the inputs are node features Xt and node
variation pattern similarities Ct for each single graphGt. As-
sume Nvi = {vj ∈ Vt : ei,j ∈ Et} denotes the set of imme-
diate neighborhoods of every node vi in graph Gt, the output
embedding vector hvi

∈ Rh for vi is computed as:

hvi
= ReLU(

∑
vj∈Nvi

αijCt,ijWtXt,j) (4)
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Figure 2: The proposed GAEN model for evolving graph attention networks and embedding learning.

where Xt,j ∈ Rd is the input features of node vj , Wt ∈ Rh×d

is a shared weight transformation applied to each node in
graph Gt, Ct,ij is the variation pattern similarity (e.g., till
time step t) between vi and vj , and ReLU(·) is an activation
function, i.e., ReLU(x) = max(0, x). αij indicates the at-
tention weight or importance of node vj’s features to node vi,
which is computed with a single-layer Feedforward Neural
Network (FNN) parameterized by a ∈ R2h:

αij =
exp(ReLU(aT [WtXt,i||WtXt,j ]))∑

vj∈Nvi
exp(ReLU(aT [WtXt,i||WtXt,j ]))

(5)

where || is the concatenation operation. Note that αij has
been normalized by a softmax over all neighborhoods of vi
which makes αij 6= αji. Similar to the GAT [Veličković et
al., 2017], multi-head attentions can be computed and aver-
aged to stabilize the node embedding learning by:

hvi =
1

K

K∑
k=1

ReLU(
∑

vj∈Nvi

αijCt,ijWk
tXt,j) (6)

where K is the number of attention heads and Wk
t ∈ Rh×d is

a learnable weight parameter associated with the kth attention
head for all nodes in graph Gt.

Based on Eq. (6), we can obtain the embedding space
Ot = {hi}i=1,··· ,n ∈ Rn×h for each graph Gt ∈ G with
preserved static graph structures (e.g., multi-head graph at-
tentions) and temporal node structure variation patterns. Note
that the FNN weight parameter a is shared across all graph
snapshots, and the trainable weights associated with each
single graph snapshot Gt are Wt =

{
Wk

t

}
k=1,··· ,K which

solely lead to varying attention values in Eq. (5) and node
embeddings in Eq. (6) for graph snapshots at different time
steps. Instead of learning Wt for each graph snapshot from
scratch, we propose to evolve the weight learning by taking
the structure discrepancies between adjacent graphs along the
time axis into consideration.

Algorithm 1: Training the GAEN model
Input : Graph sequence G = {G1, · · · , GT } and node

variation patterns C = {C1, · · · ,CT }
Output: Embeddings of each graph Gt : Ot ∈ Rn×h

1 Initialize the number of attention heads K, multi-head
attention weightsW1 and training epoch I

2 for j ∈ [1, I] do
3 O1 ← compute node embeddings based on Eq. 6
4 for t ∈ [2, T ] do
5 for k ∈ [1,K] do
6 Zk

t ← sigmoid(Pk
ZAt + Uk

ZWk
t−1 + Bk

Z)

7 Rk
t ← sigmoid(Pk

RAt + Uk
RWk

t−1 + Bk
R)

8 W̃
k

t ← tanh(Pk
W At + Uk

W (Rk
t ◦Wk

t−1) + Bk
W )

9 Wk
t ← (1− Zk

t ) ◦Wk
t−1 + Zk

t ◦ W̃
k

t

10 Wt ←Wk
t

11 end
12 Oi ← compute node embeddings based on Eq. 6
13 end
14 Minimize the binary cross-entropy loss L in Eq. 8
15 end

4.3 Multi-Head Graph Attention Weight Evolution
As shown in Fig. 2, we use an independent Gated Recurrent
Unit (GRU) to evolve the network weight Wk

t ∈ Wt for each
graph attention head. The input is the adjacency matrix At

for every graph snapshotGt and the hidden state is Wk
t which

evolves between adjacent graph snapshots as:

Wk
t = GRU(At,Wk

t−1) (7)
The main idea for the design is to learn the structure differ-
ence of the current graph Gt against its previous graph Gt−1,
thereby updating the attention network weights for Gt.

4.4 Algorithm Training and Explanation
To train the graph attention weight evolving and embedding
learning modules, nodes are forced to have similar embed-
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ding with their neighborhoods for every single graph. Similar
to [Sankar et al., 2019], the set of neighborhoods N t

vi
for

each node vi in the graph at time t are obtained by perform-
ing fixed-length random walks on Gt, i.e., nodes within the
same random walk are neighborhoods. Finally, we minimize
the similarities between nodes with their neighbors (positive
samples) through minimizing a binary cross-entropy loss:

L =
T∑

t=1

n∑
i=1

(
∑

vj∈N t
vi

− log(sigmoid(〈hvi
, hvj
〉))

−β
∑

v
′
j∈Pt

vi

log(1− sigmoid(〈hvi
, hv

′
j
〉)))

(8)

where 〈·〉 represents the inner product, Pt
vi

is a set of negative
samples that are not neighbored with node vi, and β is set to
balance the positive and negative samples.

The detailed training procedure of GAEN is summarized
in Algorithm 1. The weight evolving process based on GRU
(Eq. 7) is completed through lines 6 and 9, where Pk

· ∈
Rh×n, Uk

· ∈ Rh×h and Bk
· ∈ Rh×d are learnable GRU

weights for the kth graph attention head. The above pro-
cess requires that the column dimension of the GRU input
(At ∈ Rn×n) matches the number of node features d. For
graphs without content features, graph features can be viewed
as a diagonal matrix where d equals to n. In other situations
where d 6= n, we introduce an additional learnable weight
matrix Pk

A ∈ Rn×d to transform the input as:

A
′

t = AtPk
A (9)

5 Experiments
This section evaluates GANE using link prediction and node
classification tasks based on the learned network embeddings.

Datasets. We adopt four temporal networks Enron [Klimt
and Yang, 2004], UIC [Panzarasa et al., 2009], Primary
School [Stehlé et al., 2011] and DBLP1 summarized in Ta-
ble 1. Each dataset is composed of a set of temporal graph
snapshots at multiple time steps. Enron and UIC are commu-
nication networks, where in Enron the communication links
are email interactions between core employees and in UIC
the links represent messages sent between online social users.
Primary School represents the face-to-face contact networks,
where the network at each time step was constructed from the
interactions among students and teachers with an interval of
20 consecutive seconds. There are 10 student classes and 1
teacher class. DBLP represents co-author networks between
authors from 5 research areas. The features are extracted from
the titles and abstracts of authors’ publications.

Compared Methods. We compare against five strong base-
line methods, including GCN [Kipf and Welling, 2017] and
GAT [Veličković et al., 2017] that perform embedding learn-
ing on static graph snapshots, GAT-GRU which uses GAT
to learn different snapshots with capturing the network de-
pendencies based on GRU, EvolveGCN [Pareja et al., 2020]

1https://dblp.uni-trier.de

# of Enron UIC Primary School DBLP
Nodes 143 1890 242 6606
Edges 2347 16822 20019 42815

Features − − − 100
Time steps 10 13 40 10

Labels − − 11 5

Table 1: Statistics information of the temporal networks.

Figure 3: The node variation patterns on Primary School.

which uses GCN to learn each single snapshot and meanwhile
evolves weights between GCN networks based on the GRU,
and DySAT [Sankar et al., 2019] which learns network em-
beddings by jointly employing self-attention layers along two
dimensions: structural neighborhood and temporal dynamics.
In addition, we develop a variant method GAENbasic without
explicitly incorporating the pairwise node pattern similarities
compared with GAEN.

Tasks and Experimental Setup. We evaluate the link pre-
diction performance on all four datasets using Accuracy
(Acc) and Area Under the Curve (AUC) metrics. We train an
external logistic regression classifier to predict the existence
of links at time t based on the embedding features learned
from previous networks up to time t−1. We compare the node
classification accuracy (Acc) on two datasets Primary School
and DBLP as they have label information. Similarly, we train
a logistic regression classifier to classify nodes into different
categories based on embedding features learned from previ-
ous networks up to time t. For link prediction, 20% of the
links are used as validation to fine-tune the hyper-parameters,
and the remaining are split as 25% and 75% for training and
test. For node classification, 20% of nodes are used for val-
idation. Then, 30% and 70% of the remaining nodes are re-
spectively used for training. To train the model, the number
of attention heads is set as 8, the hidden dimension in GRU
networks is set as 128 and the learning rate is set as 1e-4. For
detailed parameter settings, please refer to the GitHub link2.

5.1 Link Prediction
Table 2 reports the latest time step link prediction perfor-
mance of different methods. We conclude the following two
main observations. 1) GAEN achieves better Acc and AUC
performance than other methods on all four datasets. This
is mainly attributed to two reasons: First, GAEN is effi-
cient to capture the inter-dependency relationships between
nodes across networks at different time steps, which can
be observed from that GAENbasic generally performs better
than other similar models, including DySAT, EvolveGCN and

2https://github.com/codeshareabc/GAEN
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Datasets Enron UIC Primary School DBLP
Metrics Acc AUC Acc AUC Acc AUC Acc AUC

GCN [Kipf and Welling, 2017] 0.7575 0.8077 0.7384 0.7893 0.8910 0.9395 0.7746 0.8025
GAT [Veličković et al., 2017] 0.7417 0.7983 0.7690 0.7702 0.7927 0.8709 0.9125 0.9339

GAT-GRU 0.7016 0.7514 0.7329 0.7701 0.8865 0.9481 0.8872 0.9360
EvolveGCN [Pareja et al., 2020] 0.7142 0.7759 0.7350 0.7891 0.8877 0.9478 0.8235 0.8678

DySAT [Sankar et al., 2019] 0.7930 0.8635 0.7324 0.8215 0.9064 0.9487 0.9141 0.9502
GAENbasic 0.8076 0.8950 0.7282 0.7901 0.9098 0.9532 0.9074 0.9607

GAEN 0.8144 0.9077 0.7443 0.8409 0.9106 0.9642 0.9231 0.9587

Table 2: Link prediction results on Enron, UIC, Primary School, and DBLP.

Datasets Primary School DBLP
Train ratios 30% 70% 30% 70%

GCN 0.4705 0.5038 0.5662 0.5671
GAT 0.4823 0.5115 0.5331 0.5430

GAT-GRU 0.4705 0.5038 0.5883 0.6103
EvolveGCN 0.6073 0.6654 0.6564 0.6657

DySAT 0.6311 0.6591 0.6369 0.6702
GAENbasic 0.5900 0.6423 0.6676 0.6788

GAEN 0.6464 0.6731 0.6784 0.6918

Table 3: Node classification results on Primary School and DBLP.

Figure 4: Link prediction performance at various time steps.

GAT-GRU. Second, GAEN performs better than GAENbasic

in most cases, which indicates that the pairwise node pat-
tern similarities explicitly preserved in GAEN are helpful to
enhance the node relation modeling, i.e., Fig. 3 shows the
visualization of node structure variation patterns and the re-
spective node pattern similarities on primary school; 2) Com-
pared with EvolveGCN that evolves the learning weights of
GCN by considering the discrepancies of node features be-
tween adjacent graph snapshots, GAENbasic adopts GAT and
evolves the GAT model weights by considering the discrepan-
cies of node structures between adjacent graph snapshots. Ta-
ble 2 shows that GAENbasic outperforms EvolveGCN, possi-
bly because that graph snapshots are different in their topo-
logical structures and it is essential to learn their structural
discrepancies while evolving the learning weights.

To further evaluate the three methods, EvolveGCN,
GAENbasic, and GAEN, specifically designed to evolve the
learning weights, we compared their link prediction perfor-
mance at various time steps shown in Fig. 4. We can observe
that GAENbasic performs better on Enron and demonstrates
higher robustness on UIC when compared with EvolveGCN.
In addition, GAEN is generally superior to GAENbasic, con-
firming the benefits of explicitly extracting and preserving the
node pattern similarities in this paper.

Figure 5: Node classification performance at various time steps.

5.2 Node Classification
Table 3 reports the node classification performance on the
two labeled networks, where the node classification accuracy
is much lower compared with the respective link prediction
results in Table 2. This is because the compared methods
are trained to force nodes to have similar embedding with
their linked neighborhoods (e.g., Eq. 8), therefore the train-
ing scheme would bias the link prediction task. We can ob-
serve that GAEN outperforms all baseline methods, which
asserts the benefits of preserving temporal node pattern sim-
ilarities in the model. Similarly, the comparison results in
Fig.5 demonstrate the effectiveness and robustness of GAEN
for evolving graph attention networks.

6 Conclusion
Networked systems often work in evolving environments
with changing network topology over time. It is beneficial
to capture underlying dynamics for network learning, espe-
cially when the nodes in the evolution process demonstrate
strong relevance to the change of network structures. In
this paper, we advanced graph neural networks to explicitly
incorporate node variation pattern similarities for enhanced
node embedding learning. We proposed a novel framework
with evolving graph attention networks across different time
points, where a GRU network is used for progressive multi-
head attention weights learning by taking node structure dif-
ferences between adjacent networks into consideration. Ex-
periments and comparisons, using link prediction and node
classification, demonstrated the effectiveness of the proposed
approach against several baseline methods.
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