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Abstract
Most sequential recommender systems (SRSs) pre-
dict next-item as target for each user given its pre-
ceding items as input, assuming that each input is
related to its target. However, users may uninten-
tionally click on items that are inconsistent with
their preference. We are the first to empirically ver-
ify that SRSs can be misguided with such unreli-
able instances (i.e. targets mismatch inputs). This
inspires us to design a novel SRS By Eliminating
unReliable Data (BERD) guided with two observa-
tions: (1) unreliable instances generally have high
training loss; and (2) high-loss instances are not
necessarily unreliable but uncertain ones caused
by blurry sequential patterns. Accordingly, BERD
models both loss and uncertainty of each instance
via a Gaussian distribution to better distinguish un-
reliable instances; meanwhile an uncertainty-aware
graph convolution network is exploited to assist
in mining unreliable instances by lowering uncer-
tainty. Experiments on four real-world datasets
demonstrate the superiority of our proposed BERD.

1 Introduction
Sequential recommender systems (SRSs) generally predict
each user’s next-item given the preceding (and succeeding)
item sequence [Pei et al., 2017; Yuan et al., 2020]. Thereby,
a training instance of SRSs is typically constructed by an in-
put item sequence and its next-item as target. Such training
procedure implicitly assumes that each input is related to its
target, which might not always hold. For example, we may
accidentally click on songs or videos that we are not inter-
ested in, or receive recommendations from friends who are
inconsistent with our preference. Such behaviors could cause
unreliable instances (i.e. targets mismatch inputs), which has
been rarely investigated by previous studies.

To fill this gap, we first verify the existence and severity
of unreliable instances by evaluating seven state-of-the-art
SRSs. The results unveils that SRSs trained without unre-
liable data detected by our proposed data reliability measure-
ment reach higher accuracy with a maximum 5.71% lift on
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Figure 1: Classification of instances based on loss and uncertainty.

NDCG, which firmly emphasizes the necessity of eliminating
unreliable data for performance-enhanced SRSs. Based on
these, we further conduct analysis and gain two insightful ob-
servations: (1) unreliable instances are prone to have higher
training loss; and (2) high-loss instances are not necessarily
unreliable. They can also be uncertain instances caused by
blurry patterns of input sequences that are correlated with un-
certain users whose preferences shift frequently, or uncertain
items that co-occur with various subsequent items.

Next, we exploit both loss and uncertainty as guidance to
better distinguish unreliable instances, as depicted in Fig. 1.
First, instances with low loss and low uncertainty can be kept
as reliable ones. Second, instances with high loss but low
uncertainty can be cautiously removed as unreliable ones.
Third, instances with high loss and high uncertainty are ei-
ther uncertain & reliable or uncertain & unreliable instances.
Hence, an SRS is expected to be capable of lowering the un-
certainty, so as to identify and handle unreliable instances
as indicated by the arrows in Fig. 1. Lastly, low loss and
high uncertainty are conceptually contradictory, as high un-
certainty is generally caused by blurry patterns of input se-
quences which are hard to fit with high training loss.

However, there are two challenges for achieving such ef-
fects: (1) how to accurately model loss and uncertainty of
per-instance; and (2) how to mine unreliable instances from
high uncertainty ones. To this end, we propose a novel frame-
work BERD that enhances SRS By Eliminating unReliable
Data. Specifically, BERD models the input of each instance
as a Gaussian distribution, with its mean representing the
extracted dynamic user preference for loss calculation, and
its covariance representing the uncertainty of the extracted
preference. An extended objective function is designed to
properly endow uncertainty to every training instance. Mean-
while, we equip BERD with a novel uncertainty-aware graph
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convolution network (UGCN) so as to reduce the uncertainty
of instances with blurry sequential patterns. As such, un-
certain instances (either reliable or unreliable) can be clearly
identified and properly handled as depicted in Fig. 1.

In sum, our contributions are threefold: (1) we are the first
to define unreliable instances (i.e. targets mismatch inputs) in
SRSs; by verifying their presence and severity, we highlight
the necessity of eliminating them for performance-enhanced
SRSs; (2) we conduct analysis gaining two insightful obser-
vations, which inspire us to design BERD to detect unreli-
able instances by modelling per-instance loss and uncertainty
via a Gaussian distribution. Moreover, a novel UGCN facili-
tates to mine unreliable instances from high uncertainty ones
by lowering instance uncertainty; and (3) extensive experi-
ments on four real-world datasets demonstrate the superiority
of BERD. Additionally, detailed ablation study further con-
firms the effectiveness of each module of BERD.

2 Related Works
Early SRSs adopt Markov Chains to model users’ dynamic
preference, such as FPMC [Rendle et al., 2010]. Recently,
deep learning advances are more prevalent. For example,
Caser [Tang and Wang, 2018] and GRU4Rec [Cho et al.,
2014] exploit CNN and RNN to model users’ sequential be-
haviours, respectively. Later, researchers find it is essential to
highlight relevant input items given the target. Typical works
include NARM [Li et al., 2017], RUM [Chen et al., 2018],
SASRec [Kang and McAuley, 2018] and GARG [Wu et al.,
2020], which adopt attention mechanisms; MCPRN [Wang et
al., 2019] proposes a multi-channel purpose routing network;
HRL [Zhang et al., 2019] leverages the hierarchical reinforce-
ment learning. BERT4Rec [Sun et al., 2019] and GRec [Yuan
et al., 2020] verify the benefits of bidirectional context for dy-
namic preference modelling. Besides, HGN [Ma et al., 2019],
MA-GNN [Ma et al., 2020] and M3R [Tang et al., 2019] re-
veal the usefulness of modelling long-term user interests.

Previous works, however, posit each input sequence as a
whole should be related to its target, thus fail to handle un-
reliable instances (i.e. targets mismatch inputs). Although
several studies have investigated noisy ratings [Burke et al.,
2006; Li et al., 2019], they are mainly designed for the rating
prediction task with static preference and beyond our scope.

3 Reliability Analysis on Data Instances
In SRSs, each user u chronologically interacts with a list of
items Su = [iu1 , i

u
2 , . . . , i

u
|Su|], where ium is the m-th item u

interacts with (1 ≤ m ≤ |Su|). During training, an SRS aims
to predict u’s next item as target, given her id and L preceding
items as input. Formally, the training instance for u to pre-
dict her t-th interaction is denoted by an input-target pair <
{u, Su

t,L}, iut >, where Su
t,L = [iumax(1,t−L), . . . , i

u
t−2, i

u
t−1].

The instance with target iut mismatching its input Su
t,L is

called an unreliable instance.

Measurement of Data Reliability
To quantify the reliability of each instance, i.e., the matching
degree between inputs and targets, we propose a data reliabil-
ity measurement with the aid of item attributes (e.g., category

and tag) and item co-occurrence relation. Assume there are
A attributes and N items. Each item i is characterized by
two tf-idf vectors qai ∈ RA and qci ∈ RN , treating attributes
and co-occurred items as terms, respectively. Taking instance
< {u, Su

t,L}, iut > as an example, we define the similarity be-
tween Su

t,L and iut as the averaged cosine similarity between
iut and each item within Su

t,L, given by,

sima(Su
t,L, i

u
t ) =

1

|Su
t,L|

∑
j∈Su

t,L

qaj · qaiut
||qaj || ||qaiut ||

, (1)

where · indicates vector dot product; || · || denotes the L2

norm; sima(·) indicates the similarity measured by item at-
tributes; simc(·) can be analogically calculated with qci . We
then sample a set of negative items I−u (I−u ∩ Su = ∅) and
rank the target iut among the negative ones to get the relative
matching degree between the targets and inputs:

ra =
1

|I−u |

∑
j−∈I−u

[
sima(Su

t,L, i
u
t )− sima(Su

t,L, j
−)
]
+
, (2)

where [x]+ is an indicator function whose value is 1 with x >
0, and 0 otherwise; ra indicates the relative matching degree
between the target and its input w.r.t. attributes, for example,
ra = 0.7 means the target matches the input better than 70%
of negative items. rc holds similar calculation and meaning
w.r.t. item co-occurrence. The measurement classifies the
instances with both ra and rc lower than 0.9 as unreliable.

Existence and Severity of Unreliable Data
To verify the existence and severity of unreliable instances,
we evaluate the performance of seven state-of-the-art SRSs
on four real-world datasets (see Table 2) under two views
w.r.t. the training process: Origin – directly uses the original
training instances; Filter – removes the unreliable data from
training sets based on our proposed reliability measurement,
where the column ‘U-Ratio’ in Table 2 shows their respective
percentage w.r.t. the total training instances. The final recom-
mendation results are reported in Fig. 4, where both views are
also considered during test (i.e. Test-Origin and Test-Filter).
We can observe that SRSs trained with filtered datasets (i.e.
Train-Filter) consistently reach higher accuracy with a maxi-
mum lift of 3.88%, 5.71% on NDCG under both test views,
respectively. This validates the existence and severity of unre-
liable instances, as well as shows the necessity of eliminating
them for performance-enhanced SRSs.

Characteristics of Unreliable Data
Although the eliminated instances are generally unreliable
based on our proposed reliability measurement, the reliance
on high-quality auxiliary information restricts its generality.
Therefore, we further conduct an in-depth analysis on the de-
tected unreliable instances, whereby two insightful observa-
tions are noted. These help us discover intrinsic and distinc-
tive characteristics of unreliable instances.

Obs. 1. Unreliable instances generally have high training
loss; but high-loss instances are not necessarily unreliable.

Figs. 2(a-b) show the loss distribution of reliable (blue bars)
and unreliable (red bars) instances at different epochs when
training Caser on ML-1M and CD. Similar trends can be
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(a) ML-1M (b) CD (c) ML-1M (d) ML-1M User (e) ML-1M Item

Figure 2: (a-b) are the loss distribution of reliable (blue) and unreliable (red) instances at different epochs when training Caser on ML-1M
and CD, respectively; (c) shows the uncertainty value of user (blue) and item (red) on ML-1M; (d-e) depicts the loss distribution of reliable
instances on ML-1M, where yellow (blue) bars correspond to instances that are related (unrelated) to uncertain users (d) or items (e).

found with other SRSs and datasets. We note that (1) the loss
of unreliable instances is generally higher than that of reliable
ones; and (2) the high-loss area also contains blue bars, sug-
gesting that high-loss instances are not necessarily unreliable.
Obs. 1 implies that modelling per-instance loss is helpful but
not sufficient for distinguishing unreliable instances.
Obs. 2. High-loss also can be caused by reliable but uncer-
tain instances with blurry sequential patterns. Such patterns
are correlated with uncertain users or items.
In SRSs, there are always uncertain users whose preferences
shift frequently, or uncertain items that are complex and co-
occur with various succeeding items. The instances whose
inputs are associated with such uncertain users/items could
have blurry sequential patterns, thus being hard to fit and
leading to high training loss. Formally, the uncertainty of a
user (or an item) can be measured by the ratio of unreliable
instances over the total number of instances the user (or item)
holds. A higher ratio suggests a higher uncertainty. Their ex-
istence can be reflected in Fig. 2(c), where the uncertainty of
around 6% users and 4% items is higher than 0.3. We then
plot the training loss of reliable instances on ML-1M, where
yellow bars indicate instances that are related to these un-
certain users (Fig. 2(d)) or items (Fig. 2(e)), while blue bars
hold the opposite case. We note that yellow bars are gener-
ally distributed to the right of blue bars, indicating that uncer-
tain users and items do increase the loss of reliable instances,
confirming that uncertain users/items bring uncertainty into
sequential patterns, thus leading to high training loss.

To summarize, the two observations suggest that high loss
can be caused by either unreliable or uncertain instances,
which inspire us to leverage both training loss and uncertainty
to help distinguish unreliable instances as depicted by Fig. 1
, instead of relying on side information.

4 The Proposed BERD
In this section, we propose a novel neural framework – BERD
– that boosts the recommendation performance of SRSs By
Eliminating unReliable Data.

4.1 Framework Overview
Fig. 3 depicts the overall framework of our proposed BERD,
mainly composed of four modules, including (1) Sequence
Modelling with UGCN – it extracts input sequential patterns
with reduced uncertainty on the base of uncertainty-aware

Figure 3: Illustration of our proposed BERD framework.

graph convoluntion network; (2) Instance Uncertainty Mod-
elling – it models input sequential patterns as a Gaussian
Distribution, with its mean representing the extracted dy-
namic user preference, and its covariance representing the
uncertainty of the extracted preference (i.e. instance uncer-
tainty); (3) Extended Objective Function – it helps endow
proper uncertainty to every training instance by extending
the conventional recommendation objective with a sampled
loss and an uncertainty regularizer; and (4) Unreliable In-
stance Filter – it eliminates unreliable instances with high loss
but low uncertainty. Among these modules, Instance Uncer-
tainty Modelling and Extended Objective Function accurately
model the training loss and uncertainty of each instance; Se-
quence Modelling with UGCN endeavors to mine unreliable
instances from high loss & high uncertainty ones by reduc-
ing the instance uncertainty. As a result, the instances with
high loss but low uncertainty can be cautiously removed as
unreliable instances by the Unreliable Instance Filter.

4.2 Sequence Modelling with UGCN
To extract more accurate sequential patterns from {u, Su

t,L}
(input), it is fundamental to get accurate user and item embed-
dings, especially for uncertain users and items which blurs in-
put sequential patterns. To this end, we propose UGCN ensur-
ing that users and items with high uncertainty will contribute
less to their neighbors but be compensated more. Formally,
we build a graph that includes users and items as nodes, while
the edges are constituted by user-item interaction and item-
item adjacency relationships. Each user u (or item i) is ini-
tially encoded as an embedding vector e0u ∈ Rd (or e0i ∈ Rd)
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and an uncertainty factor fu (or fi), where d denotes the
embedding size. Take user (node) u as an example, UGCN
propagates u’s embedding by restricting that her neighboring
nodes with higher uncertainty contribute less:

eku =
∑

j∈Mu

1− σ(fj)√
|Mu|

√
|Mj |

ek−1
j , (3)

where eku(k ≥ 1) is the refined embedding of u after k layers’
propagation; Mu is the set of items u has interacted with;
Mj is the set of users who have interacted with item j and
the adjacent items of j; σ(·) is the sigmoid function to re-
scale the uncertainty factors into (0, 1); thus 1− σ(·) ensures
that high-uncertainty neighbors affect u less. After K layers’
propagation, we aggregate the embeddings obtained at each
layer to form the final representation of u:

eu = (1− σ(fu))e0
u + σ(fu)

∑K

k=1

1

k + 1
eku, (4)

where e0u and eku(k ≥ 1) contain the information from u and
her neighbors, respectively. Thus their weights 1−σ(fu) and
σ(fu) ensure that u’s final representation eu will be compen-
sated more by u’s neighbors if u has high uncertainty. Sim-
ilarly, item i ∈ Su

t,L is also embedded into ei according to
Eqs. 3 and 4. As such, UGCN restricts the propagation of
uncertain information while encourages the spreading of cer-
tain signals between users and items. This facilitates to pro-
duce accurate representations especially for uncertain users
and items, allowing Sequence Modelling to extract sequen-
tial patterns with lower uncertainty. In particular, we stack the
item embedding ei, i ∈ Su

t,L into matrixEu
t ∈ RL×d with si-

nusoidal positional encoding [Vaswani et al., 2017], which is
then fed into a multi-head self-attention network [Vaswani et
al., 2017] to extract u’s short-term interest:

MH(Eu
t ) = Concat(head1, head2, ..., headh)W

O,

headj = softmax(
(Eu

tW
Q
j )(E

u
tW

K
j )>√

d/h
)Eu

tW
V
j ,

(5)

where h is the number of heads; WQ
j ,W

K
j ,W

V
j ∈ Rd×d/h

and WO ∈ Rd×d are learnable projection matrices. The L-
th row of MH(Eu

t ) ∈ RL×d encodes u’s short-term interest,
which is further concatenated with her general preference to
denote the sequential pattern of user u at time step t:

su,t = Concat(eu,MH(Eu
t )L). (6)

4.3 Instance Uncertainty Modelling
The obtained sequential pattern su,t merely represents user
u’s preference at time step t. In our study, we aim to addition-
ally model the uncertainty of the extracted preference, which
is used to represent instance uncertainty and better distinguish
unreliable instances. To this end, Instance Uncertainty Mod-
elling aims to model u’s preference at time step t as the mean
µu,t of a Gaussian Distribution, while its covariance Σu,t

represents the uncertainty of the extracted preference (i.e. in-
stance uncertainty). As modeling a full covariance matrix is
expensive, we constrain it to be diagonal,

µu,t =W 1su,t + b1,

Σu,t = ReLU(W 2su,t + b2)σ(avg(fu, fiu
t−L

, ..., fiut−1
)),

(7)

where W 1,W 2 ∈ R2d×d and b1, b2 ∈ Rd are trainable pa-
rameters; ReLU(·) is the activation function [Nair and Hin-
ton, 2010] to restrict the values of Σu,t to be nonnegative;
avg(·) is the average function encoding user/item uncertainty
into instance uncertainty. Next, we quantify the instance un-
certainty hu,t (i.e. the uncertainty of u’s preference at time
step t) as the entropy of a multivariate Gaussian distribution,

hu,t =
1

2

∑d

j=1
log(2πe(Σu,t)j), (8)

where j indices each dimension of Σu,t.

4.4 Extended Objective Function
To accurately model recommendation loss and uncertainty of
each instance, we expand the conventional recommendation
objective with a sampled loss and an uncertainty regularizer.
Specifically, the conventional objective encourages the model
to rank target item iut higher than the sampled negative item
i′ by maximizing the gap between their predicted scores:

Lrec =
∑
u

∑
iut ∈Su

∑
i′ /∈Su

−log(σ(µ>u,teiut − µ
>
u,tei′ )). (9)

To seamlessly accommodate the learning of instance uncer-
tainty, we introduce an additional sampled loss, which aims
to push Z samples from N (µu,t,Σu,tI) to be close to the
target item iut and far away from the negative item i′:

Lsam = λ
∑
u

∑
iut ∈Su

∑
i′ /∈Su

1

Z

Z∑
z=1

−log(σ(pzu,t>eiut − p
z
u,t
>ei′ )), (10)

where λ balances the importance of the sampled loss; pzu,t
denotes the embedding of the z-th sample, generated with a
reparameterization trick [Kingma and Welling, 2014]:

pz
u,t = µu,t + Σ

1
2
u,t � ε, ε ∼ N (0, I), (11)

where� is the element-wise multiplication. However, simply
training with Lrec and Lsam is not sufficient. Specifically,
large covariance will enforce the generated samples far away
from each other based on Equ. 11, thus leading to high Lsam

according to Equ. 10. Hence, during optimization, the model
will instinctively incentivize all covariance to be zero for a
reduced Lsam. To avoid such trivial solution, we constrain
the model to maintain certain degree of instance uncertainty
with an uncertainty regularizer:

Lreg =
∑

u

∑
iut ∈Su

max(0, γ − hu,t), (12)

where γ is used to control the degree of uncertainty to main-
tain, and we thus do not introduce additional regularization
coefficients. Accordingly, the final objective function is,

argmin
Θ
L = Lrec + Lsam + Lreg, (13)

where Θ denotes the parameter set of BERD.
Minimizing L encourages BERD to properly endow high

uncertainty to uncertain instances, and vice versa. The ra-
tionale behind is that – for certain & reliable instances, their
mean vectors (e.g. µu,t) are generally close to target vec-
tors (e.g. eiut ). Therefore, reducing their uncertainty can ef-
fectively help decrease Lsam as the generated sample (e.g.
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Datasets Metrics BPRMF FPMC GRU4Rec Caser SASRec BERT4Rec GC-SAN HGN BERD Improve

ML-1M
HR@10 0.5861 0.6319 0.6453 0.6503 0.6673 0.6958 0.6639 0.6935 0.7437∗∗ 6.88%
NDCG@10 0.3341 0.4126 0.4215 0.4251 0.4359 0.4811 0.4217 0.4769 0.5125∗∗ 6.53%
MRR 0.2747 0.3432 0.3549 0.3613 0.3641 0.4212 0.3621 0.4172 0.4517∗∗ 7.24%

Steam
HR@10 0.6367 0.6764 0.7159 0.7185 0.7358 0.7468 0.7224 0.7523 0.8022∗∗ 6.63%
NDCG@10 0.3540 0.4263 0.4567 0.4608 0.4636 0.4694 0.4604 0.4874 0.5458∗∗∗ 11.98%
MRR 0.2887 0.3634 0.3901 0.3935 0.3934 0.3962 0.3930 0.4176 0.4757∗∗∗ 13.91%

CD
HR@10 0.5382 0.6245 0.5493 0.6184 0.6464 0.6543 0.6377 0.6623 0.6995∗∗ 5.62%
NDCG@10 0.3213 0.3936 0.3185 0.3889 0.4059 0.4135 0.3943 0.4202 0.4555∗∗ 8.40%
MRR 0.2771 0.3473 0.2676 0.3340 0.3421 0.3507 0.3397 0.3581 0.4071∗∗∗ 13.68%

Elect
HR@10 0.2554 0.2990 0.2637 0.2893 0.3174 0.3290 0.3054 0.3346 0.3601∗∗ 7.62%
NDCG@10 0.1372 0.1543 0.1318 0.1457 0.1706 0.1771 0.1601 0.1839 0.2023∗∗∗ 10.01%
MRR 0.1140 0.1358 0.1163 0.1282 0.1493 0.1544 0.1397 0.1609 0.1763∗∗∗ 9.57%

Table 1: Performance comparison of all models with original training and test sets, where the best performance is boldfaced and the runner
up is underlined. Improve means the relative improvement of BERD over the runner up. Statistical significance of pairwise differences of
BERD vs. the runner up is determined by a paired t-test (∗∗ for p ≤ 0.01 and ∗∗∗ for p ≤ 0.001).
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Figure 4: Performance of SRSs on original and filtered datasets w.r.t. NDCG@10.

pzu,t) will be concentrated around the target. For certain &
unreliable instances, their input is certain with salient sequen-
tial patterns as certain & reliable ones, thus their uncertainty
can be collaboratively reduced. For uncertain instances, their
mean vectors are normally far away from target vectors, thus
lowering their uncertainty cannot ensure a reducedLsam. Re-
call that Lreg is introduced to maintain certain degree of un-
certainty. Hence, the model has to allocate high uncertainty
to uncertain instances, as it is a smarter way to minimize L.

4.5 Unreliable Instance Filter
Till now, we have obtained the recommendation loss Lrec

(Equ. 9) and uncertainty hu,t (Equ. 8) for each instance from
the Instance Uncertainty Modelling and Extended Objective
Function; meanwhile, the total number of uncertain instances
is comprised by the Sequence Modelling module via UGCN.
Next, we remove these unreliable instances with the Unreli-
able Instance Filter. Specifically, in each epoch, we rank all
the instances according to their Lrec and hu,t in a descend-
ing order, respectively. Then, the instances ranked at top α of
Lrec and bottom half of hu,t are considered as unreliable in-
stances, and their gradient will not be backpropagated to the
model parameters in this epoch.

5 Experiments and Analysis
Datasets. We adopt four datasets varying w.r.t. domain, size,
sparsity level, and ratio of unreliable data, as shown in Ta-
ble 2. ML-1M [Harper and Konstan, 2015] is a popular dataset
for movie recommendation. Steam [Kang and McAuley,
2018] is a game recommendation benchmark collected from
Steam. CD and Elect are product review datasets crawled

Datasets #User #Item #Instance Density U-Ratio Attribute (Auxiliary Info)

ML-1M 6,040 3,416 925,542 5.253% 13.45% actor,country,director,genre,tag
Steam 60,575 5,970 3,903,109 1.079% 7.34% publisher, tag, genre, developer
CD 12,871 10,078 209,159 0.161% 5.79% category
Elect 22,502 10,649 201,973 0.084% 10.68% category

Table 2: Statistics of the datasets, where the column ‘U-ratio’ indi-
cates the respective percentage of unreliable instances.

from Amazon [McAuley and Leskovec, 2013] for cd and elec-
tronics, respectively. Following [Huang et al., 2018], we dis-
card inactive users with fewer than 7 interactions.
Baselines. BPRMF [Rendle et al., 2009] is a traditional matrix
factorization model with a pairwise ranking loss; FPMC [Ren-
dle et al., 2010] is a classic SRS that combines matrix fac-
torization and Markov Chains; GRU4Rec [Hidasi et al.,
2016] and Caser [Tang and Wang, 2018] adopt RNN and
CNN to extract users’ dynamic preferences, respectively;
SASRec [Kang and McAuley, 2018] and GC-SAN [Xu et al.,
2019] use attention to highlight salient input items, while GC-
SAN additionally adopts GNN to obtain accurate item rep-
resentations; BERT4Rec [Sun et al., 2019] considers bidi-
rectional context to model users’ dynamic preferences; and
HGN [Ma et al., 2019] applies a hierarchical gating network
to fuse long-term interest for dynamic preference modelling.
Evaluation Protocol. We follow the same evaluation proto-
col as in [Sun et al., 2019]. To be more specific, for each
user, we split the last two interactions (instances) into vali-
dation and test sets, respectively, while the rest are used for
training. To improve the test efficiency, we pair each target
item in the test set with 100 negative items that the user has
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Figure 5: Effect of the unreliable filter ratio α and sample size Z.
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Figure 6: Effect of sampled loss weight λ and uncertainty margin γ.

not interacted with, and rank the target item among the 101
items. The negative items are sampled according to the distri-
bution of item popularity. HR, NDCG and MRR are adopted
to evaluate the ranking quality. Generally, higher metric val-
ues indicate better ranking performance.
Parameter Settings. We adopt Xavier [Glorot and Bengio,
2010] initializer and Adam [Kingma and Ba, 2015] optimizer
with d = 50; the learning rate η = 0.01 with batch size of
8192; the weight of sampled loss λ = 0.01 and uncertainty
margin γ = 1; the number of propagation layers K = 2; the
input length L = 5; the sample size Z = 4; the filter ratio
α = 0.05 for Steam and CD, and α = 0.1 for ML-1M and
Elect; the head number of self-attention is set to 2.
Overall Comparison. Table 1 shows the performance of all
methods, where several major findings are noted: (1) BPRMF
performs the worst among all methods as it fails to model se-
quential behavior; (2) deep learning based SRSs (e.g., SAS-
Rec) generally achieves better performance than conventional
SRSs (i.e. FPMC); (3) the fact that SASRec and GC-SAN
are superior to GRU4Rec and Caser implies the usefulness of
highlighting relevant input items with attention mechanism;
(4) BERT4Rec and HGN are the best baselines, indicating
that considering bidirectional context and long-term prefer-
ence assists in reducing the negative impact of unreliable in-
stances; and (5) BERD consistently achieves the best perfor-
mance, demonstrating its superiority against all the counter-
parts. Moreover, BERD trained under Train-Origin view de-
feats all baselines under the Train-Filter view as depicted in
Fig. 4, which further confirms that eliminating unreliable in-
stances w.r.t. recommendation loss and uncertainty via our
end-to-end BERD is more efficient than the heuristic reliabil-
ity measurement.
Ablation Analysis. To examine the efficacy of each mod-
ule of BERD, six variants are compared as shown in Table 3.
First, (a) without uncertainty modelling is significantly sur-
passed by (f) – our final BERD, verifying the necessity of
modelling both loss and uncertainty to eliminate unreliable
data. Second, (b) abandons uncertainty regularizer and per-
forms closely to (a), as it fails to allocate uncertainty properly.
Third, (c) replaces UGCN with a classic GCN; (d-e) enhance

Variants of BERD ML-1M CD
HR@10 NDCG@10 HR@10 NDCG@10

(a) UGCN+Lrec 0.7225 0.4913 0.6772 0.4238
(b) UGCN+Lrec+Lsam 0.7246 0.4942 0.6825 0.4267
(c) GCN+Lrec+Lsam+Lreg 0.7312 0.5007 0.6849 0.4372
(d) GCNp+Lrec+Lsam+Lreg 0.7359 0.5053 0.6916 0.4489
(e) GCNf +Lrec+Lsam+Lreg 0.7395 0.5066 0.6927 0.4501
(f) UGCN+Lrec+Lsam+Lreg 0.7437 0.5125 0.6995 0.4555

Table 3: Ablation analysis on BERD.

Figure 7: Visualization of instances at different epochs on ML-1M.

GCN with the propagation (Equ. 3) and fusion (Equ. 4) op-
eration of UGCN, respectively. The performance comparison
among (c-f) firmly validates the superior design of UGCN.
Hyper-parameters Analysis. The filter ratio α, sample size
Z, sampled loss weight λ and uncertainty margin γ are four
vital hyper-parameters in BERD. Their impacts are illustrated
by Figs. 5 and 6, which indicate that the best choice for α
is around 0.05∼0.10 depending on the datasets; Z > 3 is
sufficient to help reach good performance; the optimal setting
for λ ranges from 0.01 to 0.1; and BERD is less sensitive to
γ in comparison with other hyper-parameters.
Visualization. Fig. 7 depicts the instance distribution w.r.t.
Lrec (Equ. 9) and hu,t (Equ. 8) at different training epochs on
ML-1M, where the red points denote unreliable instances. As
the epoch increases from 1 to 50, the ratio of detected unreli-
able instances climbs up from 5.04% to 5.88% while the num-
ber of high-uncertainty instances gradually drops (the maxi-
mum of hu,t decreases from 20 to 10). It exhibits that BERD
is capable of progressively mining unreliable instances from
high-uncertainty ones.

6 Conclusion
This paper first verified that SRSs can be misguided by the
unreliable instances (i.e. targets mismatch inputs). To ease
this issue, we propose a novel neural model BERD guided by
two insightful observations to eliminate unreliable data for
performance-enhanced SRS. BERD modelled both loss and
uncertainty via a Gaussian distribution, whereby instances
with high loss but low uncertainty can be cautiously removed
as unreliable instances; meanwhile the novel UGCN is de-
signed to help mine unreliable instances from the high loss &
high uncertainty ones by lowering instance uncertainty. Ex-
tensive experiments verified the superiority of BERD.
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