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Abstract
Due to the dynamic health status of patients
and discrepant stability of physiological variables,
health data often presents as irregular multi-rate
multivariate time series (IMR-MTS) with signif-
icantly varying sampling rates. Existing meth-
ods mainly study changes of IMR-MTS values in
the time domain, without considering their differ-
ent dominant frequencies and varying data qual-
ity. Hence, we propose a novel Cooperative Joint
Attentive Network (CJANet) to analyze IMR-MTS
in frequency domain, which adaptively handling
discrepant dominant frequencies while tackling di-
verse data qualities caused by irregular sampling.
In particular, novel dual-channel joint attention is
designed to jointly identify important magnitude
and phase signals while detecting their dominant
frequencies, automatically enlarging the positive
influence of key variables and frequencies. Fur-
thermore, a new cooperative learning module is in-
troduced to enhance information exchange between
magnitude and phase channels, effectively integrat-
ing global signals to optimize the network. A
frequency-aware fusion strategy is finally designed
to aggregate the learned features. Extensive exper-
imental results on real-world medical datasets indi-
cate that CJANet significantly outperforms existing
methods and provides highly interpretable results.

1 Introduction
The rapid growth of electronic health records (EHR) provides
good chances to build models to improve healthcare quality.
One important task is to predict the mortality risk of patients
based on their historical records, which can identify high-risk
patients. This task is challenging because of the diverse and
changing sampling rates (termed as irregular multi-rate) in
different variables, as illustrated in Fig. 1. Different variables
have diverse sampling rates, which reflect their discrepant sta-
bilities and fluctuation frequencies. Furthermore, the sam-
pling rates within each sequence vary significantly because
of the dynamic changes in the health conditions of patients.
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Figure 1: Advantages of modeling IMR-MTS data in the frequency
domain. Since variables have discrepant stability, they are examined
under diverse rates, e.g., low for PT while high for CR. Time-domain
methods mainly study changes of values over time, which may not
extract vital medical clues in sampling rates. In contrast, we observe
that dominant frequencies of variables with different stability locate
in diverse bands, providing feasible solutions for mining such clues.

Since standard models are designed for data with equal in-
tervals [Pang et al., 2020; Ye et al., 2020; Pang et al., 2021],
existing methods often process irregular records into equally-
spaced data by discretizing time axis into non-overlapping in-
tervals with a constant interval, e.g., 1 hour for ICU data [Xu
et al., 2018], 6 months for chronic disease [Tan et al., 2018],
or confirmed by learning [Shukla and Marlin, 2019]. Missing
values are then handled via imputation techniques, e.g., align-
ment methods [Tan et al., 2018] or interpolation approaches
[Che et al., 2018a]. There are two major limitations. First,
these methods are unable to handle discrepant data quality
caused by varying sampling rates. As a result, low-quality
data (e.g., imputed or interpolated records with much noise)
may play important roles, which impair their results. Second,
they ignore the underlying vital medical impacts reflected by
the pattern of varying sampling rates. Specifically, highly
changeable variables are usually examined densely to timely
monitor the health status of patients, while stable variables
are measured sparsely. Hence, variables with diverse sam-
pling rates often have discrepant dominant frequencies and
function at different bands, as illustrated in Fig. 1. However,
these methods analyze medical records in the time domain,
which mainly study the changes of variable values over time.
As a result, the important medical clues in the varying sam-
pling rates are ignored, which may limit their performance.

To address the aforementioned challenges, we propose
a novel Cooperative Joint Attentive Network (CJANet) for
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medical IMR-MTS analysis in the frequency domain. To ef-
fectively integrate frequency magnitudes and phases while
adaptively tackling the issues of discrepant data quality and
dominant frequency, we propose a novel dual-channel joint
attention mechanism to dynamically learn contribution scores
of both features at different frequencies. In particular, dual-
channel joint attention weights are learned to simultaneously
adjust contributions of magnitude and phase signals at di-
verse frequency bands, globally optimized in the end-to-end
training network. This strategy effectively identifies vital
variables and frequencies, automatically enlarging their posi-
tive influence to provide accurate interpretable prediction re-
sults. Furthermore, at each frequency point, magnitude and
phase have corresponding relationships, whose combinations
at different frequencies can restore the original temporal sig-
nal. In view of this, we design a new cooperative learning
module with dual channels to incorporate magnitudes and
phases while enhancing the information-sharing capabilities
between these channels. This module incorporates an infor-
mation exchange structure for both channels to timely share
their learned knowledge, effectively utilizing global signals to
optimize parameters of the network and cooperate closely to
achieve accurate results. Finally, we introduce a frequency-
aware fusion structure to learn aggregation weights to identify
key frequencies and enhance their contributions.

The main contributions of this paper are listed as follows:

• We start the first attempt to model the IMR-MTS data
in the frequency domain by proposing a novel CJANet
to jointly deal with the discrepant dominant frequen-
cies and diverse data quality problems, which effectively
tackle the irregular sampling rates in health records.

• We design a new dual-channel joint attention mechanism
to dynamically adjust the contributions of frequency
magnitudes and phases at diverse frequencies, thus au-
tomatically strengthening the positive influence of key
variables and dominant frequencies.

• We propose a cooperative learning module into the
deep learning architecture to simultaneously model the
magnitude and phase signals while enhancing their
information-sharing capabilities, effectively utilizing
global information to optimize their parameters.

• We empirically demonstrate that CJANet outperforms
the state-of-the-art methods on real-world medical
datasets. The case study indicates that the obtained clin-
ical risk prediction results are highly interpretable.

2 Related Work
Attention Mechanism for Health Data. [Choi et al., 2016]
built RETAIN to identify vital visits and features using at-
tention. [Choi et al., 2017] introduced attention to learn ro-
bust representations of health data. [Xu et al., 2018] built
RAIM with efficient attention to jointly handle continuous
and discrete data. [Tan et al., 2020b] designed uncertainty-
aware attention to achieve explainable predictions. [Tan et
al., 2020a] built DATA-GRU to jointly handle missing values
and varying time intervals via dual-attention and time-aware
mechanisms. Attention is also applied to the noisy problem

[Heo et al., 2018] and clinical context embedding [Qiao et
al., 2018]. These mechanisms improve the performance and
interpretability of networks at some extent [Tan et al., 2021].
However, these methods analyze health data in the time do-
main, which cannot be applied to the irregular EHR data con-
sisting of multiple physiological variables with very different
sampling rates and fluctuation frequencies.
Frequency Analysis for Health Data. Several works have
applied frequency analysis for health data [Fang et al., 2020].
[Parhi and Zhang, 2019] designed a frequency-domain model
ratio method to select spectral power features for seizure pre-
diction. [Issa et al., 2020] proposed a novel user-independent
method to classify emotion using the electroencephalograph
(EEG) brain signals. [Zhang et al., 2020] built a noninvasive
system to monitor blood glucose by using a fitting-based slid-
ing window algorithm to analyze smartphone photoplethys-
mography (PPG) signals. However, these models are usu-
ally designed for regular signals, e.g., EEG and PPG, which
is unsuitable for the irregular EHR data. Furthermore, these
methods assume that different data have equal quality, which
cannot deal with the discrepant data quality problem.

3 Proposed Method
We propose a novel Cooperative Joint Attentive Network
(CJANet) for IMR-MTS in the frequency domain, as shown
in Fig. 2. It contains three parts, namely, dual-channel
joint attention, cooperative learning, and frequency-aware fu-
sion. Specifically, joint attention dynamically learns contri-
bution weights of magnitudes and phases while detecting vi-
tal frequency bands, enlarging the influence of key factors to
provide accurate and interpretable predictions. Cooperative
learning incorporates magnitudes and phases while introduc-
ing an information-exchange unit for them to conveniently
share their learned knowledge, integrating global information
to promote results. A frequency-aware fusion structure is de-
signed to adaptively learn aggregation weights to further ad-
just the contributions of features at diverse frequencies, effec-
tively strengthening the positive impact of important features.

3.1 Dual-channel Joint Attention in Frequency
Domain

Let Xir = [xir1 , · · · , xirn , · · · , xir
N ] represent a tuple with N

irregular time series and Tir = [tir1 , · · · , tirn , · · · , tirN ] de-
note the tuple of corresponding examination timestamps. For
IMR-MTS data, the challenge manifests in two aspects: 1)
different variables have diverse sampling rates; 2) even within
the sequence of each variable, its sampling rates vary signif-
icantly, as illustrated in Fig. 1. To obtain regular data, which
can serve as input of arbitrary standard machine learning
models, the mean function of Gaussian process (GP) [Zhang
and Williamson, 2019] mGP, is adopted to generate regular
data xn by inputting equally-spaced timestamps tn based on
observed variable values xirn and examination timestamps tirn :

xn = mGP(tn|xir
n , tirn ). (1)

Because of the irregular sampling rates, data in xn may
have diverse quality. Confidence interval (CI) can handle this
issue because it describes the degree in which the estimated
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Figure 2: The overall framework of the proposed method.

value deviates from the true value [Zhang and Williamson,
2019], e.g., large CI values reflect a huge difference between
estimated and true values, which indicate that estimated data
may contain much noise and is of low quality. Thus, CI val-
ues vn is calculated via the covariance function of GP kGP:

vn = zCI × kGP(tn|tirn ), (2)

where zCI is a scaling factor decided by the level of CI, which
is selected as 95% in our implementation.

Let X denote the generated regular sequences, i.e.,
X = [x0, · · · , xn, · · · , xN−1] ∈ RL×N , where N is the
number of variables; xn = [x0,n; · · · ;xl,n; · · · ;xL−1,n],
where L is the length of the generated sequence. Si-
multaneously, vn is converted to quality score via qn =
(vmax − vn)/(vmax − vmin) , where vmax and vmin are the
maximum and minimum values in vn. Thus, we obtain a
matrix Q of quality scores, which quantitatively describe
the reliability of every element in matrix X, represented
as Q = [q0, · · · , qn, · · · , qN−1] ∈ RL×N , where qn =
[q0,n; · · · ; ql,n; · · · ; qL−1,n]. Frequency transformation [Lin
and others, 2016] is adopted to convert sequences in X to the
frequency domain and represent it as the combination of real
part Re(zf,n) and imaginary part Im(zf,n) ∗ i:

zf,n =
L−1∑
l=0

xl,nw
fl
L , f = 0, 1, · · · , F − 1,

= Re(zf,n) + Im(zf,n) ∗ i,

(3)

where wL = e−i 2π
L ; i =

√
−1 is the unit imaginary root; F

is the length of the spectrum.
We calculate magnitude mf,n =

√
Re(zf,n)2 + Im(zf,n)2

and phase pf,n = tan−1(Im(zf,n)/Re(zf,n)). The fre-
quency magnitudes of different variables are thus repre-
sented as M = [m0, · · · ,mn, · · · ,mN−1] ∈ RF×N , where
mn = [m0,n; · · · ;mf,n; · · · ;mF−1,n], and phase signals
are denoted as P = [ p0, · · · , pn, · · · , pN−1] ∈ RF×N ,
where pn = [p0,n; · · · ; pf,n; · · · ; pF−1,n]. Batch normal-
ization (BN) is adopted to enhance the compatibility of both
signals. Matrix Q can describe the quality of different el-
ements in each sequence but is unable to identify which
sequence is more important for estimating the health sta-
tus of patients. Several different variables are examined at

same rates may simply because they are measured from the
same fluid of patients. For example, both Hematocrit (HCT)
and Hemoglobin (HB) are examined from blood and often
recorded synchronously, but they may contribute differently
for estimating health conditions. Joint attention weights αj,m

are thus learned for magnitude features and batch normalized:

αj,m = BN(sigmoid(WT
j,mQ + bj,m)), (4)

where Wj,m ∈ RL×F is a trainable weight vector; bj,m ∈
RN is a trainable bias vector; BN is batch normalization.

Magnitude and phase signals may not be synchronized in
the changing patterns. Even for same variable, its magnitude
and phase often fluctuate at different frequencies. Therefore,
to enable both signals to function at their own paces, instead
of using a weights-sharing attention module, we learn another
attention weights αj,p for phases:

αj,p = BN(sigmoid(WT
j,pQ + bj,p)), (5)

where Wj,p ∈ RL×F and bj,p ∈ RN are trainable weight
and bias vectors, respectively.

The learned weights are used to adjust the contributions of
magnitude M and phase P:

Mj = M�αj,m, (6)

Pj = P�αj,p, (7)
where � represents Hadamard product.

3.2 Cooperative Learning
Since the changes of magnitudes and phases along frequency
bands contain vital sequential information, we adopt RNNs
rather than non-sequential models to build the cooperative
learning module. Specifically, Gated Recurrent Unit (GRU)
[Chung et al., 2014] is adopted, which can be replaced with
other RNN variants by simple modifications. The adjusted
magnitudes Mj are modeled along different frequencies:

hm
f = GRU(mf,:, hm

f−1), (8)

where mf,: = [mj
f,0, · · · ,m

j
f,n, · · · ,m

j
f,N−1] is the elements

of the f th frequency in Mj ; hm
f ∈ Rdm is the hidden states

learned for the magnitude signal and dm is the number of
hidden units in the magnitude-channel GRU network.
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Models In-hospital 10 days 20 days 30 days 40 days 50 days 
RF [Breiman, 2001] 0.777 ± 0.007 0.781 ± 0.007 0.776 ± 0.007 0.768 ± 0.006 0.767 ± 0.006 0.756 ± 0.006 
LR [Hosmer Jr et al., 2013] 0.781 ± 0.008 0.780 ± 0.008 0.769 ± 0.008 0.766 ± 0.008 0.756 ± 0.007 0.750 ± 0.007 
GRU [Chung et al., 2014] 0.838 ± 0.006 0.804 ± 0.007 0.790 ± 0.006 0.783 ± 0.007 0.781 ± 0.006 0.779 ± 0.006 
PLSTM [Neil et al., 2016] 0.826 ± 0.006 0.835 ± 0.006 0.825 ± 0.006 0.797 ± 0.006 0.791 ± 0.006 0.779 ± 0.006 
IndRNN [Li et al., 2018] 0.819 ± 0.007 0.824 ± 0.007 0.818 ± 0.006 0.808 ± 0.006 0.805 ± 0.006 0.797 ± 0.006 
GRU-D [Che et al., 2018b] 0.884 ± 0.005 0.877 ± 0.005 0.864 ± 0.005 0.857 ± 0.005 0.848 ± 0.006 0.834 ± 0.005 
InterpNet [Shukla and Marlin, 2019] 0.881 ± 0.005 0.856 ± 0.006 0.848 ± 0.005 0.838 ± 0.005 0.833 ± 0.005 0.832 ± 0.005 
DATA-GRU [Tan et al., 2020a] 0.896 ± 0.005 0.880 ± 0.005 0.874 ± 0.005 0.870 ± 0.005 0.862 ± 0.005 0.858 ± 0.005 
MLSTM [Zhao et al., 2020] 0.846 ± 0.006 0.832 ± 0.006 0.824 ± 0.006 0.823 ± 0.006 0.820 ± 0.005 0.820 ± 0.005 
GRU-m 0.864 ± 0.005 0.863 ± 0.005 0.846 ± 0.005 0.842 ± 0.005 0.840 ± 0.005 0.827 ± 0.005 
GRU-m+j 0.880 ± 0.005 0.872 ± 0.005 0.861 ± 0.005 0.850 ± 0.005 0.841 ± 0.005 0.830 ± 0.005 
GRU-p 0.817 ± 0.006 0.790 ± 0.007 0.782 ± 0.006 0.773 ± 0.006 0.765 ± 0.006 0.753 ± 0.006 
GRU-p+j 0.841 ± 0.006 0.833 ± 0.006 0.817 ± 0.006 0.804 ± 0.006 0.792 ± 0.006 0.784 ± 0.006 
Twin-GRU 0.878 ± 0.005 0.871 ± 0.005 0.862 ± 0.005 0.848 ± 0.005 0.845 ± 0.005 0.843 ± 0.005 
Twin-GRU+jc 0.891 ± 0.005 0.896 ± 0.005 0.886 ± 0.005 0.874 ± 0.005 0.861 ± 0.005 0.858 ± 0.005 
Twin-GRU+jf 0.895 ± 0.004 0.894 ± 0.005 0.884 ± 0.005 0.873 ± 0.004 0.862 ± 0.005 0.859 ± 0.005 
CJANet 0.901 ± 0.004 0.898 ± 0.005 0.890 ± 0.004 0.877 ± 0.004 0.870 ± 0.004 0.864 ± 0.004  

Table 1: AUC score (mean±std) of risk prediction on MIMIC-III. Red, Blue and Green represent the best, the second and third best results.

Simultaneously, to extract the sequential changes of phase
information along frequencies, a symmetric GRU neural net-
work is constructed for Pj by modeling the adjusted phase
signals over different frequency bands:

hp
f = GRU(pf,:, hp

f−1), (9)

where pf,: = [pjf,0, · · · , p
j
f,n, · · · , p

j
f,N−1] is the elements of

the f th frequency in Pj ; hp
f ∈ Rdp is the hidden states learned

for the phase signal and dp is the number of hidden units in
the phase-channel network.

The hidden states learned in the magnitude-channel unit
hm

f and the states learned in the phase-channel network hp
f

are then integrated to learn cooperative information hco via:

hco
f = hm

f � hp
f . (10)

The learned cooperative information hco is further fed back
to magnitude and phase channels respectively and simultane-
ously to adjust their status, thus informing them of the learn-
ing status of each other. BN is conducted for the dual-channel
informed states to increase information compatibility. This
learning strategy enables both channels to receive global in-
formation enabling better results with global optimization.

hm,adj
f = BN(hm

f + hco
f ), (11)

hp,adj
f = BN(hp

f + hco
f ). (12)

The learned states are then injected into deeper coopera-
tive learning modules to repeat the above procedures so as to
learn more informative and accurate representations. For con-
venience, the number of hidden units is set the same for mag-
nitude and phase channels at each layer. Specifically, in our
implementation, a three-layer cooperative learning structure
is built with the hidden units of 32, 16, and 1, respectively.

3.3 Frequency-aware Fusion
Hidden states at all the frequencies of the last layer of the
cooperative learning module are utilized to produce final re-
sults. States of magnitude and phase channels are flattened:

hm
fla = [hm

0,l, h
m
1,l, . . . , h

m
F−1,l]

T , (13)

hp
fla = [hp

0,l, h
p
1,l, . . . , h

p
F−1,l]

T . (14)
Frequency-aware weights are learned to aggregate features

at different frequencies. Average pooling and flatten opera-
tions are performed for the 2nd dimension of αj,m and αj,p:

αaf,m = Flatten(AvePooling2nd(αj,m)), (15)

αaf,p = Flatten(AvePooling2nd(αj,p)). (16)
The frequency-aware fusion weights of magnitudes and

phase are therefore learned and batch normalized:

αfuse,m = BN(sigmoid(WT
fuse,mαaf,m+ bfuse,m)), (17)

αfuse,p = BN(sigmoid(WT
fuse,pαaf,p + bfuse,p)), (18)

where Wfuse,m ∈ RF×F and Wfuse,p ∈ RF×F are train-
able weight vectors; bfuse,m ∈ RF and bfuse,p ∈ RF are
trainable bias vectors.

The learned weights are applied to adjust contributions of
hm
fla and hp

fla at different frequencies while a shortcut con-
nection is adopted to facilitate information propagation:

hm
fuse,rl = αfuse,m � hm

fla + hm
fla, (19)

hp
fuse,rl = αfuse,p � hp

fla + hp
fla. (20)

With a shortcut connection, hm
fuse,rl and hp

fuse,rl are
aggregated hm,p = [hm

fuse,rl; hp
fuse,rl] while weights are

learned to adjust contributions of different features:

αm,p = BN(sigmoid(WT
m,phm,p + bm,p)), (21)

hfinal = αm,p � hm,p + hm,p, (22)
where Wm,p ∈ R2F×2F is a trainable weight vector; bm,p ∈
R2F is a trainable bias vector.

A fully connected layer with the softmax activation is uti-
lized to produce final risk scores from hfinal:

ỹ = softmax(WT
densehfinal + bdense), (23)

where Wdense and bdense are trainable matrix and vector.
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Models 4 months 8 months 12 months 16 months 20 months 24 months 
RF [Breiman, 2001] 0.841 ± 0.014 0.834 ± 0.013 0.826 ± 0.013 0.818 ± 0.013 0.816 ± 0.013 0.813 ± 0.013 
LR [Hosmer Jr et al., 2013] 0.813 ± 0.013 0.812 ± 0.014 0.806 ± 0.013 0.803 ± 0.013 0.796 ± 0.014 0.792 ± 0.014 
GRU [Chung et al., 2014] 0.863 ± 0.008 0.851 ± 0.009 0.849 ± 0.009 0.846 ± 0.009 0.839 ± 0.009 0.836 ± 0.009 
PLSTM [Neil et al., 2016] 0.853 ± 0.009 0.848 ± 0.009 0.845 ± 0.009 0.842 ± 0.009 0.828 ± 0.009 0.824 ± 0.009 
IndRNN [Li et al., 2018] 0.862 ± 0.008 0.854 ± 0.009 0.848 ± 0.009 0.844 ± 0.009 0.843 ± 0.009 0.822 ± 0.010 
GRU-D [Che et al., 2018b] 0.926 ± 0.007 0.921 ± 0.007 0.919 ± 0.007 0.904 ± 0.008 0.894 ± 0.008 0.882 ± 0.008 
InterpNet [Shukla and Marlin, 2019] 0.928 ± 0.006 0.922 ± 0.006 0.912 ± 0.007 0.902 ± 0.007 0.890 ± 0.007 0.884 ± 0.008 
DATA-GRU [Tan et al., 2020a] 0.922 ± 0.006 0.916 ± 0.007 0.909 ± 0.007 0.893 ± 0.007 0.886 ± 0.008 0.870 ± 0.008 
MLSTM [Zhao et al., 2020] 0.889 ± 0.008 0.875 ± 0.008 0.870 ± 0.008 0.867 ± 0.008 0.866 ± 0.008 0.840 ± 0.009 
GRU-m 0.855 ± 0.009 0.852 ± 0.009 0.847 ± 0.009 0.834 ± 0.009 0.811 ± 0.010 0.792 ± 0.010 
GRU-m+j 0.890 ± 0.008 0.863 ± 0.008 0.856 ± 0.008 0.843 ± 0.009 0.826 ± 0.009 0.822 ± 0.010 
GRU-p 0.781 ± 0.011 0.766 ± 0.011 0.758 ± 0.011 0.754 ± 0.011 0.739 ± 0.011 0.729 ± 0.012 
GRU-p+j 0.896 ± 0.008 0.832 ± 0.010 0.803 ± 0.010 0.797 ± 0.011 0.781 ± 0.010 0.748 ± 0.011 
Twin-GRU 0.874 ± 0.008 0.860 ± 0.009 0.856 ± 0.009 0.849 ± 0.009 0.848 ± 0.009 0.846 ± 0.009 
Twin-GRU+jc 0.933 ± 0.006 0.925 ± 0.006 0.915 ± 0.006 0.905 ± 0.007 0.885 ± 0.008 0.854 ± 0.008 
Twin-GRU+jf 0.936 ± 0.006 0.930 ± 0.006 0.928 ± 0.006 0.920 ± 0.006 0.908 ± 0.007 0.888 ± 0.007 
CJANet 0.941 ± 0.006 0.936 ± 0.006 0.932 ± 0.006 0.925 ± 0.006 0.913 ± 0.007 0.895 ± 0.007  

Table 2: AUC score (mean± std) of risk prediction on PUB. Red, Blue and Green represent the best, the second and third best results.

4 Experiments
4.1 Data Description and Experimental Settings
Experiments are conducted on two EHR datasets. MIMIC-III
[Johnson et al., 2016] contains EHR of 58K patients at Beth
Israel Deaconess Medical Center over 11 years. Thirty types
of common lab test results in the first ten days are used. The
cohort of all 38549 adults is used. We conduct in-hospital
and short-term mortality risk predictions to evaluate the like-
lihood of death for a patient during the treatment in hospital
and a few days after observation period.

The Peptic Ulcer Bleeding (PUB) dataset contains EHR
data of 6367 patients at Prince of Wales Hospital over 10
years. We utilize seven types of popular lab test results as in-
puts. Patients in this dataset have long records, which usually
last several years. Therefore, we perform long-term mortality
risk predictions.

Implementation details. We randomly choose 70% of pa-
tients to train and use rest patients to test. The results are
evaluated via the area under the receiver operator character-
istic curves (AUC). We use cross-entropy as the loss function
and Adam as the optimizer. The networks are trained for 30
epochs with a batch size of 32. The initial learning rate is set
as 0.005 and decay by 10% every 3 epochs.

4.2 Comparing Methods
• RF and LR: RF [Breiman, 2001] and LR [Hosmer Jr et

al., 2013] are used baselines.

• PLSTM: [Neil et al., 2016] converges faster than stan-
dard LSTM by using a parametrized oscillation to con-
trol time gates.

• IndRNN: To handle gradient vanishing issue, [Li et al.,
2018] connects neurons of different layers but makes
neurons in the same layer independent.

• GRU-D: [Che et al., 2018b] imputes missing data as
decay of previously values toward empirical mean over
time. Missing patterns are utilized to improve results.

• InterpNet: [Shukla and Marlin, 2019] trains an interpo-
lation network to process irregular records while using a
prediction network to model the obtained data.

• DATA-GRU: [Tan et al., 2020a] designs dual-attention
and time-aware mechanisms to deal with missing values
and varying intervals.

• MLSTM: [Zhao et al., 2020] introduces a memory filter
structure controlled via a learnable parameter to increase
the ability for long-term memory.

• CJANet variants: Besides above methods, we consider
seven variants to verify the effectiveness of each com-
ponent: (a) standard GRU for magnitudes (GRU-m) and
phases (GRU-p); (b) GRU-m+j and GRU-p+j are GRU-
m and GRU-p with joint attention; (c) Twin-GRU is
two-channel GRU for magnitudes and phases; (d) Twin-
GRU+jc is Twin-GRU with joint attention and cooper-
ative learning mechanism; (e) Twin-GRU+jf is Twin-
GRU with joint attention and frequency-aware fusion.

4.3 Results and Discussion
The experimental results on MIMIC-III and PUB are pro-
vided in Tables 1 and 2, which indicates that on both datasets
CJANet outperforms existing methods under various settings.

Comparison to the State-of-the-arts. CJANet outper-
forms GRU-D [Che et al., 2018b], InterpNet [Shukla and
Marlin, 2019], and DATA-GRU [Tan et al., 2020a]. This is
because these methods analyze health data in the time do-
main, which cannot tackle the discrepant dominant frequency
issue. As a result, they are incapable of learning vital medical
clues from varying sampling rates and fluctuation frequen-
cies, which impair their results.

Effectiveness of Joint Attention. Variants with joint at-
tention achieve better results than models without this mech-
anism. We can observe that GRU-m+j and GRU-p+j consis-
tently outperform GRU-m and GRU-p, which indicate the ef-
fectiveness of the proposed joint attention. This is because the
designed attention can identify importance scores of different
features and frequencies, which provide important clues to
increase the contributions of key elements. Furthermore, it
provides clinical interpretability for the obtained risk predic-
tion results, which is analyzed in the case study section.

Effectiveness of Cooperative Learning. We compare
CJANet and Twin-GRU+jf (i.e., CJANet without cooperative
learning). We can see that CJANet continuously outperforms
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Frequency 
(a) Attention weight matrix learned for magnitude features

Frequency 
(b) Attention weight matrix learned for phase features

Figure 3: Visualization of attention weights. (a) and (b) provides attention weights learned for magnitude and phase signals, respectively.

Disease Clinical outcome Death time Risk score predicted by CJANet 
Stroke Death 13.135 days 0.922  

Table 3: Patient information in the case study.

Twin-GRU+jf under various settings, which indicates the ef-
fectiveness of the cooperative learning module. These results
indicate that this learning strategy can effectively enhance the
information sharing capacity between magnitude and phase
channels, enabling them to adaptively utilize global signals
to optimize their parameters and promote results.

Effectiveness of Frequency-aware Fusion. We finally
compare CJANet and Twin-GRU+jc (i.e., CJANet without
frequency-aware fusion). We see that CJANet continually
outperforms Twin-GRU+jc for various tasks, which proves
the effectiveness of the frequency-aware fusion module. This
is because this structure can adaptively learn the importance
scores of different frequencies and automatically adjust their
contributions. Therefore, influences of features at important
frequencies are strengthened to promote final results.

4.4 Case Study
Fig. 3 provides a case study for predicting in-hospital mortal-
ity risk of a Stroke patient in MIMIC-III, whose information is
given in Table 3. X-axis denotes frequencies and Y-axis rep-
resents different variables. Fig. 3(a) shows attention weights
learned for magnitudes. We can observe that different vari-
ables contribute diverse weights and even for one same type
of variable, the weights vary along frequency, which indicates
that joint attention can effectively learn contribution scores of
different variables and frequencies. By calculating mean of
each variable at different frequencies, its average importance
is obtained, as shown in Fig. 4(a). The variables assigned with
the two largest weights are 50818 (pCO2) and 50970 (Phos-
phate), which have been proved to be important for evaluating
the status of Stroke patients [Vats et al., 2019]. This proves
that CJANet can effectively identify key factors and provides
vital references for practical medical applications.

Fig. 3(b) provides the attention weight matrix learned for
phases, which indicates that contribution scores are adap-
tively adjusted for different features and frequencies. The av-
erage weight of each phase feature is provided in Fig. 4(b).
The variables assigned with the two largest weights for the
phase features are 51277 (RDW) and 50912 (Creatinine),
which are vital for predicting severity of Stroke [Jia et al.,
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Figure 4: Average attention weights learned for each type of magni-
tude and phase features.

2015]. These results prove that CJANet can also identify im-
portant phase variables and frequency ranges, which provide
key clues for interpreting the achieved results and help design
more effective treatments to improve outcomes. Furthermore,
CJANet can jointly analyze magnitude and phase signals, suc-
cessfully mining diverse yet key variables for accurate clini-
cal predictions. These results prove that the proposed atten-
tion mechanism is able to analyze frequency signals from dif-
ferent aspects and mining diverse key medical knowledge, ef-
fectively improving final risk prediction results.

5 Conclusion
This paper proposes a novel CJANet to achieve accurate risk
predictions by analyzing IMR-MTS in the frequency domain.
Novel joint attention is designed to dynamically learn impor-
tance scores of different features at different frequencies, thus
adaptively tackling discrepant data quality and dominant fre-
quency bands. Furthermore, a new cooperative learning mod-
ule is introduced to enhance information exchange between
magnitudes and phases to utilize global signals to optimize
the network. Extensive experimental results and case study
indicate that CJANet significantly outperforms existing meth-
ods and provides highly interpretable prediction results.
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