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Abstract

Sequential recommendation aims to predict users’
future behaviors given their historical interactions.
However, due to the randomness and diversity of
a user’s behaviors, not all historical items are in-
formative to tell his/her next choice. It is obvious
that identifying relevant items and extracting mean-
ingful sequential patterns are necessary for a better
recommendation. Unfortunately, few works have
focused on this sequence denoising process.

In this paper, we propose a PatteRn-enhanced
ContrAstive Policy Learning Network (RAP for
short) for sequential recommendation, RAP for-
malizes the denoising problem in the form of
Markov Decision Process (MDP), and samples ac-
tion for each item to determine whether it is rel-
evant with the target item. To tackle the lack
of relevance supervision, RAP fuses a series of
mined sequential patterns into the policy learn-
ing process, which work as a prior knowledge to
guide the denoising process. After that, RAP splits
the initial item sequence into two disjoint subse-
quences: a positive subsequence and a negative
subsequence. At this, a novel contrastive learn-
ing mechanism is introduced to guide the sequence
denoising and achieve preference estimation from
the positive subsequence simultaneously. Exten-
sive experiments on four public real-world datasets
demonstrate the effectiveness of our approach for
sequential recommendation.

1 Introduction

Sequential recommendation, which aims to recommend the
next few items that the user will likely interact with in the near
future, now is playing an increasingly important role in vari-
ous application scenarios [Zhang er al., 2019b]. For this task,
sequential dependency has been proven to be an important
factor since items interacted in future are largely dependent
on the previous ones [Kang and McAuley, 2018]. However,
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due to the randomness of the user’s behaviors and his/her di-
verse interests, not all historical items contain useful signals
w.r.t. the preference estimation for the target item. When
taking these irrelevant yet noisy items into consideration, it
becomes hard to precisely distill preference information for
better recommendation performance. A good recommender
should be able to extract these credible sequential dependen-
cies relevant with the target item. Here, in this paper, we refer
to this process as a sequence denoising task. Although it is
appealing in theory, limitation and complication of user-item
interactions make the denoising process non-trivial.

Over the past decades, there have been many research ef-
forts related to sequence denoising in one form or another.
Earlier works, including association rule [Lin et al., 2002]
and sequential pattern mining [Mooney and Roddick, 20131,
can be casted as a particular denoising process by extract-
ing plausible patterns. With the prosperity of deep neu-
ral network, RNN-based and CNN-based models have be-
come two mainstreams to distill discriminative information
for recommendation. These methods mostly have a defi-
ciency of treating each item equally, which may introduce
much noise into the model learning process. Later, attention-
based approaches are proposed [Kang and McAuley, 2018;
Yu et al., 2019] to estimate an importance weight for each
item for better recommendation. Though effective, the exis-
tence of noisy data may still complicate the preference learn-
ing process. In addition, the interpretability is also limited as
they fail to explicitly extract the truly relevant patterns. How
to automatically extract credible sequential dependencies rel-
evant with the target item for a correct recommendation, is a
crucial and challenging problem.

In this paper, we propose a PatteRn-enhanced ContrAstive
Policy Learning Network (named R AP) for sequence denois-
ing. Specifically, RAP consists of two modules: a pattern-
enhanced policy module and a contrastive learning module.
The policy module employs a stochastic policy to sample ac-
tion for each item from the initial sequence to identify its rel-
evance with the target item. It is worthwhile to note that we
have no access to relevance information for a given historical
sequence and target item pair. To better facilitate denoising,
we further mine a series of sequential patterns, and feed this
global prior knowledge into policy network for guidance. Ac-
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cording to the sampled actions, RAP produces a positive sub-
sequence and a negative subsequence respectively. It is ex-
pected that the positive subsequence containing only the rel-
evant items in the chronological order would ease the prefer-
ence learning. To achieve effective denoising and preference
estimation, a contrastive learning module is then applied on
the resultant two subsequences with delayed rewards to make
a robust gradient estimation. Empirical results on four real-
world datasets demonstrate that the process of sequence de-
noising is feasible and our proposed method can outperform
many state-of-the-art baselines significantly. We provide de-
tailed analysis on the proposed model, and conduct case stud-
ies to gain better understanding on the learned patterns.

2 Related Work

In this section, we briefly review three lines of related work,
i.e., sequential recommendation, RL-based recommendation
and contrastive learning.

2.1 Sequential Recommendation

Sequential recommendation aims to predict users’ future be-
haviors given their historical interaction data. Some ear-
lier sequential recommendation methods rely on item-item
transition matrices to capture the sequential patterns in the
user interaction sequence [Rendle et al., 2010; Cheng et al.,
2013]. Due to the nonlinear expressive capacity, RNN-based
and CNN-based models have been widely utilized to model
the interaction sequences. Specifically, RNN-based mod-
els focus on exploiting sequential dependencies from inter-
action sequences for recommendation [Hidasi ef al., 2016;
Huang er al., 2018], while the CNN-based methods allow
feature composition over the consecutive behaviors in inter-
action sequence [Tang and Wang, 2018].

Though effective, none of the above works have intro-
spected the rationality of fusing all historical interactions
into account for the preference estimation. Recently, the
attention mechanism has shown promising potential to sup-
port a context-aware preference learning for recommenda-
tion [Wang er al., 2018; Kang and McAuley, 2018]. However,
these approaches still fail to obtain the truly relevant items for
further consideration, which limits the recommendation per-
formance and interpretability.

2.2 RL-based Recommendation

Reinforcement Learning aims to find an optimal action in a
particular situation that would eventually maximize the long-
term outcome. It has been introduced into recommender sys-
tems and achieved great success as its advantage of con-
sidering users’ long-term feedbacks [Zhao er al., 2018b;
Zou et al., 2020]. For example, [Zhao er al., 2018a] propose
a deep reinforcement learning model to automatically learn
the optimal strategies for page-wise recommendation. [Xian
et al., 2019] propose a policy-gradient approach to extract
paths from Knowledge Graph(KG), and take these paths as
the recommendation interpretation. [Zheng et al., 2018] de-
sign a DQN-based reinforcement learning framework to make
online personalized news recommendation. [Zou et al., 2019]
formulate the ranking process as a multi-agent Markov Deci-
sion Process, where mutual interactions between documents
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are incorporated. [Zhang et al., 2019a] propose a hierarchi-
cal reinforcement learning to revise user profile for course
recommendation. [Xin et al., 2020] propose a self-supervised
reinforcement learning framework for sequential recommen-
dation. Recently, the contextual information is also consid-
ered to enhance the reinforcement learning process for rec-
ommendation. For instance, [Zhou et al., 2020] investigate
the potential of leveraging KG to improve the sample effi-
ciency of RL methods.

2.3 Contrastive Learning

Contrastive learning has recently achieved great success in
various domains [Dai and Lin, 2017; Laskin et al., 2020].
The key idea of contrastive learning is to perform unsuper-
vised learning over semantically similar (positive) and dis-
similar (negative) instance pairs. By encouraging the repre-
sentation of similar pairs to be close, and those of dissimi-
lar pairs to be far apart [Chuang ef al., 2020], contrastive
learning can alleviate the extensive demand for human anno-
tations, and enable mining the underlying correlations behind
the rich structure inside data [Devlin ez al., 2019]. Inspired by
these advances, we present the first contrastive learning based
sequence denoising model for sequential recommendation.

3 Problem Definition

Let U={ui,ug, -+ ,up)} denote a set of users,
E={e1,e2,--- ,eig} be a set of items, where |U| and
|€| represent the total number of unique users and items, re-
spectively. For each user u € U, we use e¥={e}, ey, -+ ,el}
to denote his/her interaction sequence, where e € & is the
item that u has interacted with at time step ¢ and n is the
length of the interaction sequence e".

In this paper, we consider an episodic RL approach to ad-
dress the sequence denoising for sequential recommendation.
Given a target item e, at each time step ¢, the process is in
some state s; € S. According to state s;, the agent performs
an action a; modeled by a policy 7(a;|s;). The action space
is a; € {positive = 1, negative = 0}, where we use posi-
tive action to indicate that the item is relevant with the target
item, and a negative action indicates that the item should be
removed from the initial sequence. Given the definition of
states and actions, the probability of choosing a; can be writ-
ten as follows:

71'(@1‘ = 1|SZ‘) = a(siwl + b) €))

where s; is the representation of state s;, wi; and b denote
parameters of the policy module. After sequence denoising,
we can obtain a positive subsequence e™ and a negative sub-
sequence e~ from the initial sequence e“. The subsequence
e is a chronologically ranked list of all relevant items. In
contrast, e~ is the list of all irrelevant items. Our aim is to
infer the likelihood that the user will interact with e; based on
subsequence e*.

4 Pattern-enhanced Contrastive Policy
Learning Network

In this section, we introduce our Pattern-enhanced Con-
trastive Policy Learning Network (RAP) in detail. Figure 1
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Figure 1: The overall architecture of the proposed RAP.

shows the architecture of RAP, which consists of two main
modules: 1) a pattern-enhanced policy module to sample ac-
tion for each item in the initial interaction sequence, and split
the initial sequence into two subsequences, which are ex-
pected to keep relevant or irrelevant items respectively; 2)
a contrastive learning module is further applied on these two
subsequences to generate a contrastive loss to guide the model
optimization. For simplicity, we describe algorithmic details
for a single user u, and it is straightforward to extend the
formulas to a set of users. For brevity, we will omit the su-
perscript w in the notations.

4.1 Pattern-enhanced Policy Module

RAP utilizes a policy module to determine historical items’
relevance with the target item. However, running a compli-
cated policy on a sequence with sparse user-item interactions
is not easy. In addition, this process is not guaranteed since no
item-level relevance information is provided to supervise the
denoising process. Considering the collective wisdom (i.e.,
sequential patterns) is well expressed in massive user behav-
iors, we choose to mine sequential patterns, and treat them as
prior knowledge to guide the denoising process.

Specifically, we first use SPADE [Zaki, 2001] to extract the
eligible patterns from the interaction sequences. We compile
the extracted k-length patterns into a matrix Cy, where ¢,
represents the i-th row of Ci, and the j-th element of cz is
the number of patterns that start from e; and end with e;.
Given an item e;, we use C' = [¢}, ¢}, ..., ¢ ] to express the
corresponding pattern information, and further feed it into the
calculation of policy state s; to enrich its semantic:

si =GRU[s;_1,I(a; = 1) - (v, ®MLP(C"))]  (2)

where GRU(+) is the Gated Recurrent Unit (GRU), MLP(-)
represents a multi-layer perception, v, is the embedding vec-
tor of item e;, I(+) is an indicator function, and @ is a con-
catenation operator.

After sampling a; with Equation (1), we can decide
whether to keep the item for preference estimation. Specif-
ically, when a; = 1, the item is relevant and retained. On the

other hand, a; = 0 suggests the opposite. In the latter case, s;
is set to be the same as s;_;. Note that when 7 = 0, the state
is initialized as so = v,, where e; is the target item. In this
sense, we inject the target item e; into policy component to
enable a context-aware denoising process.

By feeding the pattern information into the state represen-
tation, our policy can foresee future sequential information
when making a decision, which could offer insightful clues
to determine item-level relevance without direct supervision
signals.

4.2 Contrastive Learning Module

Given an interaction sequence e, we use 7(a;|s;) to sam-
ple an action for each constituent item sequentially. That
is, we can obtain an action list (a1, ,ay). In this way,
we naturally separate the initial sequence e into two subse-
quences: positive subsequence et and negative subsequence
e~ as aforementioned. Specifically, given a sampled action
list (ay,- - ,ay), the probability of generating e™ can be cal-
culated as follows:

P(et) = Hw(ai|si)P(si+1|si, a;) = H 7(as]s;)

Moreover, based on the series of sampled e™, the objective
function can be written as follows:

L=Eraanr = Z P(et)rt
(a1--an)

Z Hw(ai|si)r+
1

ceay) @

(a

where 7+ is the delayed reward over eT. As e™ is expected
to precisely capture informative semantics that are relevant
with the target item e;, a simple solution is to encode positive
subsequence et. Here, we choose another GRU to derive the
subsequence representation v as the hidden state of the last
item in e™. Then, we use cosine similarity between e™ and
e; as the reward:

vt.v,

t= t 3)

pt= Y " Ver
VE]- Vel
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However, this strategy seems not an optimal option as the op-
timization does not utilize irrelevant items in e, which also
aggravates the sparse problem. In addition, due to the lack of
supervision signals, a wrong distinction of our policy mod-
ule (i.e., determining a relevant item as irrelevant) will also
adversely affect performance. To fully utilize both relevant
and irrelevant items, inspired by [Chen er al., 2018], we intro-
duce a contrastive learning process to enhance model learn-
ing.

Here, we further adopt another GRU to encode the neg-
ative subsequence as v~. The corresponding probability of
generating negative subsequence e~ is as follows:

Ple™) = H (1 —m(ails:)) (1 — P(sis1]si,a:))
= H(l — m(ails;))

Similarly, r~ is calculated as the cosine similarity between
v~ and v.,. The final objective function is rewritten as fol-
lows:

L= Z Hﬂ(ai|5i)7“+— Z H(l—ﬂ(ai|si))r_
(a1++an) @ (a1--an) i

4.3 Learning and Prediction

We use the Adam optimizer to maximize the objective func-
tion over all training instances. With the learned RAP model,
given the interaction sequence of a user and the candidate
items, we first scan the whole sequence according to Equa-
tion (2), and select each action with the maximal probability,
which can be written as follows:

a; = argmax m(a;|s;) €]
a;
By this we extract the truly relevant items, and calculate its
reward r* according to Equation (3). We then rank all can-
didate items according to their rewards, and return the top-N
as the final recommendations.

S Experiments

In this section, we evaluate our proposed RAP'against sev-
eral state-of-the-art methods. We first describe the datasets,
baseline methods, evaluation metrics used in the experiments,
and then analyze the experimental results.

5.1 Experimental Setup

Datasets

We conduct experiments on four publicly available real-world
datasets from three different domains. Beauty and Games are
two different categories of Amazon dataset?, which span from
May 1996 to July 2014. LastFM? is a music listening dataset
released from Last.fm online music system and we take a sub-
set which contains interactions from Jan 2015 to June 2015.
MovieLens is a popular benchmark dataset collected from the
MovieLens website. In this work, we adopt ML-1m* which
has one million user-movie interactions.

!The implementation of our model is available at https:/github.
com/heilsvastika/RAP

“http://jmcauley.ucsd.edu/data/amazon/

3http://www.cp.jku.at/datasets/LEM- 1b/

*https://grouplens.org/datasets/movielens/1m/
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Datasets  #users  #items  #actions Avg. length
Beauty 52,204 57,289 0.4M 7.6
Games 31,013 23,715 0.3M 9.3
LastFM 7,694 30,658 0.2M 21.11
ML-Im 6,040 3,416 1.0M 163.5
Table 1: The statistics of the datasets.
Preprocessing

We follow the same preprossessing procedure in [Rendle et
al., 2010; He and McAuley, 2016]. For all datasets, we use
timestamps to order the interactions of each user. We discard
users and items with fewer than 5 interactions. For partition-
ing, we split the historical sequence for each user u into three
parts: (1) the most recent interaction for testing; (2) the next-
to-last interactions for validation; and (3) all remaining inter-
actions for training. This leave-one-out evaluation strategy
has been widely used in related works [Kang and McAuley,
2018; Tang and Wang, 2018]. The detailed statistics for the
four datasets are reported in Table 1.

Baseline Methods
We adopt the following representative and state-of-the-art
methods as baselines for performance comparison, including
non-sequential models and sequential models:

For non-sequential models, we consider BPR and NCF:

* BPR-MF: The Bayesian Personalized Ranking based
Matrix Factorization [Rendle et al., 2009] is a conven-
tional method for learning pairwise personalized rank-
ings from user implicit feedback.

* NCF: The Neural Collaborative Filtering [He et al.,
2017b] models user-item interactions with a series of
nonlinear transformations.

For sequential models, we consider both shallow and deep
models:

* FPMC: It captures users’ general taste as well as their
sequential behaviors by combining MF with first-order
Markov Chains (MC) [Rendle et al., 2010].

* GRU4Rec: It uses GRU with ranking based loss to
model user sequences for session-based recommenda-
tion [Hidasi et al., 2016].

* Caser: It employs CNN in both horizontal and vertical
way to model high-order Markov Chains for sequential
recommendation [Tang and Wang, 2018].

* NARM: It employs RNNs with attention mechanism

to capture the users’ preference and sequential behav-
iors [Li et al., 20171.

* SASRec: It uses a left-to-right Transformer model to
capture users’ sequential behaviors for recommenda-
tion [Kang and McAuley, 2018].

* HRL: It utilizes a hierarchical reinforcement learning
algorithm [Zhang er al., 2019a] to revise the user pro-
files and tune the recommendation model on the revised
profiles.


https://github.com/heilsvastika/RAP
https://github.com/heilsvastika/RAP
http://jmcauley.ucsd.edu/data/amazon/
http://www.cp.jku.at/datasets/LFM-1b/
https://grouplens.org/datasets/movielens/1m/
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. () (b) (©) (d) (e) (€3] (2) (h) ) ) k)
Daasets - Metric pop NCF FPMC GRU4Rec Caser NARM SASgRec HRL SASRect BER(%4Rec RAP 1MPIOV
Beauy HR@IO 1880 2017 2348 2585 3054 3171 3350 3528 3566 3601 3743 3.4
NDCG 12.11 13.05 1565 1710 1825 1939 2137 2160 2243 2270 2375 463
Games  FR@I0 2520 2046 3350 3672 4521 4861 5627 56165  57.12 5839  60.41  3.46
NDCG 1974 21.98 22.67 2545 3409 3720 4084 4131  42.15 4269 4461 450
Lapy FR@I0 1941 2328 2578 2829 3123 3253 3465 3497 3544 3647 3763 3.18
NDCG 13.83 1537 1598  19.05 1899 20.63 2372 2159 2473 2512 2628 462
ML.im HR@I0 2861 2660 3613 4254 5189 5929 6201 6230 6259 63.04 6435 2.08
NDCG 22.63 1936 2937 3451 4235 4752 5162 4935 5243 5276 5518 459

Table 2: Performance comparison on sequential recommendation between the baselines and our model (all the values in the table are per-
centage numbers with % omitted). The best performance in each row is in bold font, and the underlined scores represent best baseline
performance. The last column shows the relative improvement of our results against the best baseline, which is significant at p-value< 0.05.

* SASRec™: We design an extension of SASRec by
directly deleting the items with their attention scores
smaller than a given threshold. Comparing with SAS-
Rec, in SASRec™, items with smaller attention scores
have no influences towards preference learning.

* BERT4Rec: It employs the deep bidirectional self-
attention to model user sequences and achieves state-of-
the-art recommendation performance [Sun et al., 2019].

For NCF, GRU4Rec, Caser, SASRec and BERT4Rec, we
use the implementations released by the corresponding au-
thors. FPMC and NARM are implemented by RecBole [Zhao
et al., 2020]. For the rest, we implement them using PyTorch.

Evaluation Metrics

To conduct the performance evaluation, we adopt two widely
used metrics: Hit Ratio(HR) and NDCG [He et al., 2017b;
He et al., 2017al. Considering we only have one test item
for each user, HR@N is equivalent to Recall@N and pro-
portional to Precision@N. In this work, we report HR and
NDCG with N = 10. With paired t-test, performance differ-
ences are considered statistically significant with 0.05 level.
We pair each ground-truth item in the test set with 1, 000 ran-
domly negative items that the user has not interacted with, and
rank these items with the ground-truth item together [Krich-
ene and Rendle, 2020].

Implementation Details

We optimize all models with Adam optimizer [Kingma and
Ba, 2015]. For baselines, we optimize each of them according
to the validation sets. For SASRec™, the attention threshold is
set to 0.015 also according to the validation sets. As to RAP,
the hidden layer size of GRU and the embedding size are set
to 100, the learning rate is set to 0.001, and the batch size is
128. The maximum length of sequential patterns extracted by
SPADE is 5 (i.e., k = 5) when setting the support count to 2.

5.2 Performance Comparison

The overall performance in terms of HR@ 10 and NDCG@ 10
is shown in Table 2. Here, we make the following observa-
tions:

For the conventional models, we see that the performance
of BRP and NCF are relatively poor. It verifies that consid-
ering user-item interactions independently is not effective for
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sequential recommendation. By considering the successive
sequential dependencies, FPMC performs better than BPR
and NCF.

For the neural models, we see that by adopting deep learn-
ing to capture sequential dependencies, these models obtain
a better performance than conventional methods. Comparing
with GRU4Rec, Caser further considers the union and skip
behaviors of sequential patterns, and performs better than the
former.

By utilizing an attention mechanism to highlight the most
relevant items, we also find that the attention-based sequen-
tial models perform better than the none attention-based ones.
This observation demonstrates the necessity of discerning the
relevance between items for a better recommendation. An in-
teresting observation is that HRL performs better than SAS-
Rec, it demonstrates dropping irrelevant items directly is a
more effective strategy than assigning smaller weights on
these items. Similarly, when removing irrelevant items ac-
cording to a threshold, SASRec™ performs better than HRL
and SASRec. For BERT4Rec, it employs deep bidirec-
tional self-attention and beats all the other baselines on four
datasets. ~ Comparing with the attention-based sequential
models and the other baselines, our proposed RAP achieves
significantly better recommendation performance across the
four datasets and two metrics. We believe that the sequence
denoising devised in RAP is effective to enhance recommen-
dation performance.

Datasets Metric RAP"® RAP? RAPT® RAP
Beauty HR@10 3456 3569 3538 3743
NDCG@10  19.56 2023 2001 23.75
Games HR@10 57.08 5823  58.04  60.41
NDCG@10 39.03 4246  42.04  44.61
Lasgv  TR@I0 3479 3605 3566  37.63
NDCG@10 2131 2557 2535 2628
MLm HR@IO 62.12  63.13 6330 64.35
NDCG@10 49.03  53.09 5332 5518

Table 3: Performance comparison of RAP and its three sub-models
over four datasets. (all the values in the table are percentage numbers
with% omitted)
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Figure 2: The left row is an interaction sequence of a user sampled from Beauty dataset. The right two rows are recommendation results of
BERT4Rec and RAP respectively. Items in red box are face care products, while hair care products are in blue box. For each table, numbers
in its left column are index of items, and scores in the right column are the corresponding weights obtained by BERT4Rec and RAP.

5.3 Analysis on RAP

In this section, we conduct experiments on RAP to gain a fur-
ther insightful understanding. Specifically, we consider three
variants as follows:

. RAP'_"{? : we retain sequential patterns, and remove the
contrastive learning strategy by setting r~ to 0;

. RAP;’;: we keep the contrastive learning strategy and
remove sequential patterns from RAP;

* RAP_?: We remove both sequential patterns and the
contrastive learning strategy from RAP;

Table 3 reports the performance comparison between RAP
and its three sub-models on four datasets. We observe that
RAP_? obtains the worst performance over all four datasets.
It demonstrates making sequence denoising is not an easy
task. There is no consistent dominant between RAPJ:’C’ , and

RAP_?, it indicates both fusing sequential patterns and us-
ing contrastive learning process complements each other for
better preference learning. Obviously, RAP obtains the best
performance against these variants on four datasets.

5.4 Qualitative Analysis

In our model, a major novelty is that we formalize the se-
quence denoising problem into a MDP. To obtain a better
understanding why RAP performs better than other models,
shown in Figure 2, we further construct a qualitative anal-
ysis with a case study on Beauty dataset. Specifically, we
present a snapshot of the interaction sequence for a sampled
user, which contains eight items. The first five items are rel-
evant with face care (lipstick, moisturizer and sunscreen) and
hair care (comb and shampoo) respectively. Given the first
five items, we use RAP and BERT4Rec to recommend the
next three items sequentially. For a convenient demonstra-
tion, we only retain the Top-1 recommendation results of two
models.

As we can see, both RAP and BERT4Rec recommend the
first item conditioner correctly, and they both assign higher

weights on comb and shampoo, which are all relevant with
hair care. However, BERT4Rec fails to make a correct rec-
ommendation on the next two items. The reason is that
BERT4Rec is based on the MC assumption, hence the last
visited item plays a key role. This makes BERT4Rec believe
that the user still prefers items related with hair care, result-
ing in higher attention weights on these items (shampoo, con-
ditioner and styler), leading to the wrong recommendation.
On the contrary, RAP can well extract the truly sequential
dependencies relevant with the target item, and recommends
face mask and facial cleanser, which are relevant with face
care. That is, RAP can make a more precise preference in-
ference over the sequence dependencies from a more clean
subsequence.

6 Conclusion

In this paper, we formulate a sequence denoising problem,
and we propose a pattern-enhanced contrastive policy learn-
ing network for denoising and recommendation. RAP casts
the sequential denoising problem as a form of MDP, and ex-
ploits sequential patterns and a contrastive learning process
for preference learning. Extensive experiments show that
RAP achieves state-of-the-art performance against a series
of SOTA solutions.

Right now, we only utilize item interactions to perform de-
noising. This limited resources would hinder the effective
learning of denoising and recommendation. In future, we will
choose to extract sequential dependencies from the knowl-
edge graph, which may bring further benefit towards the de-
noising process.
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