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Abstract
We study the approximation of a target matrix in
terms of several selected columns of another ma-
trix, sometimes called “a dictionary”. This approx-
imation problem arises in various domains, such as
signal processing, computer vision, and machine
learning. An optimal column selection algorithm
for the special case where the target matrix has only
one column is known since the 1970’s, but most
previously proposed column selection algorithms
for the general case are greedy. We propose the first
nontrivial optimal algorithm for the general case,
using a heuristic search setting similar to the clas-
sical A∗ algorithm. We also propose practical sub-
optimal algorithms in a setting similar to the clas-
sical Weighted A∗ algorithm. Experimental results
show that our sub-optimal algorithms compare fa-
vorably with the current state-of-the-art greedy al-
gorithms. They also provide bounds on how close
their solutions are to the optimal solution.

1 Introduction
Let Y = (y1 . . . yN) be a “target” matrix of m rows and N
columns. Let X = (x1 . . . xn) be a “dictionary” matrix of m
rows and n columns. We consider the problem of selecting
k ≤ n columns from X that can be used to linearly approxi-
mate Y as follows:

Y ≈ SA, (1)

where S = (xs1 . . . xsk) is the selection matrix of size m×k,
and A is the coefficient matrix of size k×N . We evaluate the
quality of the selected columns in S with the Frobenius norm:

E(S) =min
A
∥Y − SA∥2F . (2)

This formulation includes several well-known special cases.
Supervised column subset selection corresponds to the case
where N = 1. See, e.g. [Hastie et al., 2009; Boutsidis et
al., 2013]. When N > 1, the problem is sometimes known as
sparse multi-target prediction, or simultaneous sparse approx-
imation (e.g., [Tropp, 2004; Maung and Schweitzer, 2015;
Wan and Schweitzer, 2021b]). When Y = X , it is known
as the unsupervised column subset selection, or unsupervised

feature selection problem (e.g., [Golub and Van-Loan, 2013;
Arai et al., 2015]).

Optimal solutions, as well as approximations within a
constant, are known to be NP-hard even for the N = 1
case [Natarajan, 1995; Davis et al., 1997; Amaldi and Kann,
1998], and for the unsupervised case where Y = X [Shitov,
2017]. This implies that optimal solutions cannot be effi-
cient. Previous studies have developed optimal algorithms
that are exponential in the worst case but improve on exhaus-
tive search, and fast algorithms that are not optimal.

Optimal algorithms for the unsupervised case (Y = X)
were studied in [Arai et al., 2015; He et al., 2019]. Optimal
algorithms for the N = 1 case were studied in [Furnival and
Wilson, 1974; Bertsimas et al., 2016; Bertsimas et al., 2020].
We are not aware of previous studies of optimal algorithms
for the N > 1 case that we focus on in this paper.

The case in which the matrix to be approximated contains
only one column (N = 1) has received a lot of attention.
See, e.g. [Furnival and Wilson, 1974; Qian et al., 2015;
Bertsimas et al., 2016; Hou et al., 2017; Qin et al., 2018;
Huang et al., 2020]. Applications include signal process-
ing (e.g., [Selesnick, 2017; Qin et al., 2018]) and super-
vised feature selection in linear regression (e.g., [Furnival
and Wilson, 1974; Qian et al., 2015; Hou et al., 2017;
Bertsimas et al., 2016]). Convex relaxation approaches to
feature selection replace some natural constraints (sometimes
defined in terms of l0 norm) with other convex constraints.
An example is that the l1 norm is used in the Lasso tech-
nique [Tibshirani, 1996]. Another recent variant is the Pareto
technique [Qian et al., 2015], where the authors treated the
subset selection as a bi-objective optimization problem. The
algorithm was proved to be optimal for data drawn from Ex-
ponential Decay distributions.

Heuristic search algorithms were recently applied to the
unsupervised case where Y = X . See [Arai et al., 2015;
Arai et al., 2016; He et al., 2019]. They model the selection
as a graph search problem, and apply the A∗ or Weighted
A∗ to solve it. Our method is motivated by this approach.
The algorithms developed in these studies can be viewed as
special cases of our method.

In the general case, the matrix Y contains N > 1 columns.
We observe that one cannot simply apply an algorithm for
the N=1 case separately to each column of Y . The chal-
lenge of the general case is to find columns in X that
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Algorithms Time complexity Memory complexity
SOMP [Tropp et al., 2006] O(kmnN) O(m(N + k))
SSBR [Belmerhnia et al., 2014] O(TkmnN) O(m(N + k))
SOLS [Cotter et al., 2005] O(kmnN) O(m(n +N))
CM [Civril and Magdon-Ismail, 2012] O(nN(m + k)) O(m(n +N)) + nN
ISOLS [Maung and Schweitzer, 2015] O(mnN) O(km) + 2n
SPXY [Wan and Schweitzer, 2021b] O(km(n +N)) O(m(n +N))
Greedy variant (this work) O((k2 +m)rxn) O(rxn)

Table 1: Complexity of various approximate algorithms. T is the
number of iterations. rx≤min(m,n).

can simultaneously approximate all columns of Y . Previ-
ously proposed algorithms for this general case are gener-
ally greedy. They include [Maung and Schweitzer, 2015;
Belmerhnia et al., 2014; Civril and Magdon-Ismail, 2012;
Tropp et al., 2006]. Some of these algorithms are generated
from the greedy algorithms for the N = 1 case. For exam-
ple, the Simultaneous Orthogonal Matching Pursuit (SOMP)
Algorithm [Tropp et al., 2006] was generated from the Or-
thogonal Matching Pursuit (OMP) [Tropp, 2004]. Similarly,
the Simultaneous Orthogonal Least Squares (SOLS) Algo-
rithm [Cotter et al., 2005] is a direct generalization of the
Orthogonal Least Squares (OLS) Algorithm [Chen et al.,
1989]. An algorithm established in [Civril and Magdon-
Ismail, 2012] improves the SOLS in term of runtime at the
cost of increased memory. A recursive formulation in [Maung
and Schweitzer, 2015] is used to improve the speed of the
SOLS. A spectral pursuit algorithm presented in [Wan and
Schweitzer, 2021b] is efficient when n and N are large. The
running time and the memory requirements of these algo-
rithms are summarized in Table 1. The complexity of our
greedy variant is discussed in Section 4.

1.1 Our Approach
We propose a heuristic search approach for solving the gen-
eral problem of selecting a subset of k columns from the dic-
tionary matrix to simultaneously approximate the entire target
matrix. Our heuristic functions are based on eigenvalues of
related matrices. With proper selection of the heuristics, our
algorithm can be tuned to give an optimal solution as well
as approximate solutions. The optimal variant runs slow and
works only for small k or small dictionary matrices. The sub-
optimal variants run much faster and produce solutions with
guarantees on how close the solutions are to the optima. The
main contributions are summarized below:
• We describe the first nontrivial algorithm guaranteed to pro-

duce an optimal solution for the general case N ≥ 1.
• We describe suboptimal algorithms that are more accurate

than the greedy variants. Their solutions come with bounds
on how far the solutions are from the optimal solution.

• We describe a greedy algorithm that produces results of
similar accuracy to the current state of the art with a su-
perior running time. It also comes with a bound on how far
the solution is from the optimum.

2 The Proposed Algorithms
Heuristic search algorithms on graphs, such as A∗ [Hart et
al., 1968] and Weighted A∗ [Pohl, 1970], are widely used for
solving search problems that can be modeled as graph search.

Algorithm 1 The Search Algorithm.
Input:
Y : a target matrix of N columns.
X: a dictionary matrix of n columns.
k: the desired number of columns to be selected from X .
f(⋅): a heuristic function.
ry (optional): the desired rank of Y . Default:ry=min(m,N).
rx (optional): the desired rank ofX . Default:rx=min(m,n).
Output: a subset S of k columns.
Data Structures: Two global lists of subsets: the fringe list
F , and the closed list C.
Preprocessing: Dimensionality reduction.
Initialization: Put the empty subset into F .

1: while F is nonempty do
2: Pick node ni (associated with subset Si of size ki) with

the smallest heuristic fi from F . Ties are resolved in
favor of the larger ki.

3: if Si contains k columns then
4: Stop and return Si as the solution subset.
5: else
6: for each child nj of ni do
7: if nj is not in C then
8: Compute fj for nj .
9: Put nj in C.

10: Put nj in F .
11: end if
12: end for
13: end if
14: end while

The goal is to find a path from a root node to a goal node
minimizing the cost associated with the path. The search is
guided by functions associated with each node that are known
as “Heuristics”. With some heuristics, A∗ is guaranteed to be
optimal, but it may be very slow. Experimental results and
theoretical analysis (e.g., [Pearl, 1984]) show that Weighted
A∗ runs faster than A∗. The algorithm we propose in this
paper is similar to the standard (Weighted) A∗.

We describe the search algorithm in terms of a general
heuristic function that will be defined later. It is shown in Al-
gorithm 1. The same search procedure (with different heuris-
tics) was also used in [Arai et al., 2015; Arai et al., 2016;
He et al., 2019; Wan and Schweitzer, 2021a].

In our case, the graph is constructed as follows. A node
contains a subset of selected columns from X and the corre-
sponding f value based on the approximation error of Y . The
root node corresponds to the empty subset. A goal node cor-
responds to a subset of k columns. The children of a node are
created by adding a new column into its parent subset. With-
out loss of generality, we do not distinguish between a node
and a subset. The goal of the algorithm is to search a node of
k columns on the graph, minimizing the heuristic function f .
The fringe list F is a list of nodes that need to be further eval-
uated, and the closed list C is a list of visited nodes that need
not to be added into F again. Employing the standard “best
first” strategy the algorithm selects the node from F with the
smallest f value to be expanded.

There are two differences between the search procedure in
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Algorithm 1 and the typical (Weighted) A∗ procedure. The
first is in Line 9, where the node is immediately inserted into
the closed list, and the second is in Line 10, where the clas-
sical A∗ algorithm first checks if the node is already in the
fringe list, and if so decides whether its value needs to be up-
dated. The justification for these differences is that in our case
all paths leading from the root node to a node are equivalent.
Once a subset node is added into the fringe list other nodes
with the same subset (obtained through a different path) will
have the exact same heuristic values and therefore can be ig-
nored. This implies that the fringe list is a subset of the closed
list. (These observations show that the closed list can be im-
plemented by a hash table, and the fringe list by a heap.)

3 Heuristic Functions
Recall that the error of approximating Y by a linear combina-
tion of k columns in S is given by (2). Let ni be an arbitrary
subset node. Let ki<k be the number of columns selected at
ni, and let Si be the matrix formed by these columns. Let
ki=k−ki be the number of columns that still need to be se-
lected. We consider the error that can be obtained by com-
pleting Si to size k. Let Si of size ki be such completion. Its
error is given by:

e(Si) = E(Si ∪ Si) = min
Ai,Ai

∥Y − SiAi − SiAi∥2F . (3)

In the equation above, E() is the error defined in (2), and
Ai,Ai are arbitrary coefficient matrices. Thus, the smallest
error of a solution subset that contains Si would be:

di =min
Si

e(Si). (4)

This shows that the best choice for the heuristic value fi for
a node ni is fi = di. Unfortunately, computing di is too ex-
pensive since it requires going over all the subsets Si of size
ki. However, we show that there is an effective computational
approach to approximate di. We define two approximations
li and ui, and show that they bound di from below and above.

di = min
Si,Ai,Ai

∥Y − SiAi − SiAi∥2F ,

ui =min
Ai

∥Y − SiAi∥2F = ∥Y − SiA
∗

i ∥2F = ∥Yi∥2F ,

li = ∥Yi − Y i∥2F ,

(5)

where A∗i = arg minAi
∥Y − SiAi∥2F , Yi = Y −SiA

∗

i , Y i is
the best rank ki approximation to Yi.

Lemma 1. For any selection Si of size ki ≤ k:

li ≤ di ≤ ui (6)

with equality if ki = k.

Proof:
• To prove the right hand side inequality, observe that for any
Si the expression for ui is the same as di if the matrix Ai

is taken to be identically 0. This ignores the contribution of
additional columns that may reduce the error further.

• To prove the left hand side inequality:

li = ∥Yi − Y i∥2F ≤ min
Si,Ai

∥Yi − SiAi∥2F (note1)

= min
Si,Ai,Ai

∥Y − SiAi − SiAi∥2F = di

The justification for the inequality in (note1) is that the rank
of SiAi is at most ki.

• It remains to show that the inequalities become equalities
when ki = k. Under this condition, we have: ki = 0, which
implies that Y i = 0 and Si = 0. Therefore, li, di and ui
have same expression: ∥Yi∥2F . ∎

3.1 Three Variants of the Search Algorithm
Clearly, the best choice for the heuristic function is fi = di.
However since it cannot be efficiently calculated, we consider
the linear combination between li and ui. Three options of
the heuristic function are considered. The resulting variants
are stated as in the following theorems.
Theorem 1. (the optimal variant) If fi = li then the algo-
rithm is guaranteed to terminate with an optimal solution.
Theorem 2. (the greedy variant) If fi = ui then the algo-
rithm is greedy and terminates after expanding k nodes.
Theorem 3. (the weighted variant) If fi = li+γui, where
γ≥0, and the algorithm terminates with the subset S∗∗ that
has an error of e∗∗ then

e∗∗ ≤ e∗ + γ∥Y ∥2F ,
where e∗ is the smallest possible error.

3.2 Lemmas
Our proofs of the theorems require the following results.
Lemma 2. If nj is a child of ni then li ≤ lj .
Lemma 3. If nj is a child of ni then uj ≤ ui.
Lemma 4. Consider the choice fi = ui. Let ni be the node
picked at Line 2 of the algorithm. Then the following two
properties hold:
a. For each child nj of ni, the selection size ∣Sj ∣ is larger than

the selection size of all nodes currently in the fringe list.
b. The next node to be picked up will be a child of ni.
Instead of proving Theorem 3 directly, we prove a stronger
version with a tighter bound:
Theorem 4. (the tighter weighted variant) If fi = li+γui,
where γ≥0, and the algorithm terminates at the node n∗∗ with
the subset S∗∗ that has an error of e∗∗, then:

e∗∗ ≤ e∗ + γ(umax − l∗∗)
where e∗ is the smallest possible error, l∗∗ is the value of the
lower bound for n∗∗, and umax be the largest value of the
upper bound for the nodes remaining in the fringe after the
goal node is reached.
To see that Theorem 4 implies Theorem 3, observe that
umax ≤ ∥Y ∥2F and l∗∗ ≥ 0.
Lemma 5. Suppose Theorem 4 is false. Then for any node
nz on the path from the root to an optimal goal node n∗, the
following condition holds: fz < f∗∗.
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Similar theorems were proved in [He et al., 2019] for the
unsupervised case. However, the proof technique used in
their study does not appear strong enough to prove these the-
orems for the supervised case. The tool we use to prove the
lemmas is the interlacing property of eigenvalues [Golub and
Van-Loan, 2013].

The proof of Theorem 1 follows as a corollary of Theo-
rem 3 with γ = 0. Using Lemma 4, Theorem 2 can be proved.
Theorem 3 follows from Theorem 4, and Theorem 4 can be
proved by contradiction and using the results in Lemma 5.
Detailed proofs are given in a supplementary material.

4 Efficient Heuristics Calculation
The following theorem summarizes the computational formu-
las for heuristic values.
Theorem 5. At the node ni where the ki columns in Si have
already been selected from X , additional ki=k−ki columns
still need to be selected. Define: Bi = YiY T

i , where Yi is
defined in (5). Let λ1, . . . , λm be the eigenvalues of Bi in
non-increasing order. Then the values of li, ui defined in (5)
can be calculated by:

ui =
m

∑
j=1

λj = Trace{Bi},

li =
m

∑
j=ki+1

λj = Trace{Bi} −
ki

∑
j=1

λj .

(7)

The proof is given in a supplementary material. From the
formulas in Theorem 5, it is clear that only the top ki eigen-
values of Bi need to be calculated in addition to its trace. But
they have to be calculated for each node, which is impracti-
cal. We proceed to show that there is a matrix related to Bi

with a special structure that enables efficient computation of
these eigenvalues.

Observe that we only need heuristics for the children of the
picked node (parent) at Line 8 in the algorithm. At that point
the parent node ni is known. We show how to efficiently
calculate the heuristics for the children by first performing
an expensive eigendecomposition of the parent. However the
expensive eigendecomposition of the parent can be reduced
by computing eigendecomposition in the initial preprocessing
step. In summary, we discuss three different types of eigen-
decompositions. The first one is the one in the preprocessing
step, which only needs to be performed once. The second is
for each parent, and the third is for the children, where only
the eigenvalues are needed.

4.1 Initial Eigendecomposition
In the preprocessing step we compute the eigenvalues and the
eigenvectors of the matrices By = Y Y T and Bx = XXT .
The eigenvalue decompositions give:

By = UyDyU
T
y , Bx = UxDxU

T
x ,

where Uy, Ux are the eigenvectors and Dy,Dx are diagonal
matrices with the eigenvalues as the diagonal elements.

Let ry be the rank of Y then ry ≤ min(m,N). Let rx be
the rank ofX then rx ≤min(m,n). As we show later we can

ignore zero eigenvalues and their corresponding eigenvectors,
and can replace X,Y with the following information:

Wx = UT
x X, where Wx is of size rx × n.

Dy reduced to size ry × ry .

P =D
1
2
y U

T
y Ux, where P is of size ry × rx.

(8)

With the advancement of randomized algorithms for matrix
decompositions, this initial step can be performed efficiently.
For example, using the algorithm described in [Halko et al.,
2011], the time complexity isO(mryN+mrxn); the memory
complexity isO(mry+mrx+rxn) for the preprocessing step.

4.2 Eigendecomposition for Parent Nodes
Instead of working with the matrix Bi as defined in Theo-
rem 5, we use a related matrix Hi which has same eigenval-
ues as Bi. The special structure of Hi makes the calculations
of these eigenvalues more efficient.
Lemma 6. Let Qi be an orthonormal basis of the current
selection Si (selected from X) of size ki. Let S̃i be the corre-
sponding selection fromWx = UT

x X , and Q̃i be the orthonor-
mal basis of S̃i, then: Qi = UxQ̃i.
Proof: Straightforward.
Lemma 7. Let Bi be the matrix whose eigenvalues are used
in (7) to calculate the heuristics. Let Q̃i be an orthonormal
basis of S̃i of size ki. Given Dy and P from (8), define the
following ry × ry matrix:

Hi =Dy −ZiZ
T
i =Dy −

ki

∑
j=1

zjz
T
j , (9)

where Zi = PQ̃i, zi = P q̃i, and q̃i is the ith column of Q̃i.
Then Hi and Bi have the same eigenvalues (and trace).
Lemma 7 shows thatHi can be computed from ki times rank-
one updates of the diagonal eigenvalue matrix, which enables
specialized routines to compute its eigenpairs (e.g., [Bunch et
al., 1978]). The proof is given in a supplementary material.

4.3 Eigenvalues for Children Nodes
To compute the heuristics at Line 8 in Algorithm 1, eigenval-
ues for children nodes along with their traces are needed. It
is the most expensive part of the algorithm. We show how to
compute those values efficiently.

Let np be the node picked at Line 2 of the algorithm and
let S̃p of size kp be the corresponding selection. Let Q̃p be
the orthonormal basis of S̃p. Let Hp be the matrix computed
according to (9). Suppose a child node nc is created by adding
a column w from Wx to S̃p. From (9) the associated matrix
Hc for the child can be computed by:

Hc =Hp − zczTc (10)

where zc = P q̃c, q̃c = w̄c/∥w̄c∥, and w̄c = (I − Q̃pQ̃
T
p )w.

The key observation here is thatHc is a rank-one modification
of Hp. In this case the eigenvalues of the updated matrix can
be computed efficiently in O(kry) from the eigendecompo-
sition of Hp. See, e.g. [Bunch et al., 1978]. Since computing
zc takes O(krx) this adds up to O(k(rx + ry)n) for comput-
ing the heuristic values for all children of a parent node.
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k f=l f=l+u f=l+5u f=u Forward Backward Leaps OMP FoBa POSS ISOLS
eunite2001 X:367 × 16 Y:367 × 1

5 1.154e6 1.154e6 1.154e6 1.169e6 1.169e6 1.161e6 1.154e6 1.509e6 1.329e6 1.226e6 1.169e6
10 0.920e6 0.920e6 0.931e6 1.035e6 1.035e6 0.920e6 0.920e6 1.043e6 1.043e6 1.013e6 1.035e6

spectf X:267 × 44 Y:267 × 1
5 38.64 38.64 38.64 39.62 39.62 39.20 38.64 40.52 40.52 38.87 39.62
7 37.73 37.73 38.10 38.36 38.36 38.41 37.73 38.74 37.83 37.73 38.36

libras X:360 × 90 Y:360 × 1
3 5192.12 5192.12 5192.12 5192.12 5192.12 5333.00 5192.12 5334.94 5334.94 5194.66 5192.12
5 4723.07 4723.07 4778.88 4796.08 4796.08 5086.07 4723.07 4953.25 4953.25 4777.82 4796.08

duke breast cancer X:44 × 7,129 Y:44 × 1
2 14.67 14.67 14.94 14.94 error error error 14.94 14.94 16.07 14.94
5 - 4.92 5.14 5.14 error error error 5.36 5.36 5.14 5.14

Table 2: Accuracy comparison for the case N = 1. The minimum errors are highlighted. No results (-) is shown if the runtime is longer than
30 minutes. The “error” means that there is an error thrown out during the run of the algorithm. Our optimal variant (f = l) and Leaps are
guaranteed to produce a best selection. Our weighted variant (f = l + γu) are more accurate than other non-optimal algorithms.

4.4 Complexity
Suppose there are T parent nodes, then the overall time com-
plexity is O(mNry +mnrx + T ⋅ k(rx + ry)n); the memory
complexity is O(mry +mrx + rxn + T ⋅ n). For the greedy
variant, since T = k and no fringe/closed lists are needed,
the time complexity is O(mryN +mrxn + k2(rx + ry)n);
the memory complexity is O(mry + mrx + rxn). Assum-
ing rx ≥ ry, n ≥ N and n ≥ m, then the time complexity is
O((k2 +m)rxn); the memory complexity is O(rxn).

5 Bound on Sub-optimality
Both the greedy variant and the weighted variant are not guar-
anteed to produce an optimal solution. We proceed to show
how to obtain bounds on how close their solutions are to
the optimal. The technique we use was originally proposed
by [Hansen and Zhou, 2007].

Consider a run of a non-optimal variant producing the
non-optimal selection S∗∗. Then size(S∗∗) = k, and from
Lemma 1 it follows that l∗∗ = u∗∗ = E(S∗∗). The value
of l∗∗ is related to the optimal value l∗ = u∗ = E(S∗) by:
l∗ ≤ l∗∗. Let b be a value satisfying: l∗∗ ≤ l∗ + b, or, equiva-
lently b ≥ l∗∗ − l∗. We refer to b as a bound, where a smaller
b indicates a better bound, and in particular b = 0 implies an
optimal solution. An important observation is that in heuris-
tic search one can always compute such values. Let F be
the fringe list after the algorithm terminates. Going over
all the remaining nodes in the fringe list we can compute:
lmin = minni∈F li. From Lemma 2 it follows that l∗ ≥ lmin,
so that we can take:

b = l∗∗ − lmin, where: lmin = min
ni∈F

li. (11)

The b is a nontrivial bound on l∗∗ − l∗, and can be calculated.
This gives a provable bound on sub-optimality.

6 Experimental Results
We describe experiments on various datasets that are publicly
available. For the N=1 case we compare the proposed algo-
rithm with the following methods: Leaps [Furnival and Wil-
son, 1974]; Forward [Hastie et al., 2009]; Backward [Hastie

et al., 2009]; OMP [Mallat, 1999]; FoBa [Zhang, 2009];
POSS [Qian et al., 2015]. For the general case (N≥1)
we compare our algorithm with the following algorithms:
SOMP [Tropp et al., 2006]; SSBR [Belmerhnia et al., 2014];
SOLS [Chen and Huo, 2006]; CM [Civril and Magdon-
Ismail, 2012]; ISOLS [Maung and Schweitzer, 2015]. The
results for SOLS, CM and ISOLS are same. (They are dif-
ferent in terms of runtime.) The results for ISOLS are shown.
The implementations used for Leaps, Forward, and Backward
are the functions in the R library “leaps”. SOMP and SSBR
are implemented in Python. Other implementations are pub-
licly available. Experiments are conducted on iMac with Pro-
cessor Intel Quad-Core i7 and Memory 32GB.

6.1 Comparison
As discussed in Section 3.1, with different choices of the
heuristic function, our algorithm produces optimal, subopti-
mal and greedy results. We compare those results with the
current state-of-the-art algorithms for the N=1 case and the
general case where N>1.

Comparison for the N=1 case. The results for various
datasets are shown in Table 2. As expected, our optimal vari-
ant (f=l) gives identical results to Leaps. Recall that our opti-
mal variant also works when N>1. The errors for the greedy
variant (f=u) are same as Forward and ISOLS. The errors for
the weighted variant (f=l+γu) are between the optimal so-
lution and the greedy solution. They are more accurate than
other non-optimal algorithms.

Comparison for the general case. The results for various
datasets are shown in Table 3. The first three datasets are split
evenly and experimented without intercept. The remaining
datasets are real multi-target datasets tested with intercept.
(The constant vector 1 is added into the dictionary matrixX .)

Our optimal variant (f=l) is guaranteed to produce optimal
solutions. The errors for the greedy variant (f=u) are same as
the results of ISOLS. The errors for f=l+γu are between the
optimal solution and the greedy solution.

Observe that the sub-optimality bounds are meaningful. In
fact, in some cases the sub-optimality bound is 0 which im-
plies that the solution is optimal even though the algorithm is
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k
f=l f=l+u f=l+2u f=l+10u f=u SOMP SSBR ISOLSerror error bound:b error bound:b error bound:b error bound:b

libras X: 360 × 45 Y: 360 × 46
3 6,010 6,010 0 6,010 0.947 6,010 0.949 6,169 0.95 6,047 6,169 6,169
5 5,587 5,587 0.941 5,594 0.987 5,623 0.987 5,686 0.987 5,632 5,686 5,686

spectf X: 267 × 22 Y: 267 × 23
5 423,909 428,524 0.635 433,697 0.639 433,697 0.639 433,697 0.639 431,650 433,697 433,697

10 374,453 377,282 0.842 377,282 0.842 377,282 0.842 377,282 0.842 384,156 377,313 377,282
duke breast cancer X: 44 × 3,565 Y: 44 × 3,565

5 - 62,040 0.071 62,040 0.071 62,191 0.074 62,191 0.074 62,976 62,191 62,191
25 - 18,040 0.159 18,700 0.189 18,700 0.189 18,700 0.189 213,17 18,700 18,700

scm20d X: 8,966 × 61 Y: 8,966 × 16
5 5.727e9 5.727e9 0.727 5.786e9 0.748 6.007e9 0.758 6.007e9 0.758 6.159e9 6.007e9 6.007e9
7 - 5.205e9 0.882 5.239e9 0.883 5.367e9 0.886 5.367e9 0.886 5.24e9 5.367e9 5.367e9

mediamill X: 43,907 × 120 Y: 43,907 × 101
5 116,292 116,292 0 116,292 0.395 116,899 0.398 117,894 0.403 118,744 117,894 117,894
10 - - - - - 112,975 0.579 113,931 0.583 114,403 113,931 113,931

oes97 X: 334 × 263 Y: 334 × 16
5 - 2.120e9 0.597 2.126e9 0.598 2.126e9 0.598 2.126e9 0.598 2.498e9 2.126e9 2.126e9
7 - 1.704e9 0.756 1.708e9 0.757 1.708e9 0.757 1.708e9 0.757 2.002e9 1.708e9 1.708e9

Table 3: Accuracy comparison for the N > 1 case. Our optimal variant (f = l) is guaranteed to produce a best selection. The suboptimal
results come with bounds. The bounds are normalized by the solution errors.

SOMP SSBR ISOLS f=l+5u f=l+u
duke breast cancer: 44 × 7,129; X = Y

error / b 58,330 52,629 52,629 52,034 / 0.13 52,629 / 0.14
time (s) 4 30 42 1.9 1.8

Sift: dense 128 × 1,000,000; X = Y
error / b - - - 5.15e10 / 0.23 5.18e10 / 0.23

time (min) - - - 17 = 2 + 15 17 = 2 + 15
Day1: sparse 20,000 × 3,231,957; X = Y ; rx = ry = 500

error / b - - - 284,222 / 0.097 284,455 / 0.098
time (min) - - - 24 = 17 + 7 24 = 17 + 7

Table 4: Runtime comparison on big datasets with k=20. The “-”
indicates that the algorithm did not terminate after 50 minutes.

not guaranteed to produce optimal solutions.

Comparison of the running time. To evaluate the running
time we use very large datasets. Table 4 shows the results.
Taking f=l+u with the Day1 dataset as an example, the total
cost is 24 minutes: 17 minutes for initial processing plus 7
minutes for searching. Other algorithms are not practical for
big datasets.

6.2 The Effect of the Parameter γ
We investigated the influence of the parameter γ on the accu-
racy and runtime. The results are shown in Figure 1. The red
curve corresponds to the change of errors as the increase of
γ. The blue curve is for the change of the runtime.Observe
that as the increase of γ, the error goes up from an optimal
solution to a greedy solution, while the runtime decreases.

7 Conclusion
We study a common setting where several columns of one
matrix are selected to simultaneously approximate all the
columns of another matrix. While many algorithms were de-
veloped for the case where the target matrix has a single col-
umn, we are only aware of approximate algorithms for the
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Figure 1: The effect of γ on accuracy and runtime for the general
case. The left panel: libras dataset N=46, k=5. The right panel:
duke breast cancer N=3,565, k=10.

general case. We observe that the general case cannot be re-
duced to the one column case, as the challenge is to select
columns that approximate the entire target matrix.

The algorithms that we develop are similar to the
(Weighted) A∗ algorithm. We show that with 0 assigned to
a weight parameter, the algorithm is guaranteed to be opti-
mal, but its running time may be very slow. Other nonzero
choices give practical algorithms that beat the accuracy of the
current state of the art algorithms.

In addition to producing a solution, our algorithms calcu-
late bounds on how far the solutions are from the optimum.
The quality of these bounds are data dependent. In some
cases they provide no useful information, but in other cases
it shows that the computed result is very close to the optimal
solution. This is the case even for the greedy variant of our
algorithm. It produces the same result as other known algo-
rithms but gives the additional information of a bound.

While there is a significant similarity between our algo-
rithm and the classical theory of the (Weighted) A∗, we are
not aware of direct applications of A∗ to the problem dis-
cussed here. In particular, our upper bound does not seem to
have a parallel in the general theory.
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