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Abstract

Convolution learning on graphs draws increasing
attention recently due to its potential applications
to a large amount of irregular data. Most graph
convolution methods leverage the plain summa-
tion/average aggregation to avoid the discrepancy
of responses from isomorphic graphs. However,
such an extreme collapsing way would result in a
structural loss and signal entanglement of nodes,
which further cause the degradation of the learn-
ing ability. In this paper, we propose a simple
yet effective Graph Deformer Network (GDN) to
fulfill anisotropic convolution filtering on graphs,
analogous to the standard convolution operation
on images. Local neighborhood subgraphs (act-
ing like receptive fields) with different structures
are deformed into a unified virtual space, coordi-
nated by several anchor nodes. In the deformation
process, we transfer components of nodes therein
into affinitive anchors by learning their correla-
tions, and build a multi-granularity feature space
calibrated with anchors. Anisotropic convolutional
kernels can be further performed over the anchor-
coordinated space to well encode local variations
of receptive fields. By parameterizing anchors and
stacking coarsening layers, we build a graph de-
former network in an end-to-end fashion. Theo-
retical analysis indicates its connection to previous
work and shows the promising property of graph
isomorphism testing. Extensive experiments on
widely-used datasets validate the effectiveness of
GDN in graph and node classifications.

1 Introduction
Graph is a flexible and universal data structure consisting
of a set of nodes and edges, where nodes can represent any
kind of object and edges indicate some relationship between
a pair of nodes. Research on graphs is not only important
in theory, but also beneficial to wide backgrounds of appli-
cations. Recently, advanced by the powerful representation
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capability of convolutional neural networks (CNNs) on grid-
shaped data, the study of convolution on graphs is drawing
increasing attention in the fields of artificial intelligence and
data mining. So far, many graph convolution methods [Kipf
and Welling, 2017; Hamilton et al., 2017; Jiang et al., 2019;
Gao and Ji, 2019; Zhao et al., 2019; Gao et al., 2020;
Xu et al., 2020; Zhang, 2020; Hong et al., 2021] have been
proposed, and raise a promising direction.

The main challenge is the irregularity and complexity of
graph topology, causing difficulty in constructing convolu-
tional kernels. Most existing works take the plain summa-
tion or average aggregation scheme, and share a kernel for all
nodes as shown in Fig. 1(a). However, there exist two non-
ignorable weaknesses for them: i) losing the structure infor-
mation of nodes in the local neighborhood, and ii) causing
signal entanglements of nodes due to collapsing to one cen-
tral node. Thereby, an accompanying problem is that the dis-
criminative ability of node representation would be impaired,
and further non-isomorphic graphs/subgraphs may produce
the same responses.

Contrastively, in the standard convolutional kernel used for
images, it is important to encode the variations of local re-
ceptive fields. For example, a 3 × 3 kernel on images can
well encode local variations of 3 × 3 patches. An important
reason is that the kernel is anisotropic to spacial positions,
where each pixel position is assigned to a different mapping.
However, due to the irregularity of graphs, defining and op-
erating such an anisotropic kernel on graphs are intractable.
To deal with this problem, Niepert et al. [Niepert et al., 2016]
attempted to sort and prune neighboring nodes, and then run
different kernels on the ranked size-fixed nodes. However,
this deterministic method is sensitive to node ranking and
more prone to being affected by graph noises. Furthermore,
some graph convolution methods [Veličković et al., 2018;
Wang et al., 2019] introduce an attention mechanism to learn
the importance of nodes. Such methods emphasize min-
ing those significant structures/features rather than designing
anisotropic convolution kernels, so they cannot well represent
local variations of structures in essence.

In this work, we propose a novel yet effective graph de-
former network (GDN) to implement anisotropic convolu-
tional filtering on graphs as shown in Fig. 1(b). Inspired
by image-based convolution, we deform local neighborhoods
of different sizes into a virtual coordinate space, implicitly
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(a) Traditional aggregation-based convolution

(b) Graph deformer convolution

Figure 1: An illustration of difference between the previous convo-
lution and our proposed graph deformer convolution. The red node
is a reference node. (a) In traditional graph convolution, the con-
volution kernel is shared for all nodes due to the plain aggregation
over all nodes in the neighborhood. (b) In our method, the irregu-
lar neighborhood is deformed into a unified anchor space, which is
a pseudo-grid shape, and then the anisotropic fully-connected con-
volution kernel can be used to encode the variations of deformable
features.

spanned by several anchor nodes, where each space granular-
ity corresponds to one anchor node. In order to perform space
transformation, we define the correlations between neighbors
and anchor nodes, and project neighboring nodes into the reg-
ular anchor space. Thereby, irregular neighborhoods are de-
formed into the anchor-coordinated space. Then, the image-
like anisotropic convolution kernels can be imposed on the
anchor-coordinated plane, and local variations of neighbor-
hoods can be perceived effectively. Due to the importance
of anchors, we also deform anchor nodes with adaptive pa-
rameters to match the feature space of nodes. As anisotropic
convolution kernels are endowed with the fine-grained en-
coding ability, our method can better perceive subtle varia-
tions of local neighborhood regions as well as reduce signal
confusion. We also show its connection to previous work,
and theoretically analyze the stronger expressive power and
the satisfactory property of the isomorphism test. Extensive
experiments on graph/node classification further demonstrate
the effectiveness of the proposed GDN.

2 Our Approach
In this section, we elaborate on the proposed graph deformer
method. Below we first give an abstract formulation for our
method and then elaborate on the details.

Denote G = (V, E) as an undirected graph , where V rep-
resents a set of nodes with |V| = n and E is a set of edges
with |E| = e. According to the link relations in E , the corre-
sponding adjacency matrix can be defined as A ∈ Rn×n.
And X ∈ Rn×d is the feature matrix. To state conve-
niently, we use Xi· or xi to denote the feature of the i-th
node. Besides, for a node vi, the first-order neighborhood
consists of nodes directly connected to vi, which is denoted
as N 1

vi
= {vj |(vj , vi) ∈ E}. Accordingly, we can define s-

order neighborhood N s
vi

as the set of s-hop reachable nodes.

2.1 A Basic Formulation
Given a reference node vr in graph G, we need to learn its
representation based on the node itself as well as its contex-

tual neighborhood Nvr . However, the irregularity causes dif-
ficulty in designing anisotropic spatial convolution. To ad-
dress this problem, we introduce anchor nodes to deform the
neighborhood. All neighboring nodes are calibrated into a
pseudo space spanned by anchors. We denote the set of an-
chor nodes by V = {v0, v1, ..., vm−1}. The convolution on
Nvr

is formulated as:

x̃r = (G ∗ f)(vr) = C(F(r),K), (1)

F
(r)
i =

∑
vt∈Nvr

Dvt→vi(xi,xt,Θ), (2)

where

• v·,x·: an anchor node and a pseudo coordinate vector
(a.k.a. feature vector). Please see Section 2.2 for anchor
generation.

• D: the deformer function. It transforms node vt into
a virtual coordinate space spanned by anchors. Θ is the
deformer parameter to be learned. Please see Section 2.3
for details.

• F(r) ∈ Rm×d: the deformed multi-granularity feature
from the neighborhood of node vr. Each granularity
F

(r)
i corresponds to an anchor node vi.

• C,K: the anisotropic convolution operation on anchor
space and convolution kernel. G ∗ f represents filter
f acting on graph G. The relationship between anchor
nodes can be built by some metrics such as Cosine dis-
tance, and anchor nodes may be formatted as a pseudo
2-D grid just like the patch in images. Please see the
details in Section 2.3.

2.2 Anchor Generation
Anchor nodes are crucial to the graph convolution process
because neighborhood regions are unitedly calibrated with
them. Rigid anchors will not adapt to the variations of the
feature space during convolution learning. Thus we choose
to optimize anchor nodes as one part of the entire network
learning. In the beginning, we cluster nodes randomly sam-
pled from the graph as initial anchors. When enough anchors
cover the space of neighborhood nodes, the anchors can be
endowed with a strong expressive ability to encode neighbor-
hoods like a code dictionary. Formally, we use the K-means
clustering to generate initial anchors,

V ← Clustering {(vi,xi)|vi ∈ Vsampling}, (3)

where Vsampling is the sampled node set, in which each node
is randomly sampled from the graph, V = {(vk,xk)}|m−1k=0
is the initial anchor set generated by clustering, in which vk
represents k-th anchor node and xk represents its feature vec-
tor, m is the number of anchor nodes. Note when given an-
chor nodes, the response of our method will be invariant to
permuted nodes of one graph during the training as well as
testing stage. The clustering algorithm might affect the final
anchors due to random sampling for initialization, but it can-
not affect the property of permutation invariance, which just
like random initialization on the network parameters.
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Due to the sparsity of graphs, in practice, several anchors
are sufficient to encode each neighborhood. To better collab-
orate with node/feature variations during graph convolution
learning, we transform the initial anchors into a proper space
by parameterizing them:

ak = ReLU (WAxk + bA), k = 0, 1, · · · ,m− 1, (4)

where WA,bA are the learnable parameters, and ReLU is the
classic activation function. Besides, other flexible multi-layer
networks may be selected to learn deformable anchors.

2.3 Deformer Convolution
Space Transformation
Now we define the deformer function D in Eqn. (2), trans-
forming neighbor nodes to the anchor space. For each node
vj ∈ Nvr

(nr = |Nvr
|), we derive the anchor-related feature

(also query feature) and value feature vectors as

qj = ReLU (WQxj + bQ), j = 0, 1, · · · , nr − 1, (5)
uj = ReLU (WUxj + bU ), j = 0, 1, · · · , nr − 1, (6)

where WQ,WU are the learnable weight matrices, and
bQ,bU are the biases. The query feature qj indicates how to
transform vj to the anchor space by interacting with anchors,
and the value vector uj is the transformable component to the
anchor space.

For the neighborhood Nvr of node vr, the cor-
relation to anchors defines a set of weights α =
{α0,0, · · · , α0,m−1, · · · , αnr−1,0, · · · , αnr−1,m−1}, which
measures the scores of all nodes within the neighborhood pro-
jected onto the directions of anchor nodes. Formally,

αj,k =
exp(〈qj ,ak〉/

√
d)∑

k′ exp(〈qj ,ak′〉/
√
d)
, k′ = 0, 1, · · · ,m− 1,

(7)

where 〈·, ·〉 denotes the inner production, 1√
d

is the scaling
factor as [Vaswani et al., 2017], then normalization is done by
softmax function. αj,k may be viewed as the attention score
of the node vj w.r.t. the anchor vk. After obtaining the at-
tention score, the irregular neighborhood can be transformed
into the anchor-coordinated space,

ũk =
∑
j

αj,kuj , j = 0, 1, · · · , nr − 1. (8)

The deformed components are accumulated on each an-
chor, and form the final deformed features. Thus, any neigh-
borhood with different sizes can be deformed into the virtual
normalized space coordinated by anchors. In experiments,
for simplicity, the query feature and value feature are shared
with the same parameters in Eqns. (5) and (6).

Anisotropic Convolution in the Anchor Space
Afterward, the s-hop neighborhood of node vr is de-
formed into the size-fixed anchor space, i.e., N s

vr
→

{ũ0, ũ1, · · · , ũm−1}. The anisotropic graph convolution can
be implemented by imposing different mapping on each an-
chor as

x̃(s)
r = ReLU (

∑
i

Kᵀ
i ũi + b), i = 0, 1, · · · ,m− 1, (9)

where x̃
(s)
r ∈ Rd′

, the matrix Ki is a d × d′ weight imposed
on the features w.r.t. an anchor, and b is the bias vector.

In the convolution process, different filter weights are im-
posed on different features of anchor nodes, which is an
anisotropic filtering operation. In contrast to the traditional
aggregation method, the deformer convolution has two as-
pects of advantages: i) well preserving structure information
and reducing signal entanglement; ii) transforming different-
sized neighborhoods into the size-fixed anchor space to well
advocate anisotropic convolution like the standard convolu-
tion on images.

Multi-Scale Extension
Intuitively, the first-order neighborhood is necessary to be
used for node aggregation, because it indicates that two nodes
linked by an edge are always similar. However, real-world
graphs are often so sparse, and there exist many nodes that
are similar to each other but not linked by direct edges. The
first-order neighborhood alone is not sufficient for extract-
ing useful features and preserving the structural informa-
tion. It is natural to incorporate higher-order proximity to
capture more information. Generally, second-order informa-
tion is sufficient as most works [Abu-El-Haija et al., 2019;
Wang et al., 2016; Tang et al., 2015]. Higher-order infor-
mation can also be considered, but the computational com-
plexity will increase. It can be understood as a trade-off of
expressive ability and computational complexity. In this pa-
per, we consider both first-order and second-order neighbor-
hoods. Specifically, we deform both first-order and second-
order neighborhoods into feature space represented by anchor
nodes, and convolve over them respectively. Then the learned
different neighborhood representations and the original node
feature are concatenated as the final filtering response,

x̃r ← [xr; x̃(1)
r ; x̃(2)

r ], (10)

where x̃r denotes the convolution response on the s-order
neighborhoodN s

vr
of node vr. Further, we can stack multiply

layers to extract robust features on larger receptive fields.

2.4 Graph Coarsening
Similar to the pooling in standard CNN, the coarsening on
graphs could enlarge the receptive field of nodes as well as re-
duce the computation cost. Below we simply introduce graph
coarsening used here.

Graph classification. We employ the graph cut used
in [Jiang et al., 2019] to partition an entire graph into several
subgraphs. During graph coarsening, a binary cluster matrix
Z ∈ Rn×c is obtained, where only one element in each row is
non-zero, i.e., Zic = 1 when the vertex vi falls into the cluster
c. Then the adjacency matrix and feature matrix of the input
graph are transformed into

A′ ← ZᵀAZ, X′ ← Zᵀ ⊗ X̃, (11)

where ⊗ represents a max operation. The output can be used
as the input of the next convolutional layer. Then the graph
convolution and coarsening can be alternatingly stacked into
a deep network.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1648



Node classification. We do not need to remove nodes for
node classification task. The pooling is node-wise diffusion
on a local receptive field, and can be performed over multi-
scale neighborhoods. The pooling over S scale neighbor-
hoods w.r.t. the reference node vr is
P(G(vr)) = P({xj |vj ∈ N s

vr
, s = 1, · · · , S}), (12)

where the pooling P is usually defined as “max” or “mean”.
In practice, their performance has little difference, so we
choose the mean operation in experiments.

2.5 Neural Network Training
For graph classification, we adopt the cross-entropy as cost
function to learn graph representation. However, in the sce-
nario of semi-supervised node classification, a main limita-
tion is that a small portion of nodes is annotated as the train-
ing set. Our aim is to use labeled nodes as well as graph
structure to train a model with a good generalization ability.
A straightforward way is to add a regularization term to avoid
overfitting. To this end, we employ a global consistency con-
straint through positive pointwise mutual information as used
in [Zhuang and Ma, 2018] to regularize the loss function. Fi-
nally, backpropagation algorithm is used to compute the gra-
dient and the stochastic gradient descent algorithm updates
neural network parameters.

2.6 Computational Complexity
For the computational complexity, we analyze the main
module of graph convolution. In one-layer convolution,
GCN [Kipf and Welling, 2017] is about O(edS + ndd′S),
where n, e are the numbers of nodes and edges, S is the scale
of the neighborhood, and d, d′ are the dimensions of the in-
put/hidden layers. For our GDN model, the computational
complexity is mainly from two parts, i.e., “Space Transfor-
mation” and “Convolution in Anchor Space”, which are about
O(emd2S) and O(nmdd′S), respectively, where m is the
number of anchor nodes. Thus, the total computational com-
plexity is O(emd2S + nmdd′S), which is linearly propor-
tional to GCN with the factor m when d and d′ have the same
order number.

3 Theoretical Analysis
We present a theoretical analysis about the expressive power
of several aggregation methods including the mean, sum, and
graph deformer operation. Inspired by [Xu et al., 2019], we
evaluate them by verifying whether graphs are isomorphic.
Then, we give the following propositions.
Proposition 1 There exists a set of network parameters that
make two non-isomorphic graphs G1 and G2 can be distin-
guished by graph deformer process, but cannot be distin-
guished by mean/sum aggregation.
Proposition 2 The proposed anisotropic graph deformer
convolution can be as powerful as the Weisfeiler-Lehman
(WL) graph isomorphism test.

The proofs of the above two propositions can be found in
the supplementary material1. We can conclude that the ex-
pressive power of the proposed graph deformer network is

1https://github.com/wtzhao1631/gdn

provably stronger than mean/sum aggregation, which can ac-
complish an injective mapping as powerful as the Weisfeiler-
Lehman (WL) graph isomorphism test.

4 Experiments
In this section, we carry out extensive experiments to as-
sess the proposed GDN model on both graph and node
classification tasks. For node classification, three citation
graphs are used: Cora, Citeseer, and Pubmed. We adopt the
data preprocessed in the work [Yang et al., 2016], and fol-
low its data partitioning rules. For graph classification, we
adopt eight datasets [Jiang et al., 2019] to assess our GDN
method: MUTAG, PTC, NCI1, PROTEINS, ENZYMES,
IMDB-BINARY, IMDB-MULTI, and REDDIT-MULTI-12K.

4.1 Experimental Setups
Graph classification. A three-layer GDN model is applied
for the learning of overall graphs. Each convolutional layer
is followed by a pooling/coarsening layer with a downsam-
pling rate of 0.5. The channels of the three convolutional
layers are set to {64, 128, 256}, respectively. Finally, a fully-
connected layer with the softmax function directly predicts
the label. The network structure can be simply represented
as Input− C(64)− P(0.5)− C(128)− P(0.5)− C(256)−
P(all)−FC(softmax)−Output, where C, P andFC denote
convolution, pooling/coarsening, and fully connected layer,
respectively. P(all) means that only a supernode is retained
at the last pooling layer. The number of anchor nodes is set
to 16. The scale of the neighborhood is set to 2, i.e, including
the features of the node itself, first-order and second-order
neighborhoods. We randomly divide the dataset with the pro-
portion of 9:1, where 9 folds are as the training set and the
remaining 1 fold is as the testing set. The accuracies are re-
ported in terms of “mean ± standard deviation” of 10-fold
cross-validation. We adopt Momentum optimizer to train the
network for 500 epochs, where its batch size, initial learning
rate, decay rate and momentum are set to 128, 0.05, 0.95 and
0.9, respectively. The dropout rate is set to 0.5, and the ReLU
unit is leveraged as a nonlinear activation function.
Node classification. Two convolutional layers are used to
form the network architecture, each of which is followed by
a pooling layer. Then a fully connected layer and an output
layer with the softmax function generate the final predictions.
The network structure can be simply represented as Input −
C − P(mean)− C − P(mean)−FC(softmax)−Output,
where P(mean) indicates the “mean” operation in the pool-
ing layer. Also, the number of anchor nodes is set to 16 and
the scale of the neighborhood is set to 2. We adopt Adam
optimizer to train the model for 500 epochs with an initial
learning rate of 0.05, decay rate of 0.95. The dropout rate
is set to 0.5 and the ReLU unit is nonlinear activation func-
tion. We run 10 experiments to take the averaged accuracy
“mean±standard deviation” as the metric to measure the per-
formance.

4.2 Comparison with State-of-the-arts
Graph classification. Table 1 shows the results on graph
classification. Overall, our GDN approach achieves state-of-
the-art or comparable performance and obtains remarkable
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Method MUTAG PTC NCI1 ENZYMES PROTEINS IMDB-BINARY IMDB-MULTI REDDIT-MULTI-12K

WL 80.72± 3.00 56.97± 2.01 80.13± 0.50 53.15± 1.14 72.92± 0.56 72.86± 0.76 50.55± 0.55 -
GK 81.66± 2.11 57.26± 1.41 62.28± 0.29 26.61± 0.99 71.67± 0.55 65.87± 0.98 43.89± 0.38 31.82± 0.08
DGK 82.66± 1.45 57.32± 1.13 62.48± 0.25 27.08± 0.79 71.68± 0.50 66.96± 0.56 44.55± 0.52 32.22± 0.10
PSCN 92.63± 4.21 60.00± 4.82 78.59± 1.89 - 75.89± 2.76 71.00± 2.29 45.23± 2.84 41.32± 0.42
NgramCNN 94.99± 5.63 68.57± 1.72 - - 75.96± 2.98 71.66± 2.71 50.66± 4.10 -
IGN 84.61± 10 59.47± 7.3 73.71± 2.6 - 75.19± 4.3 71.27± 4.5 48.55± 3.9 -
PPGN 90.55± 8.7 66.17± 6.54 83.19± 1.11 - 77.2± 4.73 72.6± 4.9 50± 3.15 -
GNTK 90.0± 8.5 67.9± 6.9 84.2± 1.5 - 75.6± 4.2 76.9± 3.6 52.8± 4.6 -
CapsGNN 86.67± 6.88 - 78.35± 1.55 54.67± 5.67 76.28± 3.63 73.10± 4.83 50.27± 2.65 46.62± 1.9
GIC 94.44± 4.43 77.64± 6.98 84.08± 1.77 62.50± 5.12 77.65± 3.21 76.70± 3.25 51.66± 3.40 42.98± 0.87
GIN 89.4± 5.6 64.6± 7.0 82.7± 1.7 - 76.2± 2.8 75.1± 5.1 52.3± 2.8 -
GDN (3L) 97.39± 2.65 75.57± 7.56 86.03± 1.23 67.5± 6.96 81.32± 3.09 79.3± 3.26 55.2± 4.34 42.0± 1.9

Table 1: Comparison with state-of-the-arts on graph classification. The number in parentheses (∗) denotes the number of convolutional layers
in the neural network.

Method Cora Citeseer Pubmed

GCN 81.5 70.3 79.0
GAT 83.0 72.5 79.0
DGCN 83.5 72.6 80.0
JK-Net 79.71± 0.62 69.03± 0.55 78.17± 0.27
GIN 79.49± 0.65 67.78± 0.89 78.37± 0.29
GraphNAS 83.7 73.5 80.5
g-U-Nets 84.4± 0.6 73.2± 0.5 79.6± 0.2
GRAPH-BERT 84.3 71.2 79.3
DiffNet 85.1 72.7 78.3
GDN(1L) 85.16± 0.47 73.13± 0.83 79.8± 0.30
GDN(2L) 84.76± 0.59 73.77± 0.45 80.77± 0.24

Table 2: Comparison with state-of-the-arts on node classification.

improvement on most datasets. For graph kernel-based meth-
ods (WL [Shervashidze et al., 2011], GK [Shervashidze et
al., 2009] and DGK [Yanardag and Vishwanathan, 2015]), we
can observe the WL kernel can obtain better results on most
datasets than GK and DGK. In contrast to WL, the proposed
GDN is able to improve by a large margin of 5.9% on NCI1,
14.35% on ENZYMES, 6.44% on IMDB-BINARY, etc. Re-
cently the neural network-based works (PSCN [Niepert et al.,
2016], NgramCNN [Luo et al., 2017], IGN [Maron et al.,
2018], PPGN [Maron et al., 2019], GNTK [Du et al., 2019],
CapsGNN [Xinyi and Chen, 2018], GIC [Jiang et al., 2019],
GIN [Xu et al., 2019]) are superior to traditional machine
learning methods. Compared to GIC, the GDN model still
achieves superior performances, about 3 percentages on av-
erage, although a relatively lower result is gotten on the PTC
dataset. This may be attributed to differences in the dataset
or less appropriate parameter settings. Compared with these
baseline methods, GDN can render impressive performance.

Node classification. We compare the performance of GDN
against several baseline works: GCN [Kipf and Welling,
2017], GAT [Veličković et al., 2018], DGCN [Zhuang and
Ma, 2018], JK-Net [Xu et al., 2018], GIN [Xu et al., 2019],
GraphNAS [Gao et al., 2020], g-U-Nets [Gao and Ji, 2019],
GRAPH-BERT [Zhang et al., 2020] and DiffNet [Zhang,
2020]. The accuracies are reported in Table 2, indicating
that our GDN obtains a remarkable improvement. Compared
to GCN, GAT, JK-Net, and GIN, our GDN achieves a rela-
tively large gain. We attribute this improvement to the graph
deformer convolution. Though GDN utilizes global consis-
tency constraint, it still obtains better results than DGCN.
Compared to recent methods GraphNAS, g-U-Nets, GRAPH-
BERT, and DiffNet, GDN still achieves superior performance
on these three datasets. These demonstrate that the proposed
GDN method performs well on various graph datasets by

Method Cora Citeseer Pubmed
GDN-N (0) 54.95± 2.00 55.7± 1.26 72.94± 1.58
GDN-N (0,1) 82.62± 0.67 72.56± 0.95 80.24± 0.22
GDN-N (0,1,2) 84.76± 0.59 73.77± 0.45 80.77± 0.24

Table 3: Comparison on the scales of neighborhood regions.
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The number of anchor nodes
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71.0

71.5

72.0
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cy

(b) Citeseer
Figure 2: Comparison on the number m of anchor nodes.

building the graph deformer process, where structure varia-
tions can be well captured and fine-grained node features can
be extracted to enhance the discriminability between nodes.
In summary, the remarkable gains indicate that the proposed
GDN is effective to deal with graph classification.

4.3 Ablation Study
The scale s of neighborhood region. The influences of
neighborhood scales are reported in Table 3. GDN-N (0) de-
notes that only the feature of the node itself is used, GDN-
N (0,1) includes the features of the node itself and first-order
neighborhood, and so on. Due to the lack of structural infor-
mation, we find that the performance of GDN-N (0) is obvi-
ously lower. As more information is considered, the accuracy
of GDN-N (0,1,2) is generally superior to GDN-N (0,1). This
validates the importance of local neighborhood information,
which is also a crucial property of traditional CNNs.

The number m of anchor nodes. We select the value m
in the range [1, 25] to observe the changes of performance.
As shown in Fig. 2, the performance of GDN indeed varies
with the number of anchor nodes, but the accuracy trend is
generally similar on different datasets (increasing first, then
turning to degrade or be stable). Specifically, when m = 1,
the accuracies are significantly lower, because only one an-
chor node is used, which is similar to sum aggregation. When
m = 2, the performance is also relatively lower, 2 anchor
nodes are insufficient to capture more variations. Then, the
performance is relatively stable with m increasing. As real-
world graph data is rather sparse, e.g., on average about 2
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(a) node v20 (b) node v30 (c) node v54 (d) node v153

Figure 3: Visualization of attention scores in the first-order neighborhood of nodes v20 and v30 in the Cora, and v54 and v153 in the Citeseer
dataset. (a) Node v20 has 5 neighbors while (b) node v30 has 6 neighbors. (c) Node v54 has 3 neighbors while (d) node v153 has 4 neighbors.

edges for each node in Cora and Citeseer datasets, so a few
anchors matching the neighborhood size should be saturated
to represent the variations without the information loss.
Graph convolution and graph coarsening. We further ex-
plore the effectiveness of graph convolution by removing the
pooling layer from the GDN model, named as “GDN w/o P”.
Similarly, “GDN w/o C” means that graph convolution is re-
moved. Table 4 shows the performance on citation datasets.
Compared to GDN, both “GDN w/o P” and “GDN w/o C”
obtain lower performances. But “GDN w/o P” is better than
“GDN w/o C”, while they are comparable on the Pubmed
dataset. It indicates that the deformer convolution indeed im-
proves the discriminability of nodes. Note that “GDN w/o
C” has no convolutional layer, but average aggregation still is
performed in the pooling layer for node classification.
Attention scores α. We visualize correlation scores α be-
tween neighborhood nodes and anchors. We respectively se-
lect some nodes from Cora and Citeseer datasets as center
nodes and compute the scores of their first-order neighbors to
anchor nodes. The neighbors have different emphasis on an-
chor nodes. As shown in Fig. 3, for node v20 in Cora, the at-
tention score of the neighbor “A” on anchor node a4 is largest
while the other four neighbors is close to anchor node a1. For
node v153 in Citeseer, the neighbors “A” and “C” are more in-
clined to anchor node a6, while neighbor “D” prefers a12, and
neighbor “B” is similar in most directions. This shows that
neighbors of center nodes indeed place different emphasis
on anchor nodes, so different proportions of features are as-
signed to the directions of these anchors, and then anisotropic
convolution can be used to extract more fined-grained repre-
sentation, which is superior to the sum/mean aggregation.

5 Discussion and Conclusion
How to set depth and width of the neural network?

The depth of network (i.e., layer number) and the width of
filtering (i.e., order number) has some relation to the diameter
of the graph. Usually, the total receptive field size of the top
layer in the convolution network may be upper-bounded by
the diameter of the graph. For a fixed receptive field size, we
may employ a deeper network (stacking multiple layers) with
small order (small width), or a shallow network with large

Method Cora Citeseer Pubmed
GDN w/o P 83.97± 0.39 72.53± 0.59 78.86± 0.90
GDN w/o C 82.82± 0.72 71.57± 0.83 78.75± 0.62

GDN 84.76± 0.59 73.77± 0.45 80.77± 0.24

Table 4: The effect of convolutional layer C and pooling layer P in
our GDN method.

order number (large width). Like numerous standard CNN,
deeper networks (e.g., ResNet) with a small width (small ker-
nel size) usually have better performance than shallow net-
work with a large width.

How the problem of over-smoothness is handled?
Specifically, we introduce anchor nodes generated by im-

posing a non-linear transformation on cluster centers to match
the updated features. Then, we project local neighborhoods
with different structures onto multiple directions (w.r.t. an-
chors). Anisotropic convolution kernels can thus be per-
formed over the anchor-coordinated space to well encode
subtle variations of local neighborhoods. The anisotropic
convolution realizes weight sharing for different local neigh-
borhoods, which not only maintains computational efficiency,
but also able to capture some common property between lo-
cal neighborhoods just like the standard convolution kernel
on images, and helps improve the expressive power of model.

Summarily, analogous to the standard convolution on
images, we present a novel yet effective graph deformer net-
work (GDN) to fulfill anisotropic convolution filtering on
graphs. Further, we build a graph deformer network in an
end-to-end learning fashion by stacking the deformable con-
volutional layers as well as the coarsening layers. Our pro-
posed GDN archives significantly better performances on
graph and node classifications. In the future, we will extend
the GDN to more applications in the real world, such as link
prediction, heterogeneous graph analysis, etc.
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