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Abstract
In this paper, the monotone submodular maximiza-
tion problem (SM) is studied. SM is to find a subset
of size κ from a universe of size n that maximizes
a monotone submodular objective function f . We
show using a novel analysis that the Pareto opti-
mization algorithm achieves a worst-case ratio of
(1− ε)(1− 1/e) in expectation for every cardinal-
ity constraint κ < P , where P ≤ n+ 1 is an input,
inO(nP ln(1/ε)) queries of f . In addition, a novel
evolutionary algorithm called the biased Pareto op-
timization algorithm, is proposed that achieves a
worst-case ratio of (1 − ε)(1 − 1/e − ε) in ex-
pectation for every cardinality constraint κ < P
inO(n ln(P ) ln(1/ε)) queries of f . Further, the bi-
ased Pareto optimization algorithm can be modified
in order to achieve a worst-case ratio of (1− ε)(1−
1/e− ε) in expectation for cardinality constraint κ
in O(n ln(1/ε)) queries of f . An empirical eval-
uation corroborates our theoretical analysis of the
algorithms, as the algorithms exceed the stochastic
greedy solution value at roughly when one would
expect based upon our analysis.

1 Introduction
A function f : 2U → R≥0 defined on subsets of a ground set
U of size n is monotone submodular if it possesses the fol-
lowing two properties: (i) For all A ⊆ B ⊆ U , f(A) ≤ f(B)
(monotonicity); (ii) For all A ⊆ B ⊆ U and x /∈ B,
f(A∪ {x})− f(A) ≥ f(B ∪ {x})− f(B) (submodularity).
Monotone submodular set functions are found in many appli-
cations in machine learning and data mining. Applications of
SM include influence in social networks [Kempe et al., 2003],
data summarization [Mirzasoleiman et al., 2013], dictionary
selection [Das and Kempe, 2011], and monitor placement
[Soma and Yoshida, 2016]. As a result, there has been much
recent interest in optimization problems involving monotone
submodular functions. One such optimization problem is the
NP-hard Submodular Maximization Problem (SM), defined
as follows.

Problem 1 (Submodular Maximization Problem (SM)). Let
f : 2U → R≥0 be a monotone submodular function defined

on subsets of the ground set U of size n, and f(∅) = 0. Given
a budget κ ∈ [0, n], SM is to find argmax|X|≤κf(X).

An instance of SM is referred to as SM(f, κ). It is assumed
that the function f is provided as a value oracle, which when
queried with a set X returns the value of f(X). Time is mea-
sured in queries of f , as is the convention in submodular op-
timization [Badanidiyuru et al., 2014].

To approximate SM, the standard greedy algorithm is very
effective. Nemhauser and Wolsey [1978] showed that the
standard greedy algorithm achieves the best ratio of (1−1/e)
for SM in O(nk) queries to f . In addition, faster versions of
the greedy algorithm have been developed for SM [Badani-
diyuru et al., 2014; Mirzasoleiman et al., 2015]. In particu-
lar, the stochastic greedy algorithm (SG) of Mirzasoleiman
et al. [2015] achieves ratio 1 − 1/e − ε in expectation in
O(n ln(1/ε)) queries to f .

Alternatively, one may take the Pareto optimization ap-
proach to SM: Instead of maximizing f for a cardinality
constraint κ, SM is re-formulated as a bi-objective opti-
mization problem where the goal is to both maximize f as
well as minimize cardinality. Instead of a single solution,
we seek a pool of solutions none of which dominate an-
other1. Greedy algorithms can be used to develop such a pool,
however previous works [Friedrich and Neumann, 2014;
Qian et al., 2015b] have employed bi-objective evolutionary
algorithms because they iteratively improve the entire pool
of solutions and can be run indefinitely. The evolutionary al-
gorithm PARETO OPTIMIZATION (PO) has previously been
shown to find a 1 − 1/e approximate solution to SM(f, κ)
for all κ < P , where P ≤ n + 1 is an input, in expected
O(nP 2) queries to f [Friedrich and Neumann, 2014]. Fur-
ther, PO has been demonstrated to make significant empirical
improvements over the standard greedy algorithms for SM
[Qian et al., 2015b]. But as the size of data has grown expo-
nentially in recent times, a query complexity that is cubic in
n (for P = Ω(n)) makes these evolutionary algorithms a less
attractive option.

1.1 Contributions
In this work, a novel analysis is provided for the algorithm
PO, and it is proven that PO achieves a worst-case ratio of

1In this context, a solution Y dominates X if f(X) ≤ f(Y ),
|X| ≥ |Y |, and at least one of the two inequalities is strict.
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(1 − ε)(1 − 1/e) in expectation for every instance SM(f, κ)
with κ < P , where P ≤ n+ 1 is an input, in O(nP ln(1/ε))
queries of f . This removes a factor of P from the query com-
plexity of Friedrich and Neumann [2014]. This novel anal-
ysis has potential to improve the query complexity of other
problems in monotone submodular optimization beyond SM
[Qian et al., 2015a; Qian et al., 2017; Crawford, 2019;
Bian et al., 2020]. This result is proven in Theorem 1.

Next, a novel algorithm BIASED PARETO OPTIMIZATION
(BPO) is proposed that is a similar in spirit but faster version
of PO for SM. It is proven that BPO achieves a worst-case
ratio of (1− ε)(1− 1/e− ε) in expectation for every instance
SM(f, κ) with κ < P in O(n ln(P ) ln(1/ε)) queries of f .
This result is proven in Theorem 2. Further, a version of BPO
for a specific cardinality constraint κ, κ-BIASED PARETO
OPTIMIZATION (κ-BPO), is proven to achieve a worst-case
ratio of (1 − ε)(1 − 1/e − ε) in expectation for instance
SM(f, κ) in O(n ln(1/ε)) queries of f . This result is proven
in Theorem 3. This new algorithm κ-BPO thus matches the
optimal SG algorithm in terms of both approximation ratio
and query complexity, while maintaining the ability of PO to
continuously improve a pool of solutions.

The above theoretical results all extend to the more general
setting of monotone γ-weakly submodular2 functions [Das
and Kempe, 2011], but with different approximation guaran-
tees that depend on γ.

An empirical evaluation corroborates our theoretical anal-
ysis of the algorithms, as the algorithms exceed the SG solu-
tion value at roughly when one would expect based upon our
analysis.

1.2 Additional Related Work
Evolutionary algorithms have been studied for many com-
binatorial optimization problems [Laumanns et al., 2002;
Neumann and Wegener, 2007; Friedrich et al., 2010]. In par-
ticular, evolutionary algorithms have been analyzed for prob-
lems in submodular optimization including SM [Friedrich
and Neumann, 2014; Qian et al., 2015b; Roostapour et al.,
2019], submodular cover [Qian et al., 2015a; Crawford,
2019], SM with more general cost constraints [Bian et al.,
2020], and noisy versions of SM [Qian et al., 2017].

Friedrich and Neumann [2014] studied a slight variant of
PO where the pool S is initialized to contain a random set,
and P = n. Friedrich and Neumann proved that their vari-
ant of PO finds a 1 − 1/e approximate solution to SM(f, κ)
in expected O(n2 ln(n) + n2κ) queries of f . It is easy to
modify their analysis to see that PO finds a 1− 1/e approxi-
mate solution to SM(f, κ) for all κ < P in expectedO(nP 2)
queries of f . The argument of PO used in the proof of The-
orem 1 of Section 2.1 is substantially different compared to
the argument of Friedrich and Neumann because it analyzes
the expected time until an expected approximation ratio is an-
alyzed, resulting in a speedup to O(nP ) queries of f . In ad-
dition, the result of Theorem 1 is in deterministic time due to
an application of the Chernoff bound.

2 A function f : 2U → R≥0 is γ-weakly submodular if
for all X ⊆ Y ⊆ U , and u /∈ Y ,

∑
u∈Y \X ∆f(X,u) ≥

γ (f(X ∪ Y )− f(X)). If γ = 1, then f is submodular.

Qian et al. [2015b] considered the subset selection prob-
lem, which is a special case of the monotone γ-weakly sub-
modular maximization problem. Qian et al. fixed P = 2κ,
and showed that for the cardinality constraint κ PO finds a
1− e−γ approximate solution in expectedO(nκ2) queries of
f . Their results can be generalized beyond subset selection to
the monotone γ-weakly submodular maximization problem
with cardinality constraint κ.

The algorithm BPO, presented in Section 2.2, uses a novel,
biased selection procedure to identify sets for mutation. Be-
cause of the biased selection procedure, BPO is the first evo-
lutionary algorithm that has an approximation guarantee in
nearly linear queries of f close to that of the greedy algorithm
for SM.

2 Algorithms and Theoretical Results
The theoretical contributions of the paper are presented in
this section. In particular, a new theoretical analysis of the
algorithm PARETO OPTIMIZATION (PO) is presented for SM
in Section 2.1, the novel algorithm BIASED PARETO OPTI-
MIZATION (BPO) is presented and analyzed for SM in Sec-
tion 2.2, and the faster modification of BPO for a specific car-
dinality constraint, κ-BIASED PARETO OPTIMIZATION (κ-
BPO), is presented and analyzed for SM in Section 2.3. The
full version of the paper includes an appendix where addi-
tional theoretical details from Section 2 are filled in.

Definitions and Notation The following notation and defi-
nitions will be used throughout Section 2. Let f : 2U → R≥0,
X ⊆ U , and x ∈ U . (i) Marginal gain: ∆f(X,x) =
f(X ∪ {x}) − f(X). (ii) The membership of x is flipped
in X means that if x ∈ X , then x is removed from X; and
if x /∈ X , then x is added to X . (iii) If ν is a random vari-
able, then E [ν] denotes the expected value of ν. If A is a
random event, then P (A) denotes the probability ofA occur-
ring. (iv) Let S ⊆ 2U . Then if there exists a unique Y ∈ S
such that |Y | = i, define S[i] = Y . If no such Y exists, or
there are multiple elements of S of cardinality i, S[i] is unde-
fined. (v) Let X,Y ⊆ U . Then X � Y if f(Y ) ≥ f(X) and
|Y | ≤ |X|. If at least one of the two inequalities is strict, then
X ≺ Y and Y dominatesX . If f(Y ) = f(X) and |Y | = |X|
then it is said that X is equivalent to Y .

2.1 Pareto Optimization (PO)
In this section, it is proven that in time O(nP ln(1/ε)), PO
produces a (1− ε)(1− 1/e) approximate solution in expecta-
tion for every cardinality constraint κ < P , where P ≤ n+ 1
is an input. If P = O(κ) for a fixed cardinality constraint
κ, then PO produces solutions for SM with similar theoreti-
cal guarantees to that of the standard greedy algorithm in the
same asymptotic time, which shows the practicality of evolu-
tionary algorithms such as PO for SM.

Description of PO
In this section, PO (Alg. 1) is described. The set S ⊆ 2U is
referred to as the pool, and each iteration of the for loop is re-
ferred to as an iteration. The pool initially contains only the
empty set; its maximum size is determined by input param-
eter P . During each iteration, i ∈ {0, ..., P − 1} is chosen
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Algorithm 1 PO (f, P, T ): PARETO OPTIMIZATION (PO)

1: Input: f : 2U → R≥0; P ∈ {1, ..., n+ 1}; T ∈ Z≥0.
2: Output: S ⊆ 2U .
3: S ← {∅}
4: for t← 1 to T do
5: i← UNIFORM-RANDOM({0, ..., P − 1})
6: if S[i] exists then
7: B ← S[i]
8: B′ ← MUTATE (B)
9: if |B′| < P and @Y ∈ S such that B′ � Y then

10: S ← S ∪ {B′} \ {Y ∈ S : Y ≺ B′}
11: end if
12: end if
13: end for
14: return S

uniformly randomly (Line 5 of Alg. 1), and if B = S[i] ex-
ists then it is selected from S to be mutated, otherwise PO
continues to the next iteration. The subroutine MUTATE takes
B and randomly mutates it into B′ ⊆ U as follows: for each
u ∈ U , flip the membership of u in B with probability 1/n.
Finally, if no set in the pool dominates or is equivalent to B′
and |B′| < P , then B′ is added to the pool and all sets that
B′ dominates are removed. There is at most one new query
of f on each iteration of PO, and therefore the input T is
equal to the query complexity. Pseudocode for the subroutine
MUTATE is provided in the appendix.

Analysis of PO for SM
In this section, the approximation result of the algorithm PO
for SM is presented. Omitted proofs are given in the ap-
pendix. The statement of Theorem 1 easily generalizes to γ-
weakly submodular objectives f , where 1 − 1/e is replaced
with 1− 1/eγ .
Theorem 1. Suppose PO is run with input (f, P, T ), where
f : 2U → R≥0 is monotone submodular, P ∈ {1, ..., n+ 1},
and T > 8enP ln(1/ε). Let S be the pool of PO at the end
of iteration T . Then for any κ < P ,

E
[

max
X∈S,|X|≤κ

f(X)

]
≥ (1− ε)(1− 1/e) max

|X|≤κ
f(X).

Overview of Proof of Theorem 1 Given SM(f, κ) with
optimal solution A∗, the standard greedy algorithm itera-
tively picks into its solution the element in U of highest
marginal gain until κ elements have been picked. Exist-
ing analyses of PO for SM [Friedrich and Neumann, 2014;
Qian et al., 2015b] analyze the time it takes until essentially
the standard greedy algorithm randomly occurs within PO. If
instead of iteratively picking the element of highest marginal
gain, a uniformly random element of A∗ (possibly already
chosen) is picked into the solution until κ elements are picked
(this could be viewed as an idealized version of the stochas-
tic greedy algorithm of Mirzasoleiman et al. [2015]) then the
same approximation guarantee as the standard greedy algo-
rithm (1 − 1/e) is achieved in expectation. In the proof of
Theorem 1, the expected time until this second algorithm ran-
domly occurs within PO is analyzed, which is a factor of P
faster.

Proof. Line numbers referenced are those in Algorithm 1.
Throughout the proof of Theorem 1, the probability space of
all possible runs of PO with the stated inputs is considered.
Let κ < P , and let A∗ = arg max|X|≤κ f(X). We may as-
sume that |A∗| = κ, since f is monotone. In the proof of
Theorem 1, the random variable ω will be used, defined in-
ductively as follows:

(i) Before the first iteration of PO, ω is set to 0.
(ii) If the following two conditions are met, ω is incremented

at the end of an iteration: 1) B = arg max{f(X) :
X ∈ S, |X| ≤ ω} is selected on Line 5; and 2) MU-
TATE on Line 8 results in the membership of a single
element a∗ ∈ A∗ being flipped (i.e., it is either the case
that MUTATE returns B′ = B ∪ {a∗} for a∗ ∈ A∗ \ B
or B′ = B \ {a∗} for a∗ ∈ A∗ ∩B).

Intuitively, ω is used to track a solution within S that has a
high f value relative to its cardinality. In particular, the fol-
lowing lemma describes the key property of ω.

Lemma 1. At the end of every iteration of PO

E
[

max
X∈S,|X|≤ω

f(X)

]
≥

(
1−

(
1− 1

|A∗|

)ω′)
f(A∗)

where ω′ = min{ω, P − 1}.
A further key point is that once a solution appears in PO, i.e.,
it is returned by MUTATE, there always exists at least as good
of a solution within S .

Lemma 2. Let Y ⊆ U and |Y | ≤ a < P . If Y is returned
by MUTATE during iteration i of PO, then at the end of any
iteration j ≥ i it holds that max{f(X) : X ∈ S, |X| ≤
a} ≥ f(Y ).

Let event F be that at the completion of a run of PO, ω ≥ κ.
Then it follows from Lemmas 1 and 2 that

E
[

max
X∈S,|X|≤κ

f(X)|F
]
≥
(

1− 1

e

)
f(A∗) (1)

Then the remainder of the proof of Theorem 1 is to deal
with the probability that ω reaches κ. To this end, the fol-
lowing lemma states that the run of PO may be interpreted as
a Bernoulli process.

Lemma 3. Consider a run of PO as a series of Bernoulli
trials Y1, ..., YT , where each iteration is a trial and a success
is defined to be when ω is incremented. Then Y1, ..., YT are
independent, identically distributed Bernoulli trials where the
probability of success is

1

P

∑
x∈A∗

(
1− 1

n

)n−1
1

n
≥ |A

∗|
enP

.

Then Lemma 3 and the Chernoff bound can be used to
prove that the probability of ω not reaching κ after T ≥
8enP ln(1/ε) iterations of PO is small. This is stated in the
following lemma.

Lemma 4. P
(∑T

i=1 Yi < κ
)
≤ ε.

Finally, Theorem 1 follows from the law of total expectation,
Inequality 1 and Lemma 4.
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Algorithm 2 BPO (f, P, T, p, ε, ξ): BIASED PARETO OPTI-
MIZATION

1: Input: f : 2U → R≥0; P ∈ {1, ..., n + 1}; T ∈ Z≥0;
p ∈ (0, 1]; ε ∈ (0, 1); ξ ∈ (0, 1).

2: Output: S ⊆ 2U .
3: M ← dln(P )/ ln (1/ξ)e
4: βi ← 0, `i ← 0, Hi ← e ln(1/ε)/ξi ∀i ∈ {1, ...,M}
5: S ← {∅}
6: for t← 1 to T do
7: i← UNIFORM-RANDOM({0, ..., P − 1})
8: if FLIP-COIN(p) = heads then
9: j ← UNIFORM-RANDOM({1, ...,M})

10: i← | arg max{f(X) : X ∈ S, |X| ≤ βj}|
11: `j ← `j + 1
12: if `j = Hj then
13: `j ← 0
14: βj ← βj + 1
15: end if
16: end if
17: if S[i] exists then
18: B ← S[i]
19: B′ ← MUTATE (B)
20: if |B′| < P and @Y ∈ S such that B′ � Y then
21: S ← S ∪ {B′} \ {Y ∈ S : Y ≺ B′}
22: end if
23: end if
24: end for
25: return S

2.2 Biased Pareto Optimization (BPO)
BIASED PARETO OPTIMIZATION (BPO) is a novel evolu-
tionary algorithm with nearly the same approximation results
as PO for SM in faster time. Specifically, it is proven that in
time O(n ln(P ) ln(1/ε)), BPO finds a (1− ε)(1− 1/e− ε)-
approximate solution in expectation for every cardinality con-
straint κ < P , where P ≤ n + 1 is an input. Thus, BPO is
faster than PO by a factor of Ω(P/ ln(P )); further, it works
similarly to PO but has a biased selection procedure instead
of choosing uniformly randomly.

Description of BPO
In this section, BPO (Alg. 2) is presented. Pseudocode for
BPO can be found in Alg. 2. In overview, BPO follows a
similar iterative procedure to PO: every iteration of the for
loop, a set in the S is chosen for mutation; and only sets that
are not dominated by any others are kept. The difference from
PO is in the selection of the set for mutation; a certain sub-
set of sets in S are selected more frequently than others, as
determined by the parameters p ∈ (0, 1], ε ∈ (0, 1), and
ξ ∈ (0, 1), and the variables βj for j ∈ {1, ...,M}, where
M = dln(P )/ ln (1/ξ)e. There is at most one new query of f
on each iteration of BPO, and therefore the input T is equal to
the query complexity. Next, the selection process is described
in detail.
Selection process During each iteration, with probability p
BPO chooses j from {1, ...,M} uniformly randomly (Line
9) and then sets i = | arg max{f(X) : X ∈ S, |X| ≤ βj}|
(Line 10). Otherwise i is chosen uniformly randomly from

{0, ..., P − 1} (Line 7). If B = S[i] exists then it is selected
from S to be mutated, otherwise BPO continues to the next
iteration. Initially, βj = 0 ∀j ∈ {1, ...,M}. βj is incremented
to βj + 1 if on Hj =e ln(1/ε)/ξj iterations since the last in-
crement of βj j was chosen on Line 9. The variable `j is
used to determine when βj should be incremented: βj is in-
cremented during an iteration if and only if `j is set to 0 on
Line 13. Notice that if p = 0, BPO is equivalent to PO.

Analysis of BPO for SM
The approximation results of BPO for SM are now presented.
Lemmas referenced in the proof of Theorem 2 can be found in
the appendix. The statement of Theorem 2 easily generalizes
to γ-weakly submodular objectives f , where 1 − 1/e − ε is
replaced with 1− 1/eγ − ε.
Theorem 2. Suppose BPO is run with input
(f, P, T, p, ε, ξ) where f : 2U → R≥0 is mono-
tone submodular, P ∈ {1, ..., n + 1}, T ≥
max{αndln(P )/ ln (1/ξ)e, β ln(n)dln(P )/ ln (1/ξ)e},
where α = 2e ln(1/ε)/p and β = 8/p, p ∈ (0, 1], ε ∈ (0, 1),
and ξ ∈ (0, 1). Let S be the pool of BPO at the end of
iteration T . Then for any κ < P ,

E
[

max
X∈S,|X|≤κ

f(X)

]
≥ (1− ε)(1− 1/e− ε) max

|X|≤κ
f(X).

Overview of Proof of Theorem 2 Consider SM(f, κ) with
optimal solution A∗. Recall that in the proof of Theorem 1 in
Section 2.1, the approximation ratio for SM(f, κ) was proven
by analyzing the expected time until a variable ω reaches
κ. In order for ω to be incremented during an iteration,
| arg max{f(X) : X ∈ S, |X| ≤ ω}| must be selected on
Line 5, which occurs with probability 1/P . If we instead con-
sider an alternative version of PO where the selection is bi-
ased towards choosing | arg max{f(X) : X ∈ S, |X| ≤ ω}|
with constant probability α > 1/P , then ω reaches κ faster.
The difficulty is that the value of ω is unknown, since it de-
pends on MUTATE flipping the membership of an a∗ ∈ A∗

and nothing else. The idea behind BPO is that we can ap-
proximately track ω, and therefore bias the selection. In par-
ticular, for each SM(f, κ) with κ < P , there exists a βi that
is approximately equal to the corresponding ω for κ.

Proof. Proofs of lemmas used can be found in the appendix.
Lines numbers referenced are those in Algorithm 2. Through-
out the proof of Theorem 2, the probability space of all pos-
sible runs of BPO with the stated inputs is considered. An
iteration of the for loop in BPO is simply referred to as an
iteration.

Consider any κ < P . Define A∗ = arg max|X|≤κ f(X).
Without loss of generality we may assume that
|A∗| = κ, since f is monotone. There exists
q ∈ {1, ..., dln(P )/ ln (1/ξ)e} such that

ξqP < |A∗| ≤ ξq−1P. (2)

Then define ω = βq .
The ω defined here serves a similar purpose to that defined

in the proof of Theorem 1; To track a solution within S that
has a high f value relative to its cardinality, as described in
the following lemma.
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Lemma 5. At the end of every iteration of BPO

E
[

max
X∈S,|X|≤ω

f(X)

]
≥

(
1−

(
1− 1− ε

|A∗|

)ω′)
f(A∗)

where ω′ = min{ω, P − 1}.
In addition, the property of PO detailed in Lemma 2 of

Theorem 1 clearly also holds for BPO.
Define the event F to be that at the completion of a run of

BPO `q has been incremented (Line 11 of Algorithm 2) Hqκ
times. If `q has been incremented Hqκ times, then one may
see that ω has been incremented κ times. Once ω reaches κ,
it clearly follows from Lemmas 5 and 2 that

E [f(A)|F ] ≥
(

1− 1

e
− ε
)
f(A∗) (3)

where A = argmaxX∈S,|X|≤κf(X).
We now analyze the probability that `q has been incre-

mentedHqκ times. To this end, we have the following lemma.

Lemma 6. Consider a run of BPO as a series of Bernoulli
trials Y1, ..., YT , where each iteration is a trial and a success
is defined to be when `q is incremented. Then Y1, ..., YT are
independent, identically distributed Bernoulli trials where the
probability of success is p/dln(P )/ ln (1/ξ)e.

Finally, an analogous argument to that of Theorem 1 can
be used to complete the proof of Theorem 2. In particu-
lar, we bound the probability of event F not occurring after
T ≥ max{αndln(P )/ ln (1/ξ)e, β ln(n)dln(P )/ ln (1/ξ)e},
where α = 2e ln(1/ε)/p and β = 8/p, iterations of BPO by
ε using the Chernoff bound, and then apply the law of total
expectation. The details of the argument can be found in the
appendix.

2.3 κ-Biased Pareto Optimization (κ-BPO)
If a specific cardinality constraint κ is provided, a modi-
fied version of BPO, κ-BIASED PARETO OPTIMIZATION
(κ-BPO), can produce an approximate solution in expec-
tation even faster than BPO. In this section, the algorithm
κ-BPO is described, and it is proven that κ-BPO finds a
(1 − ε)(1 − 1/e − ε)-approximate solution to SM(f, κ) in
O(n ln(1/ε)) queries of f .

Description of κ-BPO
Pseudocode for κ-BPO can be found in the appendix. κ-
BPO is similar to BPO except κ-BPO is only biased towards
picking a single element of S , determined by the variable β.
The input parameters of κ-BPO are the same as BPO except
ξ ∈ (0, 1) is not needed.

During each iteration, with probability p κ-BPO sets i =
| arg max{f(X) : X ∈ S, |X| ≤ β}|. Otherwise i is chosen
uniformly randomly from {0, ..., P − 1}. If B = S[i] exists
then it is selected from S to be mutated, otherwise κ-BPO
continues to the next iteration. Initially, β = 0. β is incre-
mented to β + 1 if on H = en ln(1/ε)/κ iterations since
the last increment of β, i was chosen to be | arg max{f(X) :
X ∈ S, |X| ≤ β}|. The variable ` is used to determine when
β should be incremented: β is incremented during an iteration
if and only if ` is set to 0.

Analysis of κ-BPO for SM
The approximation results of κ-BPO for SM are now pre-
sented. The statement of Theorem 3 easily generalizes to γ-
weakly submodular objectives f in the analogous manner as
BPO.

Theorem 3. Suppose κ-BPO is run with input
(f, κ, P, T, p, ε) where f : 2U → R≥0 is monotone
submodular, κ ∈ {1, ..., n} P ∈ {κ + 1, ..., n + 1},
T ≥ max{2en ln(1/ε)/p, 8 ln(n)/p}, p ∈ (0, 1], and
ε ∈ (0, 1). Let S be the pool of κ-BPO at the end of iteration
T . Then,

E
[

max
X∈S,|X|≤κ

f(X)

]
≥ (1− ε)(1− 1/e− ε) max

|X|≤κ
f(X).

Proof. The proof of Theorem 3 is any easy modification of
the proof of Theorem 2 and therefore details are left to the
reader. The key point is that Lemma 6 should be replaced
with the following lemma.

Lemma 7. Consider a run of κ-BPO as a series of Bernoulli
trials Y1, ..., YT , where each iteration is a trial and a success
is defined to be when ` is incremented. Then Y1, ..., YT are
independent, identically distributed Bernoulli trials where the
probability of success is p.

3 Experimental Evaluation
In this section, the algorithms PO and κ-BPO are evalu-
ated on instances of data summarization with submodular and
non-submodular objectives f . In summary, the faster runtime
for PO proven in Theorem 1 is demonstrated empirically.
Also, the results demonstrate that κ-BPO quickly finds solu-
tions better than the standard greedy algorithm, the stochastic
greedy algorithm SG [Mirzasoleiman et al., 2015], and PO.

The algorithms evaluated in Section 3 are:

• the standard greedy algorithm [Nemhauser and Wolsey,
1978]

• the stochastic greedy (SG) algorithm of [Mirzasoleiman
et al., 2015].

• PO: the variant of the algorithm of Friedrich and Neu-
mann [2014] as detailed in Alg. 1 and analyzed in Sec-
tion 2.1.

• κ-BPO: the version of BPO that biases towards only one
set in S , based on the input κ as discussed in Section 2.3.

For both PO and κ-BPO, the parameter P = 2κ is used on
all instances.

3.1 Application
In data summarization (DS), we have a set U of data points
and we wish to find a subset of U of cardinality κ that best
summarizes the entire dataset U . f : 2U → R≥0 takes
X ⊆ U to a measure of how effectively X summarizes U .
For the ground set U , we use: (i) A set of 10 dimensional
vectors drawn from κ gaussian distributions (Gaussian), and
(ii) a set of 32×32 color images from the CIFAR-100 dataset
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Figure 1: In all plots the y-axis is normalized by the standard greedy value on the instance, and the x-axis is normalized by the number kn of
evaluations required by the standard greedy algorithm. The dataset, objective, and value of κ are indicated in the caption of each subfigure.

[Krizhevsky et al., 2009] each represented by a 3072 dimen-
sional vector of pixels (CIFAR). For the objective f , we use:
(i) The monotonic and submodular objective k-medoid objec-
tive [Kaufman and Rousseeuw, 2009] (fMED), and (ii) the
monotone weakly submodular objective based on Determi-
nantal Point Process (DPP) [Kulesza et al., 2012] (fDPP ). A
lower bound on the submodularity ratio has been proven for
the latter objective [Bian et al., 2017].

3.2 Results
The experimental results are shown in Figure 1. All results
are the mean of 50 repetitions of each algorithm; shaded re-
gions represent one standard deviation from the mean. Ob-
jective and runtime are normalized by the objective value of
and number of queries made (nκ) by the standard greedy al-
gorithm. The value of the solution of the standard greedy al-
gorithm is plotted as a dotted gray horizontal line y = 1. The
time where β in κ-BPO reached κ is plotted as a vertical ma-
genta line.

The best solution value obtained by each algorithm is
shown as the rightmost point in each plot. Both κ-BPO and
PO were eventually able to find better solutions than the stan-
dard greedy algorithm (i.e., normalized value > 1.0), es-
pecially on the non-submodular objective (Figures 1(e) and
1(f)). Observe that PO typically exceeds the stochastic greedy
objective value within cκn, where c ≤ 2. This behavior cor-
roborates our theoretical analysis that PO achieves a good
solution in expectation inO(κn) queries. In addition, κ-BPO
exceeds the SG value in cn queries. Finally, for PO, recall
that the theoretical anlaysis shows that for any κ < P , the

approximation ratio holds.
Because PO and κ-BPO can be terminated at any time, the

running time may be compared by observing where any verti-
cal line intersects the curves for each algorithm. The running
time of the standard greedy corresponds to the line x = 1 (not
plotted). κ-BPO reaches solution values closer to the stan-
dard greedy algorithm in significantly faster time than PO, as
expected by its design. The effect of varying the parameters ε
and p on the behavior of κ-BPO is shown in Figs. 1(c), 1(d),
respectively: smaller ε leads to a higher initial increase but
the initial increase is slower, while smaller p slows down the
rate of the initial increase.

4 Conclusions
In this work, we have re-analyzed the evolutionary algorithm
PO, originally analyzed for submodular maximization by
Friedrich and Neumann [2014], and showed that it achieves
nearly the optimal worst-case ratio in expectation on SM for
any κ < P in O(nP ) queries. In contrast, Friedrich and
Neumann [2014] showed that the optimal worst-case ratio is
achieved in expected O(nP 2) queries. This improved rate of
convergence is supported by an empirical evaluation.

Further, it has been shown that changing the selection
process in PO results in improved query complexity to
O(n log(P )) to obtain the same approximation results. A
variant of this algorithm κ-BPO is shown empirically to have
a much faster initial rate of convergence to a good solution
than PO, without sacrificing the long-term behavior of the
PO algorithm.
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