
A New Upper Bound Based on Vertex Partitioning for the Maximum k-plex
Problem

Hua Jiang1 , Dongming Zhu1 , Zhichao Xie1 , Shaowen Yao1 and Zhang-Hua Fu2,3∗

1Engineering Research Center of Cyberspace & School of Software, Yunnan University, China
2Shenzhen Institute of Artificial Intelligence and Robotics for Society, Shenzhen, China

3The Chinese University of Hong Kong, Shenzhen, China
huajiang@ynu.edu.cn, {zmd140610,xzc}@mail.ynu.edu.cn, yaosw@ynu.edu.cn,

fuzhanghua@cuhk.edu.cn

Abstract

Given an undirected graph, the Maximum k-plex
Problem (MKP) is to find a largest induced sub-
graph in which each vertex has at most k − 1 non-
adjacent vertices. The problem arises in social net-
work analysis and has found applications in many
important areas employing graph-based data min-
ing. Existing exact algorithms usually implement
a branch-and-bound approach that requires a tight
upper bound to reduce the search space. In this
paper, we propose a new upper bound for MKP,
which is a partitioning of the candidate vertex set
with respect to the constructing partial solution. We
implement a new branch-and-bound algorithm that
employs the new upper bound to reduce the num-
ber of branches. Experimental results show that the
upper bound is very effective in reducing the search
space. The new algorithm outperforms the state-of-
the-art algorithms significantly on real-world mas-
sive graphs, DIMACS graphs and random graphs.

1 Introduction
In an undirected graph G = (V,E), a k-plex is a subset S of
V satisfying that each vertex in the induced subgraph by S,
denoted byG[S], has a degree greater than or equal to |S|−k,
i.e., every vertex in S can have at most k−1 non-neighbors in
G[S]. When k is 1, G[S] is a complete graph and S is called
a clique of G.
k-plex is a clique relaxation model, which was originally

introduced for social network studies [Seidman and Foster,
1978]. A k-plex defines a cohesive subgroup by restricting
the number of missing connections of every member in the
subgroup. Compared to the restrictive clique model, k-plex
is more suitable for the analysis of the massive graphs en-
coding from real-world problems, because real-world cohe-
sive subgraphs do not need to meet the rigorous constraint
of cliques and could be missing a few connections. Due to
the relevance to practical applications, the research attention
on k-plex sustainably grows in recent years [Balasundaram et
al., 2011; Xiao et al., 2017; Miao and Balasundaram, 2017;

∗Corresponding author

Gschwind et al., 2018; Conte et al., 2018; Gao et al., 2018;
Zhou et al., 2020; Zhou et al., 2021].

Searching for a largest clique in a given graph G is known
as the Maximum Clique Problem (MCP), which is NP-
Hard [Garey and Johnson, 1979] and is a prominent research
area in the past thirty years. The Maximum k-plex Problem
(MKP for short) is to find a k-plex with the maximum num-
ber of vertices in G. Obviously, MCP is the maximum 1-plex
problem, which is a special case of MKP. Therefore, the diffi-
culty of solving MKP is not lower than solving MCP. In prac-
tice, MKP is more intractable than MCP, because the restric-
tion of adjacency of every two vertices in a clique is relaxed
in a k-plex when k > 1.

Compared to MCP, fewer algorithms were proposed for
MKP. Existing algorithms for MKP fall into two categories,
heuristic and exact. The heuristic algorithms usually employ
local search approaches and dedicate to searching for a sub-
optimal solution within an acceptable time [Zhou and Hao,
2017; Chen et al., 2020]. The exact algorithms usually im-
plement approaches, such as branch-and-bound/cut/search,
to systemically explore the search space to seek the op-
timality [McClosky and Hicks, 2012; Xiao et al., 2017;
Gao et al., 2018; Zhou et al., 2021].

We note that although there are several efficient exact al-
gorithms for MCP, the performance of existing exact algo-
rithms for MKP is still inadequate. One reason lies in the lack
of good pruning strategies, namely, effective upper bounds.
The upper bounds that are effective for MCP, such as upper
bounds based on vertex coloring [Tomita et al., 2010] and
on MaxSAT reasoning [Li and Quan, 2010; Li et al., 2017;
Jiang et al., 2017], are hard to be applied to MKP efficiently,
because of the relaxation of the adjacency constraint of every
two vertices in solutions. McClosky et al [2012] proposed
two upper bounds based on a notion of co-k-plex coloring for
MKP. But, their empirical results showed that the two bounds
were difficult to be made efficient in practice.

In this paper, we propose a novel and efficient upper bound
for MKP. The bound is based on a partitioning of the can-
didate vertex set with respect to the current growing partial
solution. Using the partition, we can derive an upper bound
of the maximum k-plex that can be extended from the current
partial solution. We implement a branch-and-bound (BnB)
algorithm and integrate the upper bound into the algorithm
to reduce the number of branches at each search tree node.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1689

Extensive experiments were conducted to evaluate the perfor-
mance of the new algorithm and the new upper bound. The re-
sults show that the new upper bound can significantly reduce
the search space. Thanks to the new bound, the proposed BnB
algorithm outperforms the state-of-the-art algorithms on real-
world massive graphs, DIMACS graphs and random graphs.

The paper is organized as follows: Section 2 gives some
basic graph definitions and properties for k-plex. Section 3
reviews previous BnB algorithms for MKP. Section 4 presents
the new upper bound. Section 5 describes a new BnB al-
gorithm for MKP. Section 6 reports on the empirical results.
Section 7 gives the conclusions.

2 Preliminaries
Let G = (V,E) be an undirected graph, where V is a set
of n vertices, E is a set of m edges. The density of G is
defined as 2m/(n(n − 1)). The complement graph of G is
defined as Ḡ = {V, Ē}, where Ē = {(u, v)|(u, v) /∈ E}.
Two vertices u and v of V are adjacent or neighbors, if
(u, v) ∈ E. The set of neighbors of a vertex v in G is de-
noted byN(v) = {u|(u, v) ∈ E}. The cardinality ofN(v) is
the degree of v, denoted by degG(v) or simply deg(v) when
the context is clear. A subset I of V is an independent set
if every two vertices in I are nonadjacent. We use G[S] to
denote the subgraph of G induced by the subset S of V . The
following definitions and properties are related to k-plex.

Definition 1. Given a positive integer k, a subset S of V is a
k-plex, if degG[S](v) ≥ |S| − k for each v ∈ S.

Note that any subset S′ of a k-plex S is also a k-plex, which
indicates the hereditary property of k-plexes. The maximum
k-plex in G is a k-plex with the largest cardinality and the
cardinality is denoted by ωk(G) in this paper.

Definition 2. Given a positive integer k, a subset S of V is a
co-k-plex, if degG[S](v) ≤ k − 1 for each v ∈ S.

It is easy to see that a co-k-plex in G is a k-plex in Ḡ. The
following two properties define an upper bound of ωk(G) and
an upper bound of a k-plex S containing a given vertex v.

Property 1. Let ε(G) be the maximum degree of vertices of
G, then ωk(G) ≤ ε(G) + k.

Property 2. If S is a k-plex containing vertex v in G, then
|S| ≤ degG(v) + k.

Let ΘG(u, v) denote the set of common neighbors of two
vertices u and v in G, i.e., ΘG(u, v) = N(u) ∩ N(v). The
following Property 3 gives an upper bound of a k-plex S con-
taining both u and v.

Property 3. If S is a k-plex containing vertex u and v in G,
then it holds that |S| ≤ |ΘG(u, v)| + 2k − γ, where γ is 0 if
(u, v) ∈ E; Otherwise, γ is 2.

The following two properties describe relations of a k-plex
with a co-k-plex and an independent set.

Property 4. If G is a co-k-plex, then ωk(G) ≤ 2k − 2 +
(k mod 2).

Property 5. Let I be an independent set of vertices inG, then
a k-plex of G can contain at most min{|I|, k} vertices of I .

Property 1 and 2 are straightforward. Property 3 and 5 can
be derived from the definition of a k-plex. Property 4 gives an
upper bound of ωk(G), whenG is a co-k-plex [Balasundaram
et al., 2011].

3 Related Works
In this section, we review representative upper bounds and
exact algorithms for MKP.

The first exact algorithm we reviewed is a branch-and-cut
algorithm [Balasundaram et al., 2011]. The algorithm en-
codes MKP as an integer programming problem and com-
bines a peeling procedure to recursively remove the vertices
that cannot belong to a k-plex of size greater than the in-
cumbent. The removing rule is based on Property 3, i.e.,
when considering a k-plex containing vertex u, then the up-
per bound of a k-plex simultaneously containing another v is
computed with Property 3. If the bound is not greater than
the incumbent, v can be removed from the candidate set.

McClosky et al [2012] introduced two upper bounds
for MKP based on co-k-plex coloring. Let co-k-
plex C1, C2, . . . , Cp partition the vertex set of G, then∑p

i=1 min{2k − 2 + (k mod 2), |Ci|, ε(G[Ci]) + k} is an
upper bound of ωk(G). The bound is derived from Prop-
erty 1 and 4. The authors proposed two heuristics to com-
pute the partitioning and implemented two BnB algorithms
based on the two upper bounds. However, their empirical re-
sults showed that the two algorithms did not benefit from the
upper bounds, showing that the co-k-plex coloring heuristics
might not produce tight upper bounds for MKP.

Algorithms for complex networks analysis, including algo-
rithms for MKP over massive graphs, have received a lot of
attention in recent years. Xiao et al [2017] proposed a branch-
and-search algorithm to solve MKP for massive graphs. The
authors investigated several structural properties that could
be used to prune the search branches. The experimental re-
sults showed that, with well-designed reduction and pruning
rules, massive graphs with tens of thousands of vertices could
be solved within reasonable times. Additionally, the authors
proved that the trivial exponential bound of 2n of MKP for
k ≥ 3 can be broken.

Gao et al [2018] proposed several new graph reduction
methods for MKP in massive graphs. Those methods are
used to reduce the search space in the preprocessing and the
search phases. Combining a dynamic branching vertex selec-
tion heuristic, the authors implemented a BnB algorithm that
can solve graphs with millions of vertices in a very short time.
Compared to the sophisticated reduction rules, the bounding
strategy in the algorithm is simple; Use the number of remain-
ing vertex whose degree exceeds the lower bound minus k as
the bound, which is the direct application of Property 2.

Zhou et al [2021] proposed a BnB algorithm with a second-
order preprocessing and graph color bounding for MKP. The
algorithm partitions the candidate vertices into independent
sets and computes an upper bound based on Property 5. Their
experimental results showed that the graph coloring bound
could be effective to reduce search space when the graphs are
very sparse.

We note that although existing exact algorithms for MKP

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1690

mainly implement branch-and-bound/cut/search approaches,
the obtained performance improvement are mostly from the
reduction and/or branching strategies. The bounding strate-
gies used in those algorithms are still simple and weak.

4 A New Upper Bound
In this section, we propose a novel upper bound for k-plex,
which is tight and computational efficient and can be used to
reduce the search space for BnB MKP algorithms .

Given a graph G = (V,E), let S = {v1, v2, . . . , vq} be
a growing k-plex in G and let P be the candidate set of
vertices that could extend S. We define a partition Π =
{π0, π1, . . . , πq} of P w.r.t. the growing solution S. Π satis-
fies the following three conditions:
(1)

⋃q
i=0 πi = P and πi ∩ πj = ∅, for i 6= j (0 ≤ i, j ≤ q) .

(2) π0 is the set of vertices in P that are adjacent to every
vertex in S, i.e., π0 = P ∩N(v1)∩N(v2)∩· · ·∩N(vq).

(3) Each πi, 1 ≤ i ≤ q, is a subset of vertices in P that are
nonadjacent to the vertex vi in S, i.e., πi ⊆ P \N(vi).

We define an array ∆ = (δ1, δ2, . . . , δq) for the growing
solution S. Each element δi is the number of non-neighbors
of vi in S, i.e., δi = |S \N(vi)| − 1. With the partition Π of
P and the ∆ array of S, we propose the following lemma to
compute an upper bound of the maximum k-plex that can be
extended from S.
Lemma 1. With a partition Π of P and the ∆ array of S, the
upper bound of the maximum k-plex containing S in G can
be computed as |S|+ |π0|+

∑q
i=1 min{k − 1− δi, |πi|}.

Proof. |S| + |π0| is an obvious upper bound of k-plex in
G[S∪π0]. Since S is a k-plex and πi is a set of non-neighbors
of vi in P , the maximum number of vertices in πi that can be
inserted into S is k − 1 − δi, or |πi| if |πi| < k − 1 − δi.
Then, the total number of vertices that can be inserted into S
in P \ π0 is no more than

∑q
i=1 min{k − 1− δi, |πi|}.Thus,

|S| + |π0| +
∑q

i=1 min{k − 1 − δi, |πi|} is an upper bound
of the maximum k-plex containing S in G .

Given a graphG, a growing k-plex S inG and a partition of
the candidate set P , Lemma 1 defines a formula to compute
an upper bound of the maximum k-plex that can be extended
from S. We call the new upper bound PUB, a Partitioning-
based Upper Bound for k-plex.

Figure 1: An example of the partitioning-based upper bound

Algorithm 1 KpLeX(G,k), an exact algorithm for MKP
Input: A graph G = (V,E), the value k
Output: a maximum k-plex S∗ in G.

1: (S0, G
′ = (V ′, E′))← Pre-Procedure(G,k);

2: Let S = ∅, S∗ = S0, P = V ′;
3: return BnBSearch(G′, S, P , S∗, k);

Figure 1 illustrates PUB with a simple graph for 3-plex,
where S = {v1, v2, v3} is the growing 3-plex and P =
{v4, v5, v6, v7, v8} is the candidate set. The ∆ array of S
is computed as (δ1 = 0, δ2 = 1, δ3 = 1), Π = {π0 =
{v4}, π1 = ∅, π2 = {v7, v8}, π3 = {v5, v6}} is a parti-
tioning of P w.r.t. S. According to Lemma 1, the upper
bound of a 3-plex containing S in the graph is computed as:
|S|+|π0|+

∑3
i=1 min{k−1−δi, |πi|} = 3+1+0+1+1 = 6.

To compute PUB, we need to compute a partitioning Π for
P . Note that π0 is always fixed for a given S and P , but
there exist many possibilities to compute π1, . . . , πq , because
a vertex v ∈ P could be nonadjacent to many vertices in S.
A straightforward partitioning of P can be stated as follows:
Iteratively construct a set πi for each vi ∈ S with all the
vertices in P that are not adjacent to vi. Each time a πi is
constructed, the vertices of πi are removed from P . The ver-
tices that do not belong to any πi (i 6= 0) form the set π0. The
time complexity of the partition procedure is O(|S| × |P |).

Note that the new upper bound PUB is quite different from
the previous upper bounds based on the co-k-plex partitioning
and the graph coloring. For PUB, the partitioning of the can-
didate set P is based on the growing solution S. The relation-
ship between S and P is exploited in the partition. However,
for the co-k-plex and the graph coloring bound, the partition-
ing of P depends only on the value k and the subgraph G[P].
Therefore, it is reasonable to expect that the new bound PUB
can derive a tighter upper bound than the previous two upper
bounds.

5 A New BnB Algorithm with the New Upper
Bound to Reduce the Number of Branches

We present a new algorithm for MKP, called KpLeX, which is
depicted in Algorithm 1. KpLeX first calls a preprocessing to
compute an initial solution S0 and to reduce the input graph
G to G′, then calls a BnB search procedure to search for an
optimal solution in the reduced graph G′, which employs the
new upper bound to reduce the search space. We first describe
the preprocessing procedure, then the BnB search procedure.

5.1 The Preprocessing Procedure
The preprocessing procedure in Algorithm 1 performs two
tasks: compute an initial solution S0 and reduce the graph G.

To compute an initial solution S0 for a given graph G =
(V,E) and k, we adopt the efficient approach for MCP pro-
posed in [Jiang et al., 2016] and extend it for MKP. The
procedure sorts the vertices of V in the degeneracy order-
ing v1 < v2 < · · · < vn in such a way that vi is the vertex
with minimal degree deg∗(vi) in G[{vi, . . . , vn}]. Accord-
ing to the definition of k-plex, when there is a vertex vi sat-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1691

isfying deg∗(vi) ≥ n − i + 1 − k, the remaining vertices
vi, vi+1, . . . , vn forms a k-plex. So, S0 is {vi, vi+1, . . . , vn}.

Next, the procedure reduces the graph with the initial so-
lution S0. Let lb = |S0|, for searching for ωk(G), the vertex
v with a degree degG(v) satisfying degG(v) + k < lb + 1
can be removed from G safely, because degG(v) + k is an
upper bound of k-plex containing v. In fact, let vp be the first
vertex with deg∗(vp) ≥ lb + 1 − k (starting with 1), then all
the vertices smaller than vp in the ordering can be removed
from G. This rule has been widely used in [Xiao et al., 2017;
Gao et al., 2018; Zhou et al., 2021] for preprocessing.

To further reduce the input graph, we exploit Property 3
to find out more vertices that can be removed. Formally, we
define an ‘unsupported’ notion for two adjacent vertices w.r.t.
a given lower bound lb of k-plex.
Definition 3. Given a lower bound lb, two adjacent vertices
u, v are ‘unsupported’ each other w.r.t lb, if they cannot occur
simultaneously in a k-plex of size greater than or equal to lb.

We use usplbG(v) to denote the set of neighbors of v that are
‘unsupported’ to v w.r.t. the lower bound lb. The following
two properties are natural extensions of Property 3 and 2.
Property 6. Two adjacent vertices u and v are ‘unsupported’
each other w.r.t. a lower bound lb, if ΘG(u, v) < lb− 2k.
Property 7. If there exists a k-plex of size lb containing ver-
tex v in G, then |usplbG(v)| ≤ degG(v) + k − lb.

Since degG(v)−|usplbG(v)| is the largest number of neigh-
bors of v that can occur in a k-plex S of size lb and containing
v, then degG(v)−|usplbG(v)|+k is an upper bound of |S|. So,
we have degG(v) − |usplbG(v)| + k ≥ lb and then Property 7
can be derived.

After the procedure obtaining S0, the next target of the
algorithm is to find a k-plex of size greater than |S0|. Let
lb′ = |S0| + 1, we can compute usplb

′

G (v) for each v with
Property 6, and then remove the vertex v having |usplb′G (v)| >
degG(v) + k− lb′ according to Property 7. Note that the car-
dinality of usplb

′

G (·) of remaining vertices could be reduced
after some vertices removed from G, then the reduction rule
can be applied iteratively till no more vertex can be removed.

With a mark array, the computation of ΘG(u, v) can be
done in O(|V |). So the time complexity of the second reduc-
tion phase is O(|V | · |E| · r), where r is the number of rounds
of the reduction step carrying out.

5.2 The Branch-and-Bound Search Procedure
Algorithm 2 depicts the BnB search procedure called in Al-
gorithm 1 line 3, which explores the search space formed by
the candidate set P to search for a maximum k-plex of size
greater than the incumbent S∗.

Before exploring search space formed by the candidate set
P , the algorithm first calls function Partition(S, P , k, |S∗|)
to partition P intoB and P \B in such a way that S could not
be extended to a solution of size greater than |S∗| with ver-
tices in P \B, i.e, ωk(G[S∪(P \B)]) ≤ |S∗|. Consequently,
B is the set of branching vertices. The algorithm branches on
every vertices of B in the degeneracy vertex ordering of G.

For each branching vertex ui ∈ B (i = |B| to 1), let Q be
a copy of the current candidate set P ′ = P \B, Algorithm 2

Algorithm 2 BnBSearch(G, S, P , S∗,k)
Input: A graph G=(V ,E), a growing k-plex S, the candidate
set P and the incumbent solution S∗ and k .
Output: the best solution S∗ in G.

1: if P is empty then
2: return S∗;
3: end if
4: B ←Partition(S, P , k, |S∗|);
5: if B is empty then
6: return S∗;
7: end if
8: LetB = {u1, u2, . . . , u|B|} and P ′ = P \B, u1 < u2 <
· · · < u|B| w.r.t. the degeneracy vertex ordering of G.

9: for i = |B| to 1 do
10: Let Q = P ′, remove vertices in Q whose number of

non-neighbors in S ∪ {ui} is equal to k.
11: if |S| < 3 then
12: compute ΘG[Q∪S](ui, v) for each v ∈ Q.
13: remove v fromQ if ΘG[Q∪S](ui, v)+2k−γ ≤ |S∗|,

γ is 0 if (ui, v) ∈ E; Otherwise, γ is 2.
14: end if
15: S′ ← BnBSearch(G, S ∪ {ui}, Q, S∗,k);
16: if |S′| > |S∗| then
17: S∗ ← S′;
18: end if
19: P ′ ← P ′ ∪ {ui};
20: end for
21: return S∗;

employs two pruning steps to reduce Q. First, the algorithm
excludes those vertices whose number of non-neighbors in
S ∪ {ui} reaches k. Second, if the cardinality of S is smaller
than 3, the algorithm then exploits Property 3 to further ex-
clude vertices in Q. We call the second step Pro3-based
pruning. This step is restricted to the search tree nodes of
level smaller than three in our implementation, because its
time complexity is O(|V |2), which is not economical enough
to be applied at every search tree node, especially for dense
graphs. After reducing Q, Algorithm 2 searches for a maxi-
mum k-plex in the search space formed by Q recursively.

Algorithm 3 describes the function Partition, which em-
ploys the new upper bound PUB to partition P . At first, the
branching set B is set with P . Then, the algorithm constructs
a set πi for each vi ∈ S one by one, where πi is the set of
non-neighbors of vi in B. The algorithm maintains an upper
bound ub =

∑i
j=1 min{k−1−δj , |πj |}, which is the largest

number of vertices that can be inserted into S in
⋃i

j=1 πj . If
|S|+ub ≤ lb, then the vertices in πi are removed fromB and
the algorithm begins to construct the next πi+1; Otherwise,
the algorithm returns the set B. If all the πi (i 6= 0) have
been constructed and |S|+ub is still smaller than lb, then the
algorithm removes lb−|S|−ub more vertices from B before
returning B, if B is not empty.

In Algorithm 3, v1 < v2 < · · · < vq is the ordering in
which they are inserted into S. We use this ordering to con-
struct the partition since we are not yet aware that any other

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1692

Algorithm 3 Partition(S,P ,k, lb), algorithm to partition P
Input: The growing k-plex S = {v1, v2, . . . , vq}, the candi-
date set P , the k value and the lower bound lb
Output: A branching set B

1: Let B = P , ub = 0 and (δ1, . . . , δq) be ∆ array of S;
2: for i=1 to q do
3: create a πi = ∅;
4: for each u ∈ B do
5: if u is not adjacent to vi then
6: πi ← πi ∪ {u};
7: end if
8: end for
9: ub← ub+ min{k − 1− δi, |πi|};

10: if |S|+ ub ≤ lb then
11: B ← B \ πi;
12: else
13: return B;
14: end if
15: end for
16: if |S|+ ub < lb and B 6= ∅ then
17: remove lb− |S| − ub vertices from B;
18: end if
19: return B;

specialized ordering could result in a better partitioning. We
use a global array to maintain each δi value incrementally.
The time complexity of Algorithm 3 is O(|S| × |P |).

Note that PUB depends crucially on the growing solution
S. When the cardinality of S is small, the number of πi that
can be constructed in Algorithm 3 is small, then the pruning
ability of Algorithm 3 is limited. That’s the rationality we
employ Pro3-based pruning step only at the search tree nodes
of level smaller than three. As the growing of S, the pruning
ability of PUB increases. So, Algorithm 2 switches off the
costly Pro3-based pruning step when |S| is greater than two.

6 Experimental Results
We conducted experiments to evaluate our algorithm KpLeX
and the bound PUB. KpLeX was compared with three
state-of-the-art exact algorithms, BS1 [Xiao et al., 2017],
BnBK2 [Gao et al., 2018] and Maplex3 [Zhou et al., 2021].

KpLeX4 was implemented in C++ and compiled using
GNU g++ -O3. All the experiments were performed on Intel
Xeon CPUs E5-2680 v4@2.40GHz under Linux with 128GB
of memory. The experiments were conducted on the follow-
ing four datasets using a cutoff time of 3600 seconds for each
tested instance and five different k values, 2 to 6.

2nd DIMACS graphs. 80 graphs containing up to 4000
vertices with densities ranging from 0.03 to 0.99.5 The
dataset are widely used to evaluate MCP and MKP.

1https://github.com/Lweb/KPLEX
2https://github.com/JimNenu/codekplex
3https://github.com/ini111/Maplex
4Published at https://github.com/huajiang-ynu/kplex
5http://cs.hbg.psu.edu/txn131/clique.html

Real-world massive graphs. 139 real-world sparse graphs
from the Network Data Repository [Rossi and Ahmed, 2015].
The dataset6 were used to evaluate BS, BnBK [Gao et al.,
2018] and Maplex [Zhou et al., 2021].
10th DIMACS graphs. 82 graphs containing up to 2× 107

vertices7. The dataset were introduced in 10th DIMACS chal-
lenge and also widely used to evaluate MCP and MKP.
Random generated graphs. 120 random graphs of fixed
vertex number of 1000 generated with six different densities
d: 0.05, 0.10, 0.15, 0.20, 0.25 and 0.30. We generate 20
graphs for each density d in such a way that two vertices are
adjacent with probability d.

Since the original BS implementation cannot deal with
massive graphs, we integrate a graph reduction procedure
used in KpLeX into BS when testing massive graphs.

6.1 Comparison of Total Performance
We first present the total numbers of solved instances of the
four algorithms over the four datasets in Figure 2. The x axis
is the k value (2 to 6) and y axis is the number of solved
instances. We can see that KpLeX shows superiority over
the other three algorithms for every tested dataset at almost
every k value. For example, KpLeX can solve 27 the 2nd
DIMACS instances at k = 2, which is 1.2, 1.5 and 1.8 times
of the number of instances that Maplex(22), BnBK (18) and
BS (15) can solve, respectively. KpLeX performs much better
than BS and BnBK on random graphs. It can solve all the
120 instances at k=2 and 3 and 80 instances at k=4, but BnBk
(BS) can solve only 42 (40), 20 (0) and 20 (0) at the three
points. Maplex has a good performance at k=2, but it declines
dramatically with the increasing of k value.

In general, our new algorithm KpLeX outperforms BS,
BnBK and Maplex significantly over the four tested datasets.
Especially, KpLeX shows a better robustness than the three
compared algorithms as the k value increases.

6.2 Comparison of Graph Reduction
Before investigating the influence of the new upper bound,
we compare the effect of the graph reduction of KpLeX with
BnBK (According to [Zhou et al., 2021], the effect of the
graph reduction of BnBK and Maplex is comparable). Note
that existing graph reduction methods can only work for mas-
sive sparse graphs. We make the comparison only on real-
world dataset. We select 23 graphs with more than 5 × 105

of vertices from the 139 graphs and compare the number of
vertices being reduced in the preprocessing phases of the two
algorithms using k=2. Table 1 shows the comparison result.

It is easy to see that, except for the graph sc-ldoor, almost
99% vertices of tested graphs can be removed by the two al-
gorithms in their preprocessing phases and the qualities of the
initial solutions S0 and the rates of vertex reduction rt, com-
puted as (|V | − |V ′|)/|V |, of the two algorithms are nearly
equal. The comparison shows that the performance differ-
ences between KpLeX and BnBK (Maplex) mainly come
from the searching components of the three algorithms, rather
than from the graph reduction in preprocessing.

6http://lcs.ios.ac.cn/ caisw/Resource/realworld%20graphs.tar.gz
7http://networkrepository.com/dimacs10.php

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1693

2 3 4 5 6
k values

5

10

15

20

25

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

KpLeX
BnBK
BS
Maplex

(a) 2nd DIMACS Graphs

2 3 4 5 6
k values

30

40

50

60

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s KpLeX

BnBK
BS
Maplex

(b) 10th DIMACS Graphs

2 3 4 5 6
k values

60

80

100

120

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

KpLeX
BnBK
BS
Maplex

(c) Real-world Graphs

2 3 4 5 6
k values

0

20

40

60

80

100

120

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

KpLeX
BnBK
BS
Maplex

(d) Random Graphs

Figure 2: The total numbers of solved instances of KpLeX, BnBk, BS and Maplex using k = 2 to 6. The cutoff time is 3600 seconds.

Instance |V | BnBK KpLeX
|S0| |V ′| rt |S0| |V ′| rt

ca-coauthors-dblp 540486 337 0 1.000 337 0 1.000
ca-hollywood-2009 1069126 2209 0 1.000 2209 0 1.000

inf-roadNet-CA 1957027 5 0 1.000 5 0 1.000
inf-roadNet-PA 1087562 5 0 1.000 5 0 1.000

inf-road-usa 23947347 5 0 1.000 5 0 1.000
rt-retweet-crawl 1112702 14 0 1.000 12 51 0.999

scc retweet-crawl 1131801 21 0 1.000 21 0 1.000
sc-ldoor 952203 21 882715 0.073 21 882399 0.073

soc-delicious 536108 18 181 0.999 18 183 0.999
soc-digg 770799 22 11885 0.985 22 11836 0.985

socfb-A-anon 3097165 24 2239 0.999 24 2155 0.999
socfb-B-anon 2937612 15 37564 0.987 15 35907 0.988
socfb-uci-uni 58790782 9 0 1.000 7 805 0.999

soc-flickr 513969 64 2251 0.996 64 2255 0.996
soc-flixster 2523386 36 282 0.999 36 283 0.999

soc-FourSquare 639014 32 9974 0.984 31 11326 0.982
soc-lastfm 1191805 16 1254 0.999 16 1250 0.999

soc-livejournal 4033137 214 0 1.000 214 0 1.000
soc-pokec 1632803 21 838 0.999 18 2359 0.999

soc-youtube-snap 1134890 16 1034 0.999 16 1004 0.999
tech-as-skitter 1694616 62 422 0.999 62 423 0.999
web-it-2004 509338 432 0 1.000 432 0 1.000

web-wikipedia2009 1864433 9 5824 0.997 9 5724 0.997

Table 1: The comparison of graph reduction of KpLeX and BnBK
with k=2. |V | is the number of vertices of original graphs, S0 de-
notes the initial solution the two algorithms found in their prepro-
cessing phases. V ′ is the vertex set of reduced graph and rt denotes
the rate of vertex being reduced, computed as (|V | − |V ′|)/|V |.

6.3 The Effect of the Upper Bound
To investigate the efficiency of the new upper bound for re-
ducing search space in KpLeX, we conducted another exper-
iment and compared KpLeX with the following two variants.

KpLeX\Pro3. It is KpLeX but the Pro3-based reduction
step (line 11 to 14 in Algorithm 2) is disabled.

KpLeX\PUB. It is KpLeX but uses a simple method, in-
stead of using PUB, to generate the branching set B, i.e., B
is P but the last lb− |S| vertices, w.r.t. the degeneracy order-
ing, are removed in Algorithm 3.

The comparison of KpLeX with the two variants can help
us evaluate the effectiveness of the PUB bound and the Pro3-
based reduction in reducing search space in KpLeX. We use
k=4, the median of [2, 6], to evaluate KpLeX and the two
variants. Figure 3 shows the cumulative numbers of solved
instances over the four datasets within a cutoff time 3600s.

From Figure 3, we can see that the variant KpLeX\Pro3
performs nearly the same with KpLeX, only showing a slight
decline of performance on the 10th DIMACS and real-world
graphs, which shows that the Pro3-based reduction step can
enhance the performance of KpLeX but limitedly. Whilst,
the performance of KpLeX\PUB declines dramatically on the
three datasets out of the four, showing that the PUB bound is
crucial to the performance of KpLeX.

To make a deep insight, we select 4 representative in-
stances from the four tested datasets and analyse the search
tree sizes and the running times of them at k=2, 4 and 6. The

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1694

0 600 1200 1800 2400 3000 3600
time in seconds

0
2
4
6
8

10
12
14
16
18
20

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

KpLeX
KpLeX\Pro3
KpLeX\PUB

(a) 2nd DIMACS Graphs

0 600 1200 1800 2400 3000 3600
time in seconds

15
20
25
30
35
40
45
50
55

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

KpLeX
KpLeX\Pro3
KpLeX\PUB

(b) 10th DIMACS Graphs

0 600 1200 1800 2400 3000 3600
time in seconds

80

90

100

110

120

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

KpLeX
KpLeX\Pro3
KpLeX\PUB

(c) Real-world Graphs

0 600 1200 1800 2400 3000 3600
time in seconds

0

20

40

60

80

nu
m

be
rs

 o
f s

ol
ve

d
in

st
an

ce
s

KpLeX
KpLeX\Pro3
KpLeX\PUB

(d) Random Graphs

Figure 3: Cumulative numbers of solved instances of KpLeX and two variants at k = 4.

cutoff times for KpLeX\PUB and KpLeX\Pro3 are 10000
seconds.

Table 2 shows the result of the comparison. The results
show that the search tree sizes of KpLeX\PUB increase dra-
matically for the four instances, as well as the running times.
KpLeX\PUB cannot solve three of them when k=6 using
10000s. Nevertheless, the search tree sizes of KpLeX\Pro3
increase less dramatically and only one instance consph can-
not be solved within 10000s at k=6.

In general, the new upper bound PUB is very effective to
reduce the number of branches and is crucial to the perfor-
mance of the new algorithm KpLeX. And we also note that

Instance k
KpLeX KpLeX\PUB KpLeX\Pro3

tree time tree time tree time
2 0.69 0.40 17.38 1.08 0.70 0.20

p hat300-1 4 25.4 5.77 99926 7621 25.58 5.05
6 2250 528.1 - - 2219 487.1
2 0.93 303.8 2.66 266.8 176.8 287.1

consph 4 121.7 351.3 4985 659.2 3315 5557
6 299.2 400.4 2392 536.4 - -
2 16.03 38.15 139.4 32.82 24.74 36.37

socfb-A-anon 4 372.9 141.8 27937 2102 489.4 178.9
6 5761 1277 - - 6482 1647
2 0.02 0.08 0.03 0.10 0.23 0.15

1000 0.05 20 4 11.32 1.10 122.2 4.52 44.9 8.08
6 14102 1806 - - 18758 3449

Table 2: The comparison of KpLeX with two variants. tree is the
search tree size in 105 and time is the running time in seconds.

the Pro3-based reduction step could be effective for solving
the real-world sparse graphs.

7 Conclusions
We proposed a novel upper bound for MKP. The bound par-
titions the candidate set P w.r.t. the growing solution S. The
advantage of the bound is that the close relationship between
the growing solution S and the candidate set P is exploited.
We implemented a new BnB algorithm for MKP that incorpo-
rates the upper bound to reduce the number of branches. The
reported experiments show that the new upper bound is very
effective in reducing the search space, and that the algorithm
KpLeX outperforms relevant exact algorithms on DIMACS
graphs, real-world massive graphs and random graphs.

Acknowledgments
This work is supported in part by NSFC under grant
61863036, Key Area Research Program of Yunnan Province
under grant 202001BB050076, Education Department Fund-
ing of Yunnan Province under grant 2021J0006, the Shenzhen
Science and Technology Innovation Commission under grant
JCYJ20180508162601910, the National Key R&D Program
of China under grant 2020YFB1313300, the Funding from
the Shenzhen Institute of Artificial Intelligence and Robotics
for Society under grant 2019-INT003 and by the MatriCS
platform of University of Picardie Jules Verne.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1695

References
[Balasundaram et al., 2011] Balabhaskar Balasundaram,

Sergiy Butenko, and Illya V. Hicks. Clique relaxations in
social network analysis: The maximum k-plex problem.
Oper. Res., 59(1):133–142, 2011.

[Chen et al., 2020] Peilin Chen, Hai Wan, Shaowei Cai, Jia
Li, and Haicheng Chen. Local search with dynamic-
threshold configuration checking and incremental neigh-
borhood updating for maximum k-plex problem. In The
Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of
Artificial Intelligence Conference, IAAI 2020, The Tenth
AAAI Symposium on Educational Advances in Artificial
Intelligence, EAAI 2020, New York, NY, USA, February
7-12, 2020, pages 2343–2350. AAAI Press, 2020.

[Conte et al., 2018] Alessio Conte, Tiziano De Matteis,
Daniele De Sensi, Roberto Grossi, Andrea Marino, and
Luca Versari. D2K: scalable community detection in mas-
sive networks via small-diameter k-plexes. In Yike Guo
and Faisal Farooq, editors, Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discov-
ery & Data Mining, KDD 2018, London, UK, August 19-
23, 2018, pages 1272–1281. ACM, 2018.

[Gao et al., 2018] Jian Gao, Jiejiang Chen, Minghao Yin,
Rong Chen, and Yiyuan Wang. An exact algorithm for
maximum k-plexes in massive graphs. In Jérôme Lang, ed-
itor, Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence, IJCAI 2018, July 13-
19, 2018, Stockholm, Sweden, pages 1449–1455. ijcai.org,
2018.

[Garey and Johnson, 1979] Michael R. Garey and David S.
Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. W. H. Freeman, 1979.

[Gschwind et al., 2018] Timo Gschwind, Stefan Irnich, and
Isabel Podlinski. Maximum weight relaxed cliques and
russian doll search revisited. Discret. Appl. Math.,
234:131–138, 2018.

[Jiang et al., 2016] Hua Jiang, Chu Min Li, and Felip
Manyà. Combining efficient preprocessing and incremen-
tal MaxSAT reasoning for MaxClique in large graphs. In
Proceedings of the 22nd European Conference on Arti-
ficial Intelligence, ECAI, The Hague, The Netherlands,
pages 939–947, 2016.

[Jiang et al., 2017] Hua Jiang, Chu Min Li, and Felip
Manyà. An exact algorithm for the maximum weight
clique problem in large graphs. In Proceedings of the
Thirty-First AAAI Conference on Artificial Intelligence,
San Francisco, California, USA, pages 830–838, 2017.

[Li and Quan, 2010] C.M. Li and Z. Quan. An efficient
branch-and-bound algorithm based on maxsat for the max-
imum clique problem. In Twenty-Fourth AAAI Conference
on Artificial Intelligence, AAAI 2010, Atlanta, Georgia,
Usa, July, pages 128–133, 2010.

[Li et al., 2017] Chu Min Li, Hua Jiang, and Felip Manyà.
On minimization of the number of branches in branch-

and-bound algorithms for the maximum clique problem.
Computers & OR, 84:1–15, 2017.

[McClosky and Hicks, 2012] Benjamin McClosky and
Illya V. Hicks. Combinatorial algorithms for the max-
imum k-plex problem. J. Comb. Optim., 23(1):29–49,
2012.

[Miao and Balasundaram, 2017] Zhuqi Miao and Balab-
haskar Balasundaram. Approaches for finding cohesive
subgroups in large-scale social networks via maximum k-
plex detection. Networks, 69(4):388–407, 2017.

[Rossi and Ahmed, 2015] Ryan A. Rossi and Nesreen K.
Ahmed. The network data repository with interactive
graph analytics and visualization. In Blai Bonet and
Sven Koenig, editors, Proceedings of the Twenty-Ninth
AAAI Conference on Artificial Intelligence, January 25-
30, 2015, Austin, Texas, USA, pages 4292–4293. AAAI
Press, 2015.

[Seidman and Foster, 1978] Stephen B. Seidman and
Brian L. Foster. A graph theoretic generalization of
the clique concept. Journal of Mathematical Sociology,
6(1):139–154, 1978.

[Tomita et al., 2010] Etsuji Tomita, Yoichi Sutani, Takanori
Higashi, Shinya Takahashi, and Mitsuo Wakatsuki. A
simple and faster branch-and-bound algorithm for finding
a maximum clique. In Proceedings of the 4th Interna-
tional Workshop on Algorithms and Computation, WAL-
COM, Dhaka, Bangladesh, pages 191–203, 2010.

[Xiao et al., 2017] Mingyu Xiao, Weibo Lin, Yuanshun Dai,
and Yifeng Zeng. A fast algorithm to compute maximum
k-plexes in social network analysis. In Satinder P. Singh
and Shaul Markovitch, editors, Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA, pages 919–
925. AAAI Press, 2017.

[Zhou and Hao, 2017] Yi Zhou and Jin-Kao Hao.
Frequency-driven tabu search for the maximum s-plex
problem. Comput. Oper. Res., 86:65–78, 2017.

[Zhou et al., 2020] Yi Zhou, Jingwei Xu, Zhenyu Guo,
Mingyu Xiao, and Yan Jin. Enumerating maximal k-
plexes with worst-case time guarantee. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, AAAI
2020, The Thirty-Second Innovative Applications of Arti-
ficial Intelligence Conference, IAAI 2020, The Tenth AAAI
Symposium on Educational Advances in Artificial Intelli-
gence, EAAI 2020, New York, NY, USA, February 7-12,
2020, pages 2442–2449. AAAI Press, 2020.

[Zhou et al., 2021] Yi Zhou, Shan Hu, Mingyu Xiao, and
Zhang-Hua Fu. Improving maximum k-plex solver via
second-order reduction and graph color bounding. In
Thirty-Fifth AAAI Conference on Artificial Intelligence,
AAAI 2021, Thirty-Third Conference on Innovative Appli-
cations of Artificial Intelligence, IAAI 2021, The Eleventh
Symposium on Educational Advances in Artificial Intel-
ligence, EAAI 2021, Virtual Event, February 2-9, 2021,
pages 12453–12460. AAAI Press, 2021.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1696

	Introduction
	Preliminaries
	Related Works
	A New Upper Bound
	A New BnB Algorithm with the New Upper Bound to Reduce the Number of Branches
	The Preprocessing Procedure
	The Branch-and-Bound Search Procedure

	Experimental Results
	Comparison of Total Performance
	Comparison of Graph Reduction
	The Effect of the Upper Bound

	Conclusions

