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Abstract

Event-based cameras have attracted increasing at-
tention due to their advantages of biologically
inspired paradigm and low power consumption.
Since event-based cameras record the visual input
as asynchronous discrete events, they are inherently
suitable to cooperate with the spiking neural net-
work (SNN). Existing works of SNNs for process-
ing events mainly focus on the task of object recog-
nition. However, events from the event-based cam-
era are triggered by dynamic changes, which makes
it an ideal choice to capture actions in the visual
scene. Inspired by the dorsal stream in visual cor-
tex, we propose a hierarchical SNN architecture for
event-based action recognition using motion infor-
mation. Motion features are extracted and utilized
from events to local and finally to global perception
for action recognition. To the best of the authors’
knowledge, it is the first attempt of SNN to apply
motion information to event-based action recog-
nition. We evaluate our proposed SNN on three
event-based action recognition datasets, including
our newly published DailyAction-DVS dataset com-
prising 12 actions collected under diverse recording
conditions. Extensive experimental results show
the effectiveness of motion information and our
proposed SNN architecture for event-based action
recognition.

1 Introduction
Event-based cameras are a novel class of vision devices im-
itating the mechanism of human retina. Contrary to conven-
tional cameras, which record the visual input from all pix-
els as images at a fixed rate, with event-based cameras, each
pixel individually emits events when it observes sufficient
changes of light intensity in its receptive field. Thus, event-
based cameras naturally respond to moving objects and ig-
nore static redundant information, resulting in significant re-
duction of memory usage and energy consumption. The final
output of the camera is a stream of events collected from each
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pixel, forming an asynchronous and sparse representation of
the scene.

This event-based representation is inherently suitable to
cooperate with the spiking neural network (SNN) since SNN
also has the event-based property [Hu et al., 2018]. SNN uses
discrete spikes to transmit information between units which
mimics the behavior of biological neural systems. Benefit-
ing from this event-driven processing paradigm, SNN is en-
ergy efficient on neuromorphic hardware and has a power-
ful ability in processing spatio-temporal information. Recent
years, SNN has been increasingly applied to the task related
to event-based cameras.

Existing works of SNNs cooperating with event-based
cameras mainly focus on the object recognition tasks [Or-
chard et al., 2015; Xiao et al., 2019; Liu et al., 2020b]. How-
ever, since the event-based camera naturally captures move-
ments in the visual scene, it is a good fit for the action recog-
nition task. Nevertheless, works of SNN on event-based ac-
tion recognition are still limited.

Humans can recognize actions accurately, which motivates
us to explore the biological visual cortex to gain experience
for event-based recognition. The visual cortex is organized in
two different pathways [Jhuang et al., 2007]. One is a ven-
tral stream dealing with shape information, which has been
widely used in the existing spiking object recognition models
[Orchard et al., 2015; Liu et al., 2020b]. The other is a dor-
sal stream involved with the analysis of motion information.
Since the event streams representing the actions contain rich
motion information, motion features of event stream may be
an ideal choice for action recognition tasks. Further, the orga-
nization of dorsal stream is hierarchical. Neurons gradually
increase their receptive field along the hierarchy, as well as
their selectivity and invariance to features. Inspired by the
current theory of the visual cortex, we will make steps to-
wards the solution of event-based action recognition.

We propose a hierarchical SNN architecture for event-
based action recognition using motion information. Motion
features are extracted and utilized from events to local and
finally to global perception for action recognition. Specif-
ically, we first adopt motion-sensitive neurons to estimate
optical flow for the purpose of local motion (direction and
speed) perception. Then, we perform a motion pooling and
a spatial pooling to mitigate the effect of the aperture prob-
lem [Orchard et al., 2013] and increase the spatial invariance
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respectively. As the final stage of the architecture, a SNN
classifier in which the spiking neurons are fully connected to
the previous pooling layer, is adopted as global perception for
recognition results. To the best of the authors’ knowledge, it
is the first attempt of SNN to apply the motion information to
action recognition tasks.

Besides, due to the lack of event-based action datasets
and their importance for the algorithm development, we
present a new event-based action recognition dataset called
DailyAction-DVS. The dataset comprises 15 subjects per-
forming 12 daily actions under 2 lighting conditions and 2
camera positions (with different distances and angles to the
subjects). This setting increases the challenge of dataset
while gaining more practical significance.

We evaluate the proposed SNN on the new event-based ac-
tion recognition dataset and two other challenging ones. Ex-
perimental results show the effectiveness of motion informa-
tion and our proposed SNN architecture for event-based ac-
tion recognition.

2 Related Work
2.1 Event-based Action Recognition
Action recognition task has drawn a significant amount of
attention from the academic community, owing to its appli-
cations in many areas like security and behavior analysis.
With the popularity of event-based cameras, they have been
found to be ideal choices to capture human actions since they
only record the activity in the field of view and automatically
partition the foreground and background. Recently, research
on event-based action recognition has emerged progressively.
One approach is to convert the output of an event camera into
frames and use standard computer vision methods, such as
[Innocenti et al., 2020]. However, these works mainly focus
on how to aggregate events and deal with frames. Another
approach is to directly deal with events. [Maro et al., 2020]
introduced a framework for dynamic gesture recognition rely-
ing on the concept of time-surfaces introduced in [Lagorce et
al., 2017]. In addition, SNN is trying to solve the event-based
gesture recognition. [George et al., 2020] presented a SNN
which uses the idea of convolution and reservoir computing
in order to classify human hand gestures. Since SNN has
the event-based property and the ability in processing spatio-
temporal information, it has great potential to solve the event-
based action recognition, but related works are still limited.

2.2 Event-based Features
[Lagorce et al., 2017] proposed the spatio-temporal features
based on recent temporal activity of events within a local spa-
tial neighborhood called time-surfaces. [Sironi et al., 2018]
presented local memory time surfaces to leverage past tem-
poral information and improve robustness. [Ramesh et al.,
2019] encoded the structural context using log-polar grids
for event stream, which is robust to moderate scale and ro-
tation variations. Inspired by the function of ventral stream
in visual cortex, [Orchard et al., 2015] proposed a spik-
ing architecture to extract HMAX-based shape features for
event-based object recognition. This work pioneers a se-
ries of related works [Xiao et al., 2019; Liu et al., 2020a;

2020b] and the proposed features become one of the most
commonly used features when using SNN to process the
event-based recognition.

We are inspired by the function of dorsal stream also in vi-
sual cortex and make steps towards using motion information
for action recognition tasks. Since event-based cameras pro-
vide an efficient way for encoding light and its temporal vari-
ations [Benosman et al., 2012], we introduce the optical flow
estimation for motion (direction and speed) perception. Ex-
isting works on SNN-based optical flow estimation adopted
motion-sensitive neurons with synaptic delays [Orchard et
al., 2013; Paredes-Vallés et al., 2019]. We here adopt neu-
rons in [Orchard et al., 2013] due to their effectiveness and
simplicity.

2.3 Event-based Datasets
Existing datasets on event-based action recognition can be
divided into two categories: one is recorded with a static
event-based camera facing a monitor on which video-based
datasets were set to play automatically [Hu et al., 2016].
However, this recording way will lose real dynamics of mov-
ing objects between two frames. There is no guarantee that
a method tested on this kind of artificial data will behave
similarly in real-world conditions [Sironi et al., 2018]. The
other is to record directly by event-based cameras in the real
scene. Among them, several datasets are proposed for ges-
tures. [Amir et al., 2017] proposed an event-based hand ges-
ture dataset captured by a fixed DVS camera [Lichtsteiner et
al., 2008]. [Maro et al., 2020] also proposed a gesture dataset
but was recorded by an ATIS camera [Posch et al., 2011] con-
nected to the smartphone. As for human action, [Miao et al.,
2019] proposed an event-based action recognition dataset us-
ing a DAVIS camera [Brandli et al., 2014] with 3 different
positions. However, this dataset is recorded under single light
condition and is relatively small (291 recordings released).

Our proposed event-based action recognition DailyAction-
DVS dataset has 1440 recordings of 12 daily actions. The
dataset is captured by a DVS camera with 2 different light-
ing conditions and 2 different camera positions (with differ-
ent distances and angles), which brings more challenges to
the dataset and is also more in line with the realistic situation.

3 Method
In this section, we introduce the proposed SNN for event-
based action recognition, which extracts and utilizes motion
information from events to local and finally to global percep-
tion. The architecture of the proposed SNN is shown in Fig-
ure 1.

3.1 Events From Event-based Camera
Given an event-based camera with pixel grid sizeN×M , the
i-th event can be described as:

ei = [eti , exi
, eyi

, epi
], i ∈ {1, 2, . . . , I} (1)

where eti ≥ 0 is the timestamp at which the event is gener-
ated, (exi , eyi) ∈ {1, 2, . . . , N} × {1, 2, . . . ,M} is the po-
sition of the pixel generating the i-th event, epi ∈ {−1, 1}
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Figure 1: The architecture of the proposed SNN for event-based action recognition. The network consists of 5 layers: the first layer is the Input
layer, the following 3 layers are used for local perception, and the last layer provides global perception for recognition results. Events from the
event-based camera are first encoded in Input layer to a compatible format and then sent to Motion Perception layer (MP1). MP1 consists of
motion-sensitive neurons and neurons of the same sensitive motion (direction and speed) are organized into one neural map. If the membrane
voltage of neuron exceeds its threshold, the neuron will fire a spike to Motion Pooling layer (MP2) and all neurons in the same position of
different neural maps will be reset. Neurons in MP2 have the same motion sensitivity but a larger receptive field. Neurons in Spatial Pooling
layer (SP) fuse spikes from their receptive field and transmit them to the Global Perception layer (GP). Finally, a SNN classifier, in which the
spiking neurons are fully connected with SP, receives all the extracted motion feature spikes and outputs action recognition results.

Figure 2: Visualization of one event stream representing the left arm
clockwise in DvsGesture dataset. ON and OFF events are repre-
sented by blue and gray respectively.

is the polarity of the event, with −1, 1 meaning respectively
OFF and ON events, and I is the number of events. Fig-
ure 2 shows a visualization of the event stream representing
left arm clockwise gesture in DvsGesture dataset [Amir et al.,
2017].

The events from camera are first encoded in Input layer to
a compatible format for the following processing. This layer
can been seen as having two neural maps, one per polarity.
Each map is comprised of N ×M spiking neurons with no
internal dynamics that emit spikes when receiving the corre-
sponding events.

3.2 Local Perception
Motion Perception (MP1)
The events are sent to Motion Perception layer (MP1) for
local motion estimation. The synaptic connections between
Input and MP1 have transmission delay, which is related to
motion that the postsynaptic neurons are sensitive to. As in

[Orchard et al., 2013], we specify the delay as a function of
speed s and direction θ to which the neuron is tuned as well as
the position of the pixel relative to the neuron. The function
of delay can be described with the following equation:

D(∆x,∆y; s, θ) = −∆xcosθ + ∆ysinθ

s
(2)

where ∆x and ∆y are the spatial offsets between the neuron
position (x,y) and the event address (ex, ey). Considering
both the coverage of various directions and speeds and the
complexity of implementing the algorithm, we set the direc-
tions θ varing in increment of 45 degrees and speeds s varing
by a factor of 2. Neurons of the same sensitive direction and
speed are organized into one neural map. On each map, the
membrane voltage of the neuron at position (x, y) and time t
can be described as:

V (x, y, t) =
∑
i

1{x ∈ X (exi
)}1{y ∈ Y(eyi

)}

W (− t− eti
τm

) (3)

where 1{·} is the indicator function, X (exi) = [exi −
rmp1, exi + rmp1] and Y(eyi) = [eyi − rmp1, eyi + rmp1]
denote the receptive field of the neuron in this layer, rmp1 de-
notes the receptive field size, W denotes the synaptic weight
and τm denotes the decay time constant.

Each spiking neuron has equally weighted connections to
rmp1 × rmp1 neurons in the previous layer, but the connec-
tions have specific delays such that when neuron’s sensitive
motion (direction and speed) pattern of events emits, all these
events will arrive at the neuron in a small time interval and
trigger the membrane voltage of neurons to respond. When
the neuron voltage exceeds its threshold V thr

mp1, the neuron
will fire a spike. The threshold V thr

mp1 is set according to the
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Figure 3: Visualization of the extracted motion feature spikes. Left:
direction response of one left arm clockwise sample in DvsGesture
dataset. Right: speed response of one bend sample in DailyAction-
DVS dataset. The color bar shows the direction or speed represented
by each color.

sum of weights of input events in the receptive field. In this
way, when stimulus inputs, the neuron which most closely
matches the stimulus will most likely fire first. Meanwhile,
the spike will inhibit neurons in other neural maps sharing the
same position and force them to reset. This Winner-Take-All
(WTA) mechanism will eliminate erroneous feature spikes
when the next stimulus passes.

Motion Pooling (MP2)
Spiking neurons in this layer have the same neural dynamics
and connection delays as the Motion Perception layer, but a
larger receptive field size rmp2 (rmp2 > rmp1). Large recep-
tive field size increases the probability that edges in differ-
ent directions will be included in the receptive field [Orchard
et al., 2013]. Therefore, local motion pooling mitigates the
aperture problem and provides accurate motion features of
event streams.

Figure 3 shows the motion feature spikes of left arm clock-
wise in DvsGesture dataset [Amir et al., 2017] and bend in
DailyAction-DVS dataset. We can see in left arm clockwise,
the direction of motion gradually changes over time. In bend,
the middle part which represents head trajectory, is faster than
the side part which represents body trajectory. These obser-
vations are consistent with our experience.

Spatial Pooling (SP)
Before the global perception, we here employ the spatial
pooling in the SNN architecture, aiming to increase the fea-
ture spatial invariance and reduce the spatial dimensionality.
Neural maps in the previous Motion Pooling layer are divided
into adjacent non-overlapping rsp × rsp regions and feature
spikes emitted from the same region will be transmitted to the
same neurons in this layer. Neurons have no specific dynam-
ics and emit spikes when receiving the spikes in their recep-
tive field.

3.3 Global Perception (GP): SNN Classifier
In this section, we will describe how we perform global per-
ception for the final action recognition result. The spiking
neurons in this layer are fully connected to all neurons in the
previous Spatial Pooling layer. The connection weights are
trained by the Segmented Probability-Maximization (SPA)
[Liu et al., 2020b], an effective SNN learning algorithm that
is specifically designed for processing event-based data.

We employ the Leaky Integrate-and-Fire (LIF) model. The
neural dynamics can be described as:

V (t) =
∑
i

wi

∑
ti

K(t− ti) + Vrest (4)

where wi and ti are the synaptic weight and the firing time of
the afferent i. Vrest denotes the resting potential of the neu-
ron. K is the normalized postsynaptic potential (PSP) kernel
which is defined as follows:

K(t− ti) = V0(exp(
−(t− ti)

τm
)− exp(

−(t− ti)
τs

)) (5)

where V0 denotes the coefficient to normalize the maximum
value of the kernel as 1, τm and τs denote decay time con-
stants of membrane integration and synaptic currents respec-
tively.

The SPA learning algorithm aims to train the connection
weights so that the neurons can respond more active to the
input patterns of the class they represent. According to the
input pattern of class ck and the class j neuron represent,
the weights should be updated in the following way. First,
we find the peak membrane voltage V j

peak of the neuron rep-
resenting class j and label the corresponding time stamp as
tpeak. Second, we define the normalized output firing rate
f jout of the neuron representing class j as:

f jout = log(exp(V j
peak) + 1) (6)

Third, we update the weights using the equation:

∆wi =


λ(f ′out)

j fsum−fj
out

fsumfj
out

∑
ti<tjpeak

K(tjpeak − ti) j = ck

−λ(f ′out)
j 1
fsum

∑
ti<tjpeak

K(tjpeak − ti) j 6= ck

(7)
where λ is the learning rate. We use fsum to denote∑n

j′=1 f
j′

out for convenience. When training is done, we keep
the synaptic weights fixed, and set the threshold of neurons
V gp
thr. The predicted class for the input is determined by aver-

aging the firing rates of neurons per class and then choosing
the class with the highest average firing rate.

4 Experimental Results
In this section, we evaluate the performance of our proposed
SNN on three event-based gesture/action recognition datasets
and compare it with other SNN methods.

4.1 Datasets
We analyze the performance of our SNN on three event-based
datasets, i.e., our proposed DailyAction-DVS dataset1, pub-
licly available DvsGesture dataset and Action Recognition
dataset. Figure 4 shows some samples of these three datasets.

DailyAction-DVS dataset: It comprises 1440 recordings
of 15 subjects acting 12 different actions, including bend,
climb, fall down, get up, jump, lie down, carry box, run, sit

1https://github.com/qianhuiliu/SNN-action-recognition
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Figure 4: Sample snapshots from the used datasets. Black and white pixels represent OFF and ON events, respectively. (a) Our proposed
DailyAction-DVS dataset; (b) DvsGesture dataset; (c) Action Recognition dataset.

Method DailyAction-DVS DvsGesture ActionRecognition
[Amir et al., 2017] Deep SNN (16 layers) - 91.8% -
[Shrestha and Orchard, 2018] Deep SNN (8 layers) - 93.6% -
[Gu et al., 2019] Deep SNN (6 layers) - - 71.2%
[Xiao et al., 2019] HMAX-based SNN 68.3% - 55.0%
[Xing et al., 2020] Conv-RNN SNN (5 layers) - 92.0% -
[George et al., 2020] Conv+Reservoir SNN - 65.0% -
[Liu et al., 2020b] HMAX-based SNN 76.9% 70.1% -

This Work Motion-based SNN 90.3% 92.7% 78.1%

Table 1: Comparison of recognition accuracy on three datasets.

down, stand up, walk and pick up. A DVS camera [Licht-
steiner et al., 2008] was placed at 2 positions that had differ-
ent distances and angles to the subject, as shown in Figure 5.
The actions were captured under 2 lighting conditions includ-
ing natural light and LED light. Each subject performed each
action under the same camera position and lighting condition.
The duration of each recording is within 6s.

The actions we choose in this dataset are common in daily
life, thus we call it DailyAction-DVS. With the diverse record-
ing conditions, the dataset gains more practical significance.
Notice that some actions are potentially dangerous (such as
fall down, climb), this dataset may also contribute to detect-
ing whether someone is in danger in the environment.

DvsGesture dataset [Amir et al., 2017]: It comprises 1342
recordings of 29 subjects performing 11 different actions (in-
cluding one rejected class with random gestures) under 3 dif-
ferent lighting conditions. The DVS camera [Lichtsteiner et
al., 2008] was mounted on a stand while the subjects stood
still in front of it performing gestures.

Action Recognition dataset [Miao et al., 2019]: It has re-
leased 291 effective recordings of 15 subjects acting 10 dif-
ferent actions. The DAVIS camera [Brandli et al., 2014] was
set to 3 positions to the subject for recording each action.

Figure 5: Environmental setup of DailyAction-DVS dataset.

4.2 Performance on Event-based Action
Recognition Tasks

On DailyAction-DVS Dataset
Table 1 shows our model achieves the recognition accuracy of
90.3% on average. Although the diverse recording conditions
of this dataset increase the difficulty of recognition, our model
outperforms [Xiao et al., 2019] and [Liu et al., 2020b] by
22.0% and 13.4%, respectively. This suggests that our model
is robust against these environmental variances and can be
generalized to more realistic scenarios. Notice that [Xiao et
al., 2019], [Liu et al., 2020b] and our model all employ a
single-layer classifier, but the adopted features are different.
The results indicate that motion features used in our model
are more effective than the HMAX-based shape features used
in [Xiao et al., 2019] and [Liu et al., 2020b]. This suggests
that in the action recognition task, how the action moves is
potentially more important than what the action looks like.

On DvsGesture Dataset
Our model achieves the recognition accuracy of 92.7% on av-
erage. Table 1 shows that our model outperforms [George
et al., 2020] and [Liu et al., 2020b] by a large margin of
27.7% and 22.6% respectively. In addition, our model (with
one trained layer) also achieves better performance than some
deep SNNs. The recognition accuracy of our model is 0.9%
and 0.7% higher than [Amir et al., 2017] (with 16 trained
layers) and [Xing et al., 2020] (with 5 trained layers). This
indicates that the motion features extracted in our model are
representative enough to compare with those of deep SNNs.
Moreover, they are more light-weighted, making it more effi-
cient in computation.
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On Action Recognition Dataset

The recognition task on this dataset is relatively more chal-
lenging because of its limited training samples (about 5 times
fewer than the other two datasets), therefore the recognition
results of all the compared methods on this dataset are rela-
tively poor. Nevertheless, our model achieves the recognition
accuracy of 78.1%, which is higher than [Gu et al., 2019] and
[Xiao et al., 2019]. Notice that [Gu et al., 2019] reaches a
lower accuracy of 71.2% with a 6-layer fully connected SNN.
The reason is that [Gu et al., 2019] is not designed for event-
based data that has high temporal resolution and sparse repre-
sentation. Thus, it will lose the precise temporal information
which is critical for event-based action recognition.

4.3 Ablation Study of Proposed SNN

In this section, we present the ablation study of our proposed
SNN on DailyAction-DVS and DvsGesture datasets. Based on
the full model, we bypass Spatial Pooling layer (SP), Motion
Pooling layer (MP2) and Motion Perception and Pooling lay-
ers (MP1&2) to verify their effects on the original architec-
ture. Table 2 reports the recognition accuracy and the number
of activated synapses in each layer under different settings.

We can observe from Table 2 that for the setting of our
proposed SNN bypassing SP layer, the recognition accuracy
on two datasets drops by 0.7% and 0.8% respectively, mean-
while the required computation is increased to nearly three
times. This indicates that SP layer contributes to a more
compact feature format, which is beneficial to both the accu-
racy and computation. We can observe a similar phenomenon
when bypassing MP2 layer. For example, on DailyAction-
DVS dataset, the average number of activated synapses in-
creases to 1.3 and 1.6 times for SP and GP respectively. This
indicates that MP2 layer filters out redundant and erroneous
motion feature spikes. For the setting of our proposed SNN
bypassing MP1 and MP2 layers, a minimum amount of com-
putation is required since there are no motion-sensitive neu-
rons used to extract motion information. However, the recog-
nition accuracy drops significantly, which in turn indicates the
effectiveness of motion information for action recognition.

Task Acc. Input Synapse Activations
MP1 MP2 SP GP

DailyAction-DVS
Full model 90.3% 8.0k 4.0k 3.2k 229.5k
Bypass SP 89.6% 8.0k 4.0k - 610.4k

Bypass MP2 90.0% 8.0k - 4.0k 364.3k
Bypass MP1&2 58.1% - - 8.0k 216.6k

DvsGesture
Full model 92.7% 8.8k 2.7k 2.8k 313.3k
Bypass SP 91.9% 8.8k 2.7k - 913.6k

Bypass MP2 92.1% 8.8k - 2.7k 415.5k
Bypass MP1&2 57.0% - - 8.8k 157.8k

Table 2: Recognition accuracy and required computation

Figure 6: Performance comparison between two kinds of features
on DailyAction-DVS dataset.

4.4 Effectiveness of Motion Information For
Action Recognition

In this section, we validate the effectiveness of our extracted
motion features for event-based action recognition. We com-
pare our motion-based features with the shape-based fea-
tures, which have been widely adopted in the previous works
[Orchard et al., 2015; Xiao et al., 2019; Liu et al., 2020b]
and employ SPA classifier [Liu et al., 2020b] for both fea-
tures. The experiments are conducted on DailyAction-DVS
dataset. We use the full recordings (within 6000ms) for train-
ing and observe the performance of each method within the
first 1000ms recordings.

As the event in the recording flows in, the recognition
accuracy of two features keeps increasing. Nevertheless,
the motion-based method has a higher performance than the
shape-based one. We also notice that within the first 400ms,
when the input information is extremely incomplete to de-
scribe the actions, our motion-based method also has a higher
growth rate and smaller variance. The result indicates that
our extracted motion features are more representative to ac-
tions, compared to HMAX-based shape features. Therefore,
we conclude that motion information is more effective for ac-
tion recognition.

5 Conclusion
In this paper, we propose a SNN architecture for event-based
action recognition, which utilizes the motion information hi-
erarchically from events to local and finally to global percep-
tion. The ablation study validates our proposed SNN archi-
tecture. This work is the first attempt of SNN to apply motion
information to event-based action recognition. Experimental
results show that this attempt is not only feasible but also ef-
fective.
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