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Abstract
We study the semantics of knowledge in strategic
reasoning. Most existing works either implicitly as-
sume that agents do not know one another’s strate-
gies, or that all strategies are known to all; and
some works present inconsistent mixes of both fea-
tures. We put forward a novel semantics for Strat-
egy Logic with Knowledge that cleanly models
whose strategies each agent knows. We study how
adopting this semantics impacts agents’ knowledge
and strategic ability, as well as the complexity of
the model-checking problem.

1 Introduction
Reasoning about strategic abilities of agents and groups of
agents is a topic of great interest in the formal study of multi-
agent systems. To that end many logics have been introduced,
such as Game Logic [Pauly and Parikh, 2003], STIT [Herzig
and Lorini, 2010], and ATL [Alur et al., 2002].

Among these logics, Strategy Logic (SL) [Chatterjee et al.,
2010; Mogavero et al., 2014] has proved very successful in
recent years, as it combines a natural syntax with high ex-
pressive power that allow it to easily express complex game-
theoretic notions such as existence of Nash equilibria. Its
model checking problem is decidable, and model-checking
algorithms can usually be used to synthesize strategies that
satisfy a given specification. Because imperfect informa-
tion is a crucial aspect of multi-agent systems, SL has re-
cently been extended to take into account imperfect informa-
tion [Berthon et al., 2021] and allow for epistemic reason-
ing [Maubert and Murano, 2018; Belardinelli et al., 2020].

As discussed in [Maubert and Murano, 2018], defining the
semantics of knowledge in a strategic context involves sub-
tleties with far-reaching consequences, that have often gone
unheeded. Two semantics exist in the literature, and most
works adopt one or the other without mentioning it. One
corresponds to agents that do not know each other’s strate-
gies (called uninformed semantics in [Maubert and Murano,
2018]), while the other corresponds to agents who know ev-
eryone’s strategies (informed semantics). The former is used
in all existing epistemic extensions of ATL and SL (e.g.,
[van der Hoek and Wooldridge, 2003; Jamroga and van der
Hoek, 2004; Guelev et al., 2011; Belardinelli et al., 2017b]),

while the latter is adopted in works on distributed synthe-
sis [van der Meyden and Wilke, 2005] and knowledge-based
policies in POMDPs [Saffidine et al., 2018].

Intuitively, the uninformed semantics corresponds to situa-
tions where agents do not collaborate, or cannot communicate
information about their strategies, and have no a priori knowl-
edge of how other agents behave. On the other hand, the in-
formed semantics corresponds to situations where the strate-
gies followed by each agent are common knowledge. Know-
ing others’ strategies gives additional power to agents, as it
allows them to infer more information than what they learn
from their observations alone. One can think for instance of
the Hanabi card game, where by knowing how other players
choose their actions, one can interpret them and infer valu-
able information. However, this refined notion of knowledge
comes at a price in terms of computational complexity.

Indeed some problems are decidable with the uninformed
semantics and undecidable with the informed one. This is
the case for distributed synthesis. This central problem in
multi-agent systems is, in general, undecidable, already for
simple reachability objectives without epistemic content [Pe-
terson et al., 2001]. But it becomes decidable if there is a hi-
erarchy of information among agents, or when all actions are
observed similarly by all agents (see [Berthon et al., 2021] for
a discussion). When objectives are no longer purely tempo-
ral but can also refer to knowledge, distributed synthesis for
systems with hierarchical information remains decidable with
the uninformed semantics of knowledge [Puchala, 2010], but
it becomes undecidable for the informed semantics [van der
Meyden and Wilke, 2005]. This gives even more reason to
consider carefully, when studying a system, the assumptions
made on the knowledge agents have of each other’s strategies.

Part of these results have been generalized to logics for
strategic reasoning that capture distributed synthesis, but only
for the uninformed semantics. Decidability has been gener-
alized to an epistemic extension of SL in the case of hierar-
chical information [Maubert and Murano, 2018], and decid-
ability in the case of public actions has been generalized to
epistemic extensions of ATL [Belardinelli et al., 2017b] and
SL [Belardinelli et al., 2020]. However no result exists for the
informed semantics which, as far as we know, has never been
formalized in the context of logics for strategic reasoning.

Contribution. We address this issue and propose a novel
semantics of SL with imperfect information and epistemic
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operators (SLK) in which one can specify, for each agent,
the set of agents whose strategy she is informed of. This
allows us to capture the case where all agents know every-
one’s strategies (informed semantics) and the case where no
one knows anyone else’s strategy (uninformed semantics), as
well as intermediate situations (for instance, some agents may
be allowed to privately communicate their strategies). We il-
lustrate in detail the impact that knowing others’ strategies
has on the agents’ knowledge as well as on their strategiz-
ing power. Doing so, we also shed light on an inconsistency
in existing semantics of SL with knowledge, which is solved
by our semantics. We then show that for the new semantics,
model checking SLK is already undecidable under hierarchi-
cal information, but is decidable when all actions are public.

2 SLK with Informed Semantics
Fix AP a finite set of atomic propositions, Ag a finite set of
agents, and Var a finite set of variables.

2.1 Syntax
We consider the flat fragment of SL with Boolean Goals [Mo-
gavero et al., 2014] extended with knowledge operators. This
simple syntax allows us to focus on the most important as-
pects of the new semantics, avoiding technical issues that
would arise with the full syntax of SL and diminish the clarity
of the exposition (see Remark 2 for more detail).
Definition 1. The syntax of SLKinf[BG] is given by the fol-
lowing grammar:

Φ = ∃s.Φ | ¬Φ | Φ ∨ Φ | θ
θ = (Ag, s̄)ϕ | ¬θ | θ ∨ θ
ϕ = p | ¬ϕ | ϕ ∨ ϕ | Xϕ | ϕUϕ | Kaϕ

where p ∈ AP, s ∈ Var, s̄ ∈ Ag→ Var×{〈〉, []} and a ∈ Ag.
X and U are the temporal operators “next” and “until”, ∃s

is the existential quantifier on strategies, and Ka is the in-
dividual knowledge operator for agent a. The group binding
(Ag, s̄) assigns to each agent a strategy variable and a symbol
indicating how the uniformity constraint should be treated.
Intuitively, 〈〉 (resp. []) indicates a strategy that was quantified
existentially (resp. universally). We may write a group bind-
ing as a sequence of individual bindings 〈a1, s1〉 . . . [an, sn],
where symbols 〈〉 and [] are split and used as delimiters.

We use abbreviations > = p∨¬p, ⊥= ¬> and ϕ→ ϕ′ =
¬ϕ∨ϕ′ for boolean connectives, Fϕ = >Uϕ, Gϕ = ¬F¬ϕ
for temporal operators, and finally ∀s.ϕ = ¬∃s.¬ϕ.

A variable s appears free in a formula ϕ if it appears out of
the scope of a strategy quantifier, and an agent a appears free
in ϕ if a temporal operator (either X or U ) appears in ϕ out
of the scope of any binding (in which case all agents are free,
since group bindings treat all agents at once). We let free (ϕ)
be the set of variables and players that appear free in ϕ. If
free (ϕ) is empty, ϕ is a sentence.

2.2 Models
We present concurrent game structures with imperfect infor-
mation on both positions and actions. Towards our definition
of the informed semantics, we specify for each agent a a set
of agents Aa whose strategies agent a is informed of.

Definition 2. A concurrent game structure (CGS) is a tu-
ple G = (Ac, V, E, `, Vι, {∼a}a∈Ag, {Aa}a∈Ag) where Ac
is a finite set of actions, V is a finite set of positions, E :
V × AcAg → V is a transition function, ` : V → 2AP is
a valuation function, Vι ⊆ V is a set of initial positions,
∼a⊆ (V × V )∪ (Ac×Ac) is an equivalence relation called
an observation relation, and Aa ⊆ Ag is the set of agents
whose strategies agent a is informed of.

As in [Puchala, 2010] we consider equivalence relations
on positions and actions. This, together with the inclusion
of actions in histories (see below), allows us to model public
actions in a very natural way.

Joint actions. In a position v ∈ V , each player a chooses
an action αa ∈ Ac and the game proceeds to position
E(v,α), where α ∈ AcAg stands for the joint action
(αa)a∈Ag. Given a joint action α = (αa)a∈Ag and a ∈ Ag,
we let αa = αa.

Histories, plays and strategies. A history (resp. play) is a
finite (resp. infinite) sequence of positions and joint actions
ρ = v0α1v1 . . .αnvn (resp. π = v0α1v1 . . .) such that v0 ∈
Vι and for all i with 0 ≤ i < n (resp. i ≥ 0), E(vi,αi+1) =
vi+1. For a history ρ = v0α1v1 . . .αnvn we let last(ρ) = vn
and |ρ| = n. For a play π = v0α1v1 . . . and i ≥ 0, we write
π≤i = v0 . . .αivi for its prefix history ending at position i.
We define ρ≤i similarly for histories ρ when i ≤ |ρ|. We
let Hist be the set of histories. A strategy is a function σ :
Hist→ Ac, and we let Str be the set of all strategies.

Assignments. An assignment χ : Ag ∪ Var ⇀ Str is a
partial function assigning strategies to agents and variables.
Given a tuple of strategies σ̄ ∈ StrAg, χ[Ag 7→ σ̄] is the as-
signment that maps each agent a to σ̄a, and is equal to χ on
variables; similarly, χ[s 7→ σ] is the assignment that maps
variable s to σ and is otherwise equal to χ. When χ is de-
fined for all agents and variables we call it total. Given a total
assignment χ and a set of agents A ⊆ Ag, we let χ �A be
the restriction of χ to A ∪ Var. A history ρ = v0α1 . . .αnvn
is consistent with χ if, for every i < n and agent a in the
domain of χ, αai+1 = χ(a)(ρ≤i).

Outcomes. For a total agent assignment χ and a history ρ,
we let Out(χ, ρ) be the only play π that extends ρ consistently
with χ: π = ρ·α1v1α2v2 . . .where for all i ≥ 0 and a ∈ Ag,
αai+1 = χ(a)(π≤|ρ|+i) and vi+1 = E(vi,αi+1).

Indistinguishability. Two positions v, v′ are indistinguish-
able to agent a if v ∼a v′, and similarly for actions. Two
joint actions α and β are indistinguishable to agent a, written
α ∼a β, if they are component-wise indistinguishable, i.e.,
if αb ∼a βb for each b ∈ Ag.

Synchronous perfect recall. We consider agents that re-
member their observations of all past positions and actions.
Each observation relation ∼a is thus extended to histories
as follows: given two histories ρ = v0α1 . . .αnvn and
ρ′ = v′0α

′
1 . . .α

′
mv
′
m we write ρ ∼a ρ′ if m = n, vi ∼a v′i

for all i ∈ {0, . . . , n}, and αi ∼a α′i for all i ∈ {1, . . . , n}.

2.3 Informed Semantics
We now define the informed semantics.
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Informed perfect recall. To model agents that know some
of the agents’ strategies, we refine the observation relation on
histories as follows. Let χ be a total assignment, a an agent
and Aa the subset of agents whose strategies a knows. Two
histories ρ and ρ′ are indistinguishable for agent a, written
ρ ∼χa ρ′, if the following two conditions hold:

1. ρ ∼a ρ′

2. ρ and ρ′ are both consistent with χ�Aa .
Given an agent a and total agent assignment χ, we say that

a strategy σ is ∼χa -uniform if for all histories ρ and ρ′ such
that ρ ∼χa ρ′ it holds that σ(ρ) = σ(ρ′).
Remark 1. Relation ∼χa is not an equivalence relation (it is
not reflexive): histories inconsistent with χ �Aa are not re-
lated to any history; it is an equivalence relation plus isolated
points. The only impact this has on the semantics concerns
nested knowledge operators, on which it has interesting con-
sequences that we do not discuss here for lack of space.
Indistinguishable assignments. When evaluating an epis-
temic formula Kaϕ in a history ρ and assignment χ, existing
variants of SL with knowledge such as [Maubert and Murano,
2018] and [Belardinelli et al., 2017a] evaluate ϕ in all equiv-
alent histories ρ′ ∼a ρ with the same assignment χ. While
quantifying on equivalent histories for the usual (uninformed)
relation ∼a models agents that do not know the strategies be-
ing used, fixing the assignment χ indicates on the other hand
agents that know all agents’ strategies. As a consequence of
this clash, this semantics neither properly captures the knowl-
edge of agents who are unaware of each other’s strategies, nor
does it properly model the knowledge of agents who do know
each other’s strategies, as we show in the next section.

To remedy this we introduce an equivalence relation on as-
signments. Two assignments χ and χ′ are indistinguishable
to agent a, written χ ∼a χ′, if they agree on all variables,
and on the agents’ strategies that a is informed of. Formally,
χ ∼a χ′ if χ′ �Aa= χ �Aa . The semantics of knowledge will
quantify over all equivalent histories and assignments.

Interpreting strategy quantification. In introducing im-
perfect information to Strategy Logic, it is difficult to deter-
mine for whom a strategy should be uniform, at the level of
strategy quantification. One solution is to specify it explic-
itly, as in [Berthon et al., 2021; Maubert and Murano, 2018].
Another is to require that it be uniform for all agents that
are bound to it after the quantification, as in [Belardinelli et
al., 2020]. However neither of these solutions can be used to
define the informed semantics. Indeed, the informed perfect-
recall relation∼χa depends on the assignment χ, which is only
known after all agents have been bound to their strategy.

We thus propose a new way of interpreting the uniformity
of strategies: instead of putting the uniformity constraint at
the level of strategy quantification, we postpone it until after
the group binding. In addition to allowing for a natural def-
inition of the informed semantics, it is also a neat solution
to defining the semantics of SL with imperfect information,
independent of the matter of informed knowledge.

There are two dual ways of dealing with the uniformity
constraint. Either we require that the strategy being assigned
should be uniform and the remaining subformula should hold,

or we say that if the strategy being assigned is uniform,
then the subformula should hold. The first case corresponds
to existentially quantified strategies, the second to univer-
sally quantified ones. Given a group binding (Ag, s̄), we
let Ag〈〉s̄ = {a ∈ Ag | s̄(a) = (s, 〈〉) for some s} and
Ag[]

s̄ = {a ∈ Ag | s̄(a) = (s, []) for some s}.
Definition 3. Let G = (Ac, V, E, `, Vι, {∼}a∈Ag, {Aa}a∈Ag)
be a CGS, χ a total assignment, ρ a history and ϕ an
SLKinf[BG]-formula. We define G, χ, ρ |= ϕ as follows:

G, χ, ρ |= p if p ∈ `(last(ρ))
G, χ, ρ |= ¬ϕ if G, χ, ρ 6|= ϕ
G, χ, ρ |= ϕ ∨ ϕ′ if G, χ, ρ |= ϕ or G, χ, ρ |= ϕ′

G, χ, ρ |= ∃s.ϕ if ∃σ ∈ Str s.t. G, χ[s 7→ σ], ρ |= ϕ
G, χ, ρ |= (Ag, s̄)ϕ if

if ∀a ∈ Ag[]
s̄ , χ

′(a) is ∼χ′

a -uniform, then
∀a ∈ Ag〈〉s̄ , χ′(a) is ∼χ′

a -uniform, and
G, χ′, ρ |= ϕ, where χ′ = χ[Ag 7→ s̄]

G, χ, ρ |= Kaϕ if ∀ρ′ ∈ Hist s.t. ρ ∼χa ρ′ and
∀χ′ s.t. χ ∼a χ′, ν, χ′, b, ρ′ |= ϕ

and, writing π = Out(χ, ρ):
G, χ, ρ |= Xϕ if G, χ, π≤|ρ|+1 |= ϕ
G, χ, ρ |= ϕUϕ′ if ∃ i ≥ 0 s.t. G, χ, π≤|ρ|+i |= ϕ′,

and ∀ j s.t. 0 ≤ j < i,
G, χ, π≤|ρ|+j |= ϕ

We explain the case for the binding operator, which is the
novelty of this semantics. The idea is that the two dual bind-
ings 〈〉 and [] are used so that the first line restricts universal
quantifications to uniform strategies by ignoring those that
are not, while the second line forces existential quantifiers to
pick uniform strategies. In both cases, uniformity of strate-
gies is evaluated with respect to informed perfect recall.

The semantics of a sentence ϕ does not depend on χ, and
we write G, vι |= ϕ if G, χ, vι |= ϕ for some χ.
Public actions. A CGS has public actions if for all α ∈ Ac
and a ∈ Ag, ∼a ∩ Ac× Ac is the identity relation, meaning
that all agents observe all actions perfectly.
Hierarchical information. A CGS has hierarchical infor-
mation if there exists an enumeration Ag = {a1, . . . , an} of
the agents such that ∼ai+1

⊆∼ai for all 1 ≤ i < n.
Remark 2. The reason why we base our logic on the flat
fragment of SL with Boolean Goals is twofold. First, to ex-
press the uniformity constraint on strategies for the informed
semantics, we need to know the strategies that will be used by
all agents. The group binding of the Boolean Goals fragment
makes this possible. Second, if agents can change strategy
after time 0, as is possible in the non-flat fragment, it be-
comes unclear how to define the informed semantics: should
agents know only the current strategy of other agents, and be-
lieve that they have been using it from the start? Or should
they know the sequence of strategies that other agents have
used? Both interpretations could be defined and studied, but
we leave this matter for future work. Besides, the flat frag-
ment of SL with Boolean Goals is already very expressive
and can express, for instance, distributed synthesis, rational
synthesis, and existence of Nash equilibria.
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3 Illustrating the Informed Semantics
We discuss some aspects of our semantics, that we illustrate
in the classic scenario of matching pennies.

v0

(h,−)

��

(t,−)

��
v1

(−,h)

��

(−,t)

��

v2

(−,h)

		

(−,t)

��
v3

m
v4 v5 v6

m

Figure 1: CGS G for the game of matching pennies

Consider the game of matching pennies G illustrated in
Figure 1, where the players are called 1 and 2 (loops on fi-
nal positions are omitted). Each player has a coin that only
they can see. First, player one places her hidden coin heads
or tails up, then player 2 does the same with her hidden coin.
The propositionm stands for the coins matching. We suppose
that the players only observe their own actions, so v3 ∼1 v4,
v5 ∼1 v6, v1 ∼2 v2, v3 ∼2 v5, and v4 ∼2 v6. In this example
we omit the action names in the histories without ambiguity.

3.1 Impact on Knowledge
We first illustrate how restricting the quantification on equiv-
alent plays to those that are consistent with known strategies
affects the knowledge of the agents. The usual semantics
for the knowledge operator in epistemic extensions of SL,
that we can find for instance in [Maubert and Murano, 2018]
and [Belardinelli et al., 2020], and that we shall refer to as
“uninformed semantics” and denote |=u, is the following:

G, χ, ρ |=u Kaϕ if for all ρ′ s.t. ρ′ ∼a ρ, G, χ, ρ′ |=u ϕ

It differs from our semantics in two respects: (i) it uses the
usual “uninformed” equivalence relation ∼a on histories in-
stead of the informed one ∼χa , and (ii) it does not quantify
over indistinguishable assignments.

To illustrate the first difference (i), consider the formula

α = ∀s1.∀s2.[1, s1][2, s2]XX(K1m ∨K1¬m)

which means that no matter which strategies are used, in the
end player 1 knows whether the coins match or not. With
the uninformed semantics it clearly does not hold, as player 1
does not observe player 2’s coin (so that v0v1v3 ∼1 v0v1v4

and v0v2v5 ∼1 v0v2v6), nor does she know her strategy,
so G, v0 6|=u α. Now with the informed semantics, it is
enough to assume that player 1 knows player 2’s strategy (i.e.
2 ∈ A1) to make the formula true. Indeed, for any strategies
s1 and s2 for players 1 and 2, the only history that player 1
considers possible with the uninformed relation ∼1 besides
the actual outcome, is not consistent with strategy s2 and is
thus discarded by ∼χ1 . For instance if the outcome is v0v1v3,

i.e. s1 and s2 are the strategies that play heads, then the only
history equivalent for ∼1 is v0v1v4, in which player 2 plays
tails, which is not consistent with s2. So G, v0 |= α.

We now illustrate the second difference (ii). Since the as-
signment does not impact the truth value of a formula without
temporal operators, the only case in which considering equiv-
alent assignments makes a difference is for formulas that in-
volve knowledge about the future. So consider formula

β = ∀s1.∀s2.[1, s1][2, s2](K1XXm ∨K1XX¬m)

which means that for any pair of strategies s1 and s2, player 1
knows, before any move is made, whether in the end the
coins will match. Intuitively this can only be the case if
player 1 knows the strategies of both players. We check that
indeed, with our semantics, the formula holds if we assume
that A1 = {1, 2}, and it does not if A1 ( {1, 2}. Fix a pair
of strategies (s1, s2), let χ assign s1 to 1 and s2 to 2, and as-
sume for instance that these strategies lead to matching coins,
i.e. G, χ, v0 |= XXm. First, note that the only history in-
distinguishable from v0 via ∼χ1 is v0. Now if A1 ( {1, 2},
meaning that player 1 does not know one of the strategies,
then there exists at least one assignment χ′ ∼1 χ that has a
different outcome, i.e. such that G, χ′, v0 |= XX¬m. The
same reasoning can be made if (s1, s2) lead to coins that do
not match. As a result, G, v0 6|= β. Now assume that player 1
knows both strategies, i.e., A1 = {1, 2}. For any assign-
ment χ, χ ∼1 χ

′ implies that χ′ = χ. It follows that either
G, χ, v0 |= K1XXm, if G, χ, v0 |= XXm, or G, χ, v0 |=
K1XX¬m, if G, χ, v0 |= XX¬m. So G, v0 |= β.

One can see that also with the usual “uninformed” seman-
tics, it holds that G, v0 |= β: indeed, since it only considers
the actual assignment, it corresponds in the previous para-
graph to the case where A1 = {1, 2}, i.e., the case where 1
knows both strategies. This is in contrast with what we illus-
trated with point (i), where the uninformed semantics corre-
sponds to agents that do not know each other’s strategies, and
it demonstrates an inconsistency in the usual semantics. The
semantics we propose solves this problem.

3.2 Impact on Strategizing Power
Our semantics also makes a difference for agents’ strategic
ability. Consider the following alternate “uninformed” se-
mantics, which uses relation ∼a instead of ∼χ′

a :

G, χ, ρ |=u (Ag, s̄)ϕ if
if ∀a ∈ Ag[]

s̄ , χ
′(a) is ∼a -uniform, then

∀a ∈ Ag〈〉s̄ , χ′(a) is ∼a -uniform, and
ν, χ′, ρ |= ϕ, where χ′ = χνs̄

Consider again the example from Figure 1, and assume that
player 2 knows player 1’s strategy, i.e., 1 ∈ A2. Formula

γ = ∃s2.∀s1.[1, s1]〈2, s2〉XXm

means that player 2 has a strategy to ensure that the coins
match. Knowing player 1’s strategy, intuitively this should
be true: if player 1 plans to play heads, then play heads, oth-
erwise play tails. However with the semantics that uses the
usual “uninformed” notion of uniformity, this formula does
not hold: indeed, because v1 and v2 are indistinguishable to
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player 2, any ∼2-uniform strategy s2 must play the same ac-
tion in histories v0v1 and v0v2. If it is heads, then the coins
will not match if 1 plays tails, and vice versa. So G, v0 6|=u γ.

However with our informed semantics, the formula holds.
Indeed consider the strategy s2 such that s2(v0.v1) = h and
s2(v0.v2) = t. Clearly it ensures that the coins match. We
just need to see that it is also uniform for the informed notion
of uniformity. Let s1 be a strategy and χ = [1 7→ s1, 2 7→ s2].
To see that s2 is∼χ2 -uniform, observe that either v0v1 or v0v2

is not consistent with s1. Therefore it is not the case that
v0v1 ∼χ2 v0v2, and s1 does not have to assign the same action
in both histories. As a result, G, v0 |= γ.

4 Model Checking SLKinf[BG]

We consider the model-checking problem for SLKinf[BG]
which consists in deciding, given a CGS G, an initial position
vι ∈ Vι and an SLKinf[BG] sentence Φ, whether G, vι |= Φ.

4.1 Undecidability for Hierarchical Information
It is proved in [van der Meyden and Wilke, 2005] that dis-
tributed synthesis for LTL with knowledge is undecidable,
even for systems with hierarchical information. The setting
there corresponds to agents that know the strategy of every-
one but the environment, which we can model in our informed
semantics. Since distributed synthesis for LTLK objectives is
expressible in SLKinf[BG], we obtain that:

Theorem 1. Model checking SLK is undecidable, even when
restricted to CGS with hierarchical information.

4.2 Decidability for Public Actions
We now show that model checking SLKinf[BG] is decidable
when all actions are public. This is in line with the results
in [van der Meyden and Wilke, 2005], where the informed se-
mantics is used implicitly, and distributed synthesis for LTLK
is shown to be decidable on broadcast systems, which are
very close to our CGS with public actions.

As in [Laroussinie et al., 2015; Berthon et al., 2021; Belar-
dinelli et al., 2020], we solve the model-checking problem by
reducing it to the model-checking problem for QCTL∗, for
which we briefly recall the syntax and semantics.

Definition 4. The syntax of QCTL∗ is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | Eψ | ∃p.ϕ
ψ ::= ϕ | ¬ψ | ψ ∨ ψ | Xψ | ψUψ

where p ∈ AP.

Note that the set AP may not be the same as in the previous
section (in the reduction from SLKinf to QCTL∗ we will use
a bigger finite set of atomic propositions for QCTL∗).

We consider the tree semantics for QCTL∗, where formu-
las are evaluated on infinite trees, typically representing un-
foldings of finite Kripke structures.

Trees. Let Σ be a finite alphabet. An infinite tree over Σ
and AP is a mapping t : Σ∗ → 2AP. An element x ∈ Σ∗

is a node, the empty word ε is the root, a node y is a child
of a node x if it is of the form y = x · d with d ∈ Σ, and
t(x) is the label of node x. A path λ = x0x1 . . . is an infinite

sequence of nodes such that for all i ≥ 0, xi+1 is a child
of xi. We let λi = xi denote the node at position i, and
λ≥i = xixi+1 . . . is the suffix of λ starting at position i. We
say that λ starts in node x0, and let Paths(x) be the set of
paths that start in x. The subtree of t rooted in node x is the
tree tx : y 7→ t(x · y). A tree is regular if it has finitely many
different subtrees. Finally, given a tree t and an interpretation
Xp ⊆ Σ∗ for an atom p ∈ AP, we define the tree

t⊗Xp : x 7→
{
t(x) ∪ {p} if x ∈ Xp

t(x) \ {p} otherwise.

Definition 5. Let t be a tree, x a node and λ a path. The
semantics of QCTL∗ is defined as follows (we omit negation
and disjunction):

t, x |= p if p ∈ t(x)
t, x |= Eψ if ∃λ ∈ Paths(x) s.t. t, λ |= ψ
t, x |= ∃p.ϕ if ∃Xp ⊆ Σ∗ s.t. t⊗Xp, x |= ϕ

t, λ |= ϕ if t, λ0 |= ϕ
t, λ |= Xψ if t, λ≥1 |= ψ
t, λ |= ψUψ′ if ∃i ≥ 0 s.t. t, λ≥i |= ψ′ and

∀j < i, t, λ≥j |= ψ

We write t |= ϕ for t, ε |= ϕ.
For the rest of this section we fix a CGS G =

(Ac, V, E, `, Vι, {∼a}a∈Ag, {Aa}a∈Ag) with public actions
and an SLKinf[BG] sentence Φ. The reduction is based on the
one in [Belardinelli et al., 2020], where the two main ideas
are that when actions are public and transitions deterministic,
(1) each history is entirely determined by its initial position
and the sequence of joint actions, and (2) two indistinguish-
able histories share the same sequence of joint actions. Note
that only the first point relies on determinism.

We thus work on the tree consisting of all sequences of
joint actions. A node x = α1 . . .αn in this tree represents
the set of all histories ρ sharing this sequence of joint actions.
By point 2 above, two histories that are indistinguishable for
some agent are represented by the same node. This makes it
possible to check uniformity of strategies locally in the tree.

Formally, let Σ = AcAg, and for a node x ∈ Σ∗ and an
initial position v ∈ Vι, we let ρxv be the history in G that starts
in v and has sequence of joint actions x. This is uniquely
defined because the transition function is total and determin-
istic, and all histories can be written in this form. Point 2
above can be formalized as:
Lemma 2. If ρxv ∼a ρyu then x = y.

We introduce propositions APact = {pα | α ∈ AcAg}
that mark in each node the last joint action performed, and
propositions APpos = {pν | ν : Vι → V } that indicate the
current position ν(vι) given that the initial position was vι.
We then define the tree tG over Σ and APact ∪ APpos as

tG : α1 . . .αn 7→ {pαn , pν}

where ν : vι 7→ last(ρα1...αn
vι ). So each node is labeled by

exactly one atom in APact and one in APpos. Also, since G is
finite, the tree tG is regular.

To keep track of strategies we introduce propositions
APstr = {pτs | τ : Vι → Ac and s ∈ Var(Φ)}, where τ is
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called a local strategy and Var(Φ) is the set of strategy vari-
ables in Φ (we assume without loss of generality that each
variable is quantified at most once in Φ). Proposition pτs in
node x means that on history ρxv , strategy s chooses action
τ(v). To represent agents’ knowledge we introduce proposi-
tions AP≈ = {pa≈ | a ∈ Ag and ≈⊆ Vι × Vι}, where ≈ is
called a local observation relation. The intended meaning of
pa≈ holding in a node x is that histories ρxv and ρxu are indis-
tinguishable to agent a if and only if v ≈ u. By Lemma 2,
indistinguishability relations can be completely characterized
by such propositions. To capture the interpretation of “indis-
tinguishable to agent a” corresponding to the informed se-
mantics, these propositions will be placed on the tree after
those encoding strategies, and consistently with them.

We define for each subformula ϕ of Φ a QCTL∗ for-
mula [ϕ]Bvι . The translation is parameterized by a mapping
B : Ag ⇀ Var that represents the current binding of agents
to strategy variables, and a position vι ∈ Vι representing the
initial position of the current history. For atomic propositions:

[p]Bvι =
∨

ν|p∈`(ν(vι))

pν

This formula grabs the unique ν for which pν holds in the cur-
rent node, and checks whether p holds in the current position
as indicated by ν given that the initial position is vι. Boolean
connectives simply distribute:

[¬ϕ]Bvι = ¬[ϕ]Bvι [ϕ ∨ ϕ′]Bvι = [ϕ]Bvι ∨ [ϕ′]Bvι

For strategic quantification, let {τ1, . . . , τk} be an enumera-
tion of the possible local strategies, with k = |Ac||Vι|. Let

[∃s.ϕ]Bvι = ∃psτ1 . . . ∃p
s
τk
. strats ∧ [ϕ]Bvι where

strats = AG
∨
i

(psτi ∧
∧
j 6=i

¬psτj )

checks that each node is labeled by exactly one local strategy.
Next comes the binding operator (Ag, s̄), which we repre-

sent as a mapping B′ : Ag→ Var×{〈〉, []}. Let {a1, . . . , am}
be an enumeration of the agents and {≈1, . . . ,≈l} an enu-
meration of the possible equivalence relations over Vι. For
each agent a we define the initial local observation relation
≈ιa =∼a ∩Vι × Vι. Also, given a local observation relation
≈a for agent a (in some node x), a tuple τ̄ of local strategies
for each agent, as well as a next joint action α and resulting
current positions ν (in node x·α), we define the updated local
observation relation for agent a as ≈′a (≈a, τ̄ ,α, ν) ={

(vι, uι) |
vι ≈a uι, ν(vι) ∼a ν(uι) and
∀b ∈ Aa, τb(vι) = αb = τb(uι)

}
This definition means that two histories ρx·αvι and ρx·αuι are
indistinguishable for a if ρxvι and ρxuι are indistinguishable
(vι ≈a uι), the new positions last(ρx·αvι ) and last(ρx·αuι ) are in-
distinguishable (ν(vι) ∼a ν(uι)), and for each agent b whose
strategy is known to a, the last action αb played by b corre-
sponds to strategy τb in both ρxvι and ρxuι (so ρx·αvι and ρx·αuι
are consistent with τb). Given a binding B, we let Ag〈〉B (resp.
Ag[]
B) be the set of agents a such that B(a) = (s, 〈〉) (resp.

(s, [])) for some variable s. Define

[B′ϕ]Bvι = ∃pa1≈1
. . . ∃pa1≈l . . . ∃p

am
≈1

. . . ∃pam≈l .∧
a∈Ag

uniqa ∧
∧
a∈Ag

infa∧∧
a∈Ag[]B′

unifB
′(a)

a →
∧

a∈Ag〈〉B′

unifB
′(a)

a ∧ [ϕ]B
′

vι

where uniqa = AG
∨
≈(pa≈∧

∧
≈′ 6=≈ ¬pa≈′) checks that each

node is marked with one unique local observation relation,

infa = pa≈ιa ∧AG
∧
≈,τ̄

[
(pa≈ ∧

∧
b∈Ag

pB
′(b)

τb
)→

AX
∧
α,ν

(
(pα ∧ pν)→ pa≈′

a(≈a,τ̄ ,α,ν)

)]
checks that the local observation relation is initially correct
and that in each step it is updated correctly, and

unif sa = AG
∧
≈,τ

(pa≈ ∧ psτ )→ loc-unif(≈, τ)

checks that strategy s is uniform for agent a, with

loc-unif(≈, τ) =

true
if for all uι, u′ι ∈ Vι s.t. uι ≈ u′ι,
τ(uι) = τ(u′ι)

false otherwise.

For the knowledge operator, let

[Kaϕ]Bvι =
∧
≈
pa≈ →

∧
uι|vι≈uι

[ϕ]Buι

We are left with the temporal operators:

[Xϕ]Bvι =
∧
τ̄

(
∧
a

pB(a)
τa )→ AX

(
pα(τ̄ ,vι) → [ϕ]Bvι

)
where α(τ̄ , vι) is the joint action where each agent a plays
action τa(vι). Similarly, we let

[ϕUϕ′]Bvι =

A
[
G
(∧

τ̄ (
∧
a p
B(a)
τa )→ X(pα(τ̄ ,vι))

)
→ [ϕ]BvιU [ϕ′]Bvι

]
Lemma 3. For every initial position vι ∈ Vι and every initial
binding B, it holds that G, vι |= Φ iff tG |= [Φ]Bvι .

Because model checking QCTL∗ on regular trees is decid-
able [Laroussinie and Markey, 2014], we obtain that
Theorem 4. Model checking SLKinf on CGS with public ac-
tions is decidable.

5 Conclusion and Future Work
In this work we defined the first semantics for Strategy Logic
that can model agents that know other agents’ strategies.
This semantics reflects the intuitive idea that knowing others’
strategies refines agents’ knowledge about the system, and in-
creases their ability to strategize. It is also general enough to
capture both situations found in the literature, which corre-
spond to the two extreme cases. Two important questions left
for future work are the implications of the informed seman-
tics on higher-order knowledge, and trying to extend this new
informed semantics to the full syntax of SL.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1792



References
[Alur et al., 2002] Rajeev Alur, Thomas A. Henzinger, and

Orna Kupferman. Alternating-time temporal logic.
J. ACM, 49(5):672–713, 2002.

[Belardinelli et al., 2017a] Francesco Belardinelli, Alessio
Lomuscio, Aniello Murano, and Sasha Rubin. Verifica-
tion of broadcasting multi-agent systems against an epis-
temic strategy logic. In IJCAI’17, volume 17, pages 91–
97, 2017.

[Belardinelli et al., 2017b] Francesco Belardinelli, Alessio
Lomuscio, Aniello Murano, and Sasha Rubin. Verification
of multi-agent systems with imperfect information and
public actions. In AAMAS’17, pages 1268–1276, 2017.

[Belardinelli et al., 2020] Francesco Belardinelli, Alessio
Lomuscio, Aniello Murano, and Sasha Rubin. Verification
of multi-agent systems with public actions against strategy
logic. Artif. Intell., 285:103302, 2020.

[Berthon et al., 2021] R. Berthon, B. Maubert, A. Murano,
S. Rubin, and M. Vardi. Strategy logic with imperfect in-
formation. ACM Trans. Comput. Logic, 22(1), 2021.

[Chatterjee et al., 2010] Krishnendu Chatterjee, Thomas A.
Henzinger, and Nir Piterman. Strategy Logic. Inf. Com-
put., 208(6):677–693, 2010.

[Guelev et al., 2011] Dimitar P. Guelev, Catalin Dima, and
Constantin Enea. An alternating-time temporal logic with
knowledge, perfect recall and past: axiomatisation and
model-checking. J. Appl. Non-Class. Log., 21(1):93–131,
2011.

[Herzig and Lorini, 2010] Andreas Herzig and Emiliano
Lorini. A dynamic logic of agency i: Stit, capabilities and
powers. J. Log. Lang. Inf., 19(1):89, 2010.

[Jamroga and van der Hoek, 2004] Wojciech Jamroga and
Wiebe van der Hoek. Agents that know how to play. Fun-
dam. Inform., 63(2-3):185–219, 2004.

[Laroussinie and Markey, 2014] François Laroussinie and
Nicolas Markey. Quantified CTL: expressiveness and
complexity. Log. Methods Comput. Sci., 10(4), 2014.

[Laroussinie et al., 2015] François Laroussinie, Nicolas
Markey, and Arnaud Sangnier. ATLsc with partial
observation. In GandALF’15, pages 43–57, 2015.

[Maubert and Murano, 2018] Bastien Maubert and Aniello
Murano. Reasoning about knowledge and strategies un-
der hierarchical information. In KR’18, pages 530–540,
2018.

[Mogavero et al., 2014] Fabio Mogavero, Aniello Murano,
Giuseppe Perelli, and Moshe Y. Vardi. Reasoning about
strategies: On the model-checking problem. ACM Trans.
Comput. Log., 15(4):34:1–34:47, 2014.

[Pauly and Parikh, 2003] Marc Pauly and Rohit Parikh.
Game logic-an overview. Stud. Log., 75(2):165–182, 2003.

[Peterson et al., 2001] Gary Peterson, John Reif, and Salman
Azhar. Lower bounds for multiplayer noncooperative
games of incomplete information. Comput. Math. with
Appl., 41(7):957–992, 2001.

[Puchala, 2010] Bernd Puchala. Asynchronous omega-
regular games with partial information. In MFCS’10,
pages 592–603, 2010.

[Saffidine et al., 2018] Abdallah Saffidine, François
Schwarzentruber, and Bruno Zanuttini. Knowledge-
based policies for qualitative decentralized pomdps. In
AAAI’18, 2018.

[van der Hoek and Wooldridge, 2003] Wiebe van der Hoek
and Michael Wooldridge. Cooperation, knowledge and
time: Alternating-time Temporal Epistemic Logic and its
applications. Stud. Log., 75(1):125–157, 2003.

[van der Meyden and Wilke, 2005] Ron van der Meyden and
Thomas Wilke. Synthesis of distributed systems from
knowledge-based specifications. In CONCUR’05, pages
562–576, 2005.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1793


	Introduction
	SLK with Informed Semantics
	Syntax
	Models
	Informed Semantics

	Illustrating the Informed Semantics
	Impact on Knowledge
	Impact on Strategizing Power

	Model Checking SLKinf[BG]
	Undecidability for Hierarchical Information
	Decidability for Public Actions

	Conclusion and Future Work

