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Abstract

Qualitative Choice Logic (QCL) and Conjunctive
Choice Logic (CCL) are formalisms for preference
handling, with especially QCL being well estab-
lished in the field of Al So far, analyses of these
logics need to be done on a case-by-case basis, al-
beit they share several common features. This calls
for a more general choice logic framework, with
QCL and CCL as well as some of their derivatives
being particular instantiations. We provide such a
framework, which allows us, on the one hand, to
easily define new choice logics and, on the other
hand, to examine properties of different choice log-
ics in a uniform setting. In particular, we inves-
tigate strong equivalence, a core concept in non-
classical logics for understanding formula simplifi-
cation, and computational complexity. Our analy-
sis also yields new results for QCL and CCL. For
example, we show that the main reasoning task
regarding preferred models is ©2P-complete for
QCL and CCL, while being AyP-complete for a
newly introduced choice logic.

1 Introduction

Representing preferences and reasoning about them is a key
challenge in many areas of Al research. One of the most
fruitful approaches to preference representation has been
the use of logic-based formalisms [Domshlak et al., 2011;
Pigozzi et al., 2016]. Two closely related examples from
the literature are Qualitative Choice Logic (QCL) [Brewka et
al., 2004a] and Conjunctive Choice Logic (CCL) [Boudjel-
ida and Benferhat, 2016]. Especially QCL has proven to be a
useful preference formalism, with applications ranging from
logic programming [Brewka et al., 2004b] to alert correlation
[Benferhat and Sedki, 2008a] to database querying [Lietard et
al., 2014]. However, several key computational properties of
QCL and CCL have not been studied yet. This includes strong
equivalence, a tool to understand formula simplification, and
the computational complexity of main reasoning tasks.
Moreover, QCL and CCL are certainly not the only possi—
ble logic-based formalisms. QCL extends classical proposi-
tional logic with a non-classical connective X called ordered
disjunction. Intuitively, F' X G means that it is preferable to
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satisfy I’ but, if that is not possible, then satisfying G is
also acceptable. Similarly, CCL introduces ordered conjunc-
tion (@) where the intended meaning of F’ @G is that it is
most preferable to satisfy both F' and G, but satisfying only
F' is also acceptable. More specifically, interpretations as-
cribe a number, called satisfaction degree, to QCL- and CCL-
formulas. The preferred models of a formula are those mod-
els with the least degree. Other natural preferences cannot be
succinctly represented in QCL and CCL. For example, one
could think of a more fine-grained choice connective: given
F o @G, it would be best to satisfy both F' and GG, second best
to satisfy only F', and third best to satisfy only G. Or one
could desire a connective with the same basic behavior as X
in QCL, but in which satisfaction degrees are handled in a dif-
ferent way. There is a multitude of interesting logics related
to QCL and CCL that have yet to be defined, and which may
very well prove to be as useful as QCL.

In this paper, we propose a general framework for choice
logics that, on the one hand, makes it easy to define new
choice logics by specifying one or more choice connectives
and, on the other hand, allows us to settle open questions re-
garding the computational properties of QCL and CCL in a
uniform way. In detail, our main contributions are as follows:

* We formally define a framework that captures both QCL
and CCL, as well as infinitely many new related log-
ics. To showcase the versatility of our framework we
explicitly introduce two such new logics called Lexi-
cographic Choice Logic (LCL) and Simple Conjunctive
Choice Logic (SCCL).

* We characterize strong equivalence via simpler equiv-
alence notions for large classes of choice logics. This
further enables us to analyze properties related to strong
equivalence more easily, and also provides valuable in-
sights into the nature of choice logics.

* We analyze the computational complexity of choice log-
ics in detail." For example, we show that the complexity
of the main decision problem regarding preferred mod-
els ranges from NP- to AsP-completeness with QCL
and CCL being located in between (©2P-complete).

"The complexity of some decision problems pertaining to QCL

was conjectured in [Lang, 2004] but never formally investigated.
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Related Work. QCL and CCL are not the only logic-
based preference representation formalisms. Other prominent
examples include the preference logics introduced by von
Wright [1963] and in [van Benthem et al., 2009]; for a more
complete overview, see the surveys [Domshlak er al., 2011;
Bienvenu et al., 2010]. Most of these formalisms differ from
choice logics in that they only represent preferences, while
QCL and CCL integrate the representation of truth and pref-
erence in one formalism. One exception is recent work by
Charalambidis et al. [2020], which is conceptually closely
related to our LCL, but differs in that formulas are assigned
lists of truth values instead of satisfaction degrees. From a
technical standpoint, many non-monotonic logics are closely
related to QCL, as they are inherently connected to prefer-
ences [Shoham, 1987]. This is particularly true for proposi-
tional circumscription and possibilistic logic [Brewka et al.,
2004a]. However, unlike choice logics, these formalisms are
not primarily designed to represent preferences and often rely
on constructs outside of the logical language (circumscription
policy, possibility distribution) to represent knowledge. It is
also worth noting that choice logics are technically very dif-
ferent from traditional infinite-valued logics [Gottwald, 2001]
as, for example, choice logics use classical interpretations
that make atoms either true or false. There are also systems
that are based on QCL’s ordered disjunction, but do not fit
into our framework. We mention here the modal logic from
[Jiang er al., 2015] and prioritized disjunction for game strate-
gies [Zhang and Thielscher, 2015].

2 Choice Logic Framework

We shall start with introducing our general framework, then
show how both existing and new logics can be defined in this
framework, and finally give a synthesis result that holds for
any choice logic of our framework.

In what follows, PL stands for classical propositional logic,
U denotes the alphabet of propositional variables, and an in-
terpretation Z is defined as a set of propositional variables
such that ¢ € 7 if and only if a is set to true by Z. If 7
satisfies a classical formula F', we write Z = F.

2.1 Syntax and Semantics

A choice logic has two types of connectives: classical con-
nectives (here we use —, A, and V), and binary choice con-
nectives, with which preferences can be expressed.

Definition 1. The set of choice connectives Cr of a choice
logic L is a finite set of symbols such that C,N{—, A\, V} = (.
The set F of formulas of L is defined inductively as follows:
(i) a € Fr forall a € U; (ii) if F € Fr, then (—F) € Fr;
(iii) if F, G € Fr, then (F o Q) € Fr foro € ({A,V}UCr).
var(F') denotes the set of all variables in a formula F € F.

For example, CocL = {>_<)} and Cp;. = (). Formulas that do
not contain a choice connective are simply classical formulas.

The semantics of a choice logic is given by two functions,
satisfaction degree and optionality. The satisfaction degree of
a formula given an interpretation is either a natural number or
oo. The lower this degree, the more preferable the interpre-
tation. The optionality of a formula describes the maximum
finite satisfaction degree that this formula can be ascribed.

1795

Definition 2. The optionality of a choice connective o € C
in a choice logic L is given by a function opt%.: N> — N
such that opt.(k, ) < (k+1)-({+1) forallk,¢ € N. The
optionality of an L-formula is given via opt ,: Fr — N with

~

opt(a) =1, for every a € U;
opt(~F) =1;
opt (F A G) = maz(opt . (F), opt(G));
opt - (F'V G) = maz(opt - (F), opt - (G));
opt . (F o G) = optl(opt . (F), opt . (G)) foro € Cr.
The optionality of a classical formula is always 1. For any
choice connective o, the optionality of F' o GG is bounded such
that opt . (F o G) < (opt,(F)+1)-(opt,(G)+1). The rea-
son for this is that there are opt ~(F') many finite degrees that
could be ascribed to F', plus the infinite degree co. Likewise
for G. Thus, there are at most (opt - (F)+1) - (opt - (G)+1)
possibilities when combining the degrees of F and G.
Next, we define thg satisfaction degree of a formula. In the
following, we write N for (N U {oo}).

SN SN

Definition 3. The satisfaction degree of a choice connec-
tive o € Cr in a choice logic L is given by a function
degy: N? x N = N such that either degz(k,l,m,n) <
opt%.(k,0) or degy(k,t,m,n) = oo for all k,{ € N and
all m,n € N. The satisfaction degree of an L-formula under
an interpretation is given via deg: 2“ x Fy — N with

1 ifael,
1. dege(Za) = {oo otherwise

1 ifdeg,(Z,F) = o0,
oo otherwise;

foreverya € U;

2. deg,(Z,~F) = {

3. deg,(Z,F ANG) = max(deg,(Z,F),deg,(Z,Q));
4. deg,(Z,FV G)=min(deg,(Z,F),deg,(Z,Q));
)

5. deg (Z,F o G) = degz(k,£,m,n) for every o € Cg,
where k = opt,(F), £ = opt,(G), m = deg,(Z,F),
andn = deg.(Z,G

We also write Z =5 F for deg,(Z,F) = m. If m < oo,
we say that 7 satisfies I (to a finite degree), and if m = oo,
then Z does not satisfy F'. If F' is a classical formula, then
IEfF <= IEF and TES F < TW#F. The
symbols T and L are shorthand for the formulas (aV —a) and
(a A —a), where a can be any variable. We have opt - (T) =
opt,(L)=1,deg,(Z, T) =1and deg,(Z, L) = oo for any
interpretation Z in every choice logic.

The semantics of the classical connectives are fixed and
are the same as for QCL and CCL. F' A G is assigned the
maximum degree of F' and G because both formulas need
to be satisfied. Conversely, we use the minimum degree for
F Vv G since satisfying either option suffices, and we do not
need to concern ourselves with the less preferable option.
Observe that it is still necessary to define opt,(F V G) =
maz(opt . (F), opt - (G)), as the case that either option is not
satisfied has to be allowed for. As for negation, note that —F'
can only assume the degrees 1 or co. In order to define a form
of negation that results in different degrees of satisfaction, we
would need to keep track of degrees of dissatisfaction. We

~— ~—
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observe that the semantics of the classical connectives used
here are not the only possible ones. See also the brief discus-
sion on PQCL and QCL+ in Section 2.2.

From Definitions 2 and 3 it follows that the satisfaction
degree of a choice logic formula is bounded by its optionality
as intended, i.e., for all interpretations Z and all £-formulas
F,either deg(Z,F) < opt,(F)ordeg,(Z,F) =0

Moreover, note that only those variables that actually oc-
cur in a formula F' can influence opt . (F') and deg(Z, F),
which means that we can assume Z C var(F') for any inter-
pretation Z that we are dealing with.

An interpretation that satisfies a formula to a finite degree
will be referred to as a model of that formula. But often we
are interested only in the most preferable models.

Definition 4. Let L be a choice logic. Then an interpreta-
tion L is a preferred model of an L-formula F, written as
T € Prf (F), if deg (Z,F) # oo and, for all other inter-
pretations J, deg (L, F) < deg (T, F).

By the above definition, Prf,(F) = { if and only if
deg(Z, F) = oo for all interpretations Z.

2.2 Examples of Choice Logics

To define a choice logic L, it suffices to specify the choice
connectives C, of that logic, and to provide the optionality-
and satisfaction degree functions of every o € C,. The sim-
plest example for a choice logic is classical propositional
logic, where Cpp, = (). Since all PL-formulas are classical
formulas, Z € Prfp (F) < I F.

QCL can be expressed in our framework as follows:

Definition 5. QCL is the choice logic such that Cocr, = { X },
and, if k = optocL (F), £ = oploeL(G), m = degoe, (T, F),
andn = degocr(Z, G) for some F, G, I, then

optoc (FXG) = optdey (ky€) = k+ £, and

degoe(Z, FXG) = degch(k‘J,mm)

m if m < oo;
=<n+k ifm=o0,n<o0;
0 otherwise.

Here, we can see how optionality is used to penalize
non-satisfaction: if F' is satisfied, then degqgcy (Z, FX@G) =
degocL(Z, F) < opt(F);if F'is not satisfied, but G is, then
degQCL(IaF;G) = degQCL(Iv G) + opt(F) > opt,(F).
Thus, any interpretation which satisfies F' is automatically
more preferable than one that does not.

The fourth column of Table 1 illustrates QCL semantics
on a simple example. From there, we can infer that {a} and
{a, b} are preferred models of @ X b, while () and {b} are not.

We know that X is associative from [Brewka et al., 2004al,
which means that given arbitrary QCL-formulas A, B, and
C, the formulas ((AX B)XC) and (AX (BXC)) always have
the same optlonahty and satisfaction degrees. We can there-
fore write Fj X F2 X Fn to express that we prefer F to Fb,
F5 to F3, and so on. For variables ay,...,a, with a; # a;

for all i # j, we have that {a;} =X (a1 ;ag L Xay).

T aAb aVb axXb alBb aJb a®b
00 00 00 00 00 00
{b} 00 1 2 00 3 00
{a} 00 1 1 2 2 2
{a,b}) 1 11 1 11

”I_‘gble 1: Tllg classical connectives /\_,> V and the choice connectives
x (QCL), ® (CCL), ¥ (LCL), and ® (SCCL) applied to atoms.

Next, we formally deﬁne CCL. However, our function for
the satisfaction degree of @ differs from the one given in
[Boudjelida and Benferhat, 2016]. This is because the orig-
inal definition of CCL, although it can be expressed in our
framework if desired, fails to capture the intended meaning
of ordered conjunction.?

—

Definition 6. CCL is the choice logic such that Ccer, = {O},
and, if k = optecy (F), £ = optcc (G), m = degee, (Z, F),
and n = degec(Z, G) for some F, G, T, then

optec (FOG) =k + £, and

n ifm=1,n < oo;

- m+ L ifm < oo and
degea (T, FOC) = (m>1orn=00);
00 otherwise.

Intuitively, given F’ @G, it is best to satisfy both F' and
G, while satisfying only F is less preferable, but still accept-
able. As intended, G is associative under this new semantics
for CCL. This will be shown in Section 3 (see Lemma 7).
For a series of distinct proposmonal variables, we have that
{ar, .. amoizn} ES© L (a1 Xay ... Xay).

While QCL and CCL feature only a single choice con-
nective, our framework now easily allows to define a choice
logic with the choice connectlves of both QCL and CCL, i.e.

CoccL = {>< @} othCCL = othCL, degQCCL = degQCL,
and likewise for CCL and &.

We now introduce a new logic, called Lexicographic
Choice Logic (LCL), whose choice connective deals with sat-
isfaction degrees in a more fine-grained manner.

—

Definition 7. LCL is the choice logic such that Cicp, = {3},
and, if k = opt ¢ (F), £ = opt o (G), m = degy o (T, F),
and n = deg; - (Z,G) for some F, G, I, then

optic (FOG) = (k+1)-((+1)—1, and
(m—1)-L+n ifm <oo,n < o;
o JEtam if m < o0,n = oo;
d I,F3G) =
egLCL(? © ) k-l+k+n ifm=o00,n < o0;
00 otherwise.

Given F TG it is best to satisfy both F and G, second best
to satisfy only F', and third best to satisfy only G. Satisfy-
ing neither F' nor G is not acceptable. Let F' = (a3 (b3 c)).

In our understanding, under the semantics descrlbed in [Boud-
jelida and Benferhat, 2016, Definition 81, the formula a®b will al-
ways be ascribed a degree of either co or 1.
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The only interpretation that ascribes a degree of oo to F' is
(). The remaining 7 interpretations applicable to F' each re-
sult in a different degree, ranging from 1 to 7. For example,
{a,b,c} EYC F, {a,b} 5 F, {a,c} ELCL P, and so on
until {c} L F. In this way, S enables us to succinctly
encode lexicographic orderings over variables.

It is also possible to define a choice logic that does not use
optionality. We call the following new logic Simple Conjunc-
tive Choice Logic (SCCL).

Deﬁnltlon 8. SCCL is the choice loglc such that Csccp =
{&}, and if k = optsee (F), m = degscer (T, F), and
n = degsceL(Z, G) for some F, G, T, then

optsce (FEG) = k+ 1, and

m ifm < co,n < o0;
degsce (I, FEG) ={m+1 ifm < co,n = o0;
00 otherwise.

SCCL is similar to CCL in that the intended meaning of
F®G is the same as that of FGG, i.e., satisfying F and
G is most preferable, but satisfying only F' is also accept-
able. However, SCCL does not use optionality to penalize
less preferable interpretations. Instead, the degree of such in-
terpretations is simply incremented by 1. Note that ® is not
associative, since {a, b} ascribes a degree of 1 to (a®B(b&c))
and a degree of 2 to ((a®b)Bc).

Lastly, we want to discuss two variants of QCL introduced
in [Benferhat and Sedki, 2008b] called PQCL and QCL+.
Both of these logics define % in the same way as standard
QCL, but differ in how classical connectives deal with sat-
isfaction degrees. The alternative conjunctions and disjunc-
tions featured in PQCL and QCL+ can be implemented in our
framework as choice connectives, if desired. In fact, some
behave more like choice connectives than classical connec-
tives, as, for example, the conjunction of PQCL favors inter-
pretations that ascribe a lower satisfaction degree to the first
operand rather than the second. The semantics of < in LCL
is built on this principle, and is actually an extension of A in
PQCL. The alternative definition for negation in PQCL and
QCL+ is more involved, but can be simulated in our frame-
work by restricting ourselves to formulas where negations ap-
pear only in front of atoms. This means that PQCL and QCL+
can be captured by our framework as fragments.

2.3 Expressiveness

It can be shown that any logic defined in our framework is
powerful enough to express arbitrary assignments of satisfac-
tion degrees to interpretations by a forumula as long as the
degrees are obtainable in the following sense:

Definition 9. A degree m € N is called obtainable in a
choice logic L if there exists an interpretation T and an L-
formula F such that deg ,(Z, F) = m. By Dy we denote the
set of all degrees obtainable in a choice logic L.

For example, Dp. = {1, 00} and Dgcr. = N.
Proposition 1. Let L be a choice logic. Let V be a finite set of
propositional variables, and let s be a function s: 2V — Dy.

Then there is an L-formula F with var(F) C V such that,
forallT CV, deg,(Z,F) = s(I).
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Proof. Consider any interpretation J C V. Let G7 be a
classical formula that characterizes J over V,ie. J E G 7,
but J' £ Gy for all J' C V such that 7' # J. Since
s(J) € D, there is a formula H such that deg,(J*, H) =
s(J) for some interpretation [7*. We obtain the formula S 7
by replacing every variable in H that occurs in J* by T,
and all other variables in H by L. Then deg,(J,Sy) =
degp(J*, H) = s(J). Now, F = \/ ;,(G7z A S7) is an
L-formula with the desired properties. O

3 Strong Equivalence

We now investigate strong equivalence in the sense of re-
placeability [Faber et al., 2013] of preferred models. F'[A/B]
denotes the substitution of an occurrence of A in I’ by B.

Definition 10. Two formulas A and B of a choice logic L
are strongly equivalent, written as A =~ B, if Prf.(F) =
Prf .(F[A/B]) for all L-formulas F.

Strong equivalence is a crucial notion towards simplifi-
cation, thus a characterization that avoids going through in-
finitely many formulas is needed. We show that strong equiv-
alence often can be decided via simpler equivalence notions.

Definition 11. Two formulas A and B of a choice logic L
are degree-equivalent, written as A =5 B, if deg;(Z,A) =
deg »(Z, B) for all interpretations T.

Lemma 2. Let L be a choice logic. If A Eg B, then

Prf o (A) = Prf o (B).

The converse of Lemma 2 is not true: a and (aXb) have
the same preferred models in QCL, but {b} =L a, while

{b} ES™ (aXb). Since the satisfaction degree of a for-
mula might also depend on optionality, the notion of degree-
equivalence is not strong enough in many cases; we thus also
consider the following notion, which actually appears under
the name of strong equivalence in [Brewka er al., 2004a].

Definition 12. Two L-formulas A and B are fully equivalent,
written as A E]/% B, if A =% B and opt(A) = opt(B).

Lemma 3. Let L be a choice logic. Then A E? B if and
only if F EJQ F[A/B] for all L-formulas F.

The above lemma states that two formulas are fully equiv-
alent if and only if they can be substituted for each other
without affecting satisfaction degree or optionality. This is
even stronger than strong equivalence which only demands
that substitution does not affect preferred models.

Proposition4. A=f B — A={B — A=f Bfor
any choice logic L and all L-formulas A, B.

In general all three equivalence notions are different. For
example in SCCL, a and (a@a) are not fully equlvalent
since they differ in optionality, but they are strongly equiva-
lent, since optionality does not impact satisfaction degrees in
SCCL. On the other hand, in QCL a and (a X a) are degree-
equivalent and F = (((aXb) V (¢Xd)) A =a A —c) has {b}
as a preferred model, but replacing the first occurrence of a
in F' by aXa means {b} is no longer preferred. However, for
natural classes of choice logics strong equivalence coincides
with either degree-equivalence or full equivalence.
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Definition 13. A choice logic L is called optionality-ignoring
if forall o € Cp, deg,(Z,F o G) = deg,(Z,F' o G")
whenever deg,(Z,F) = deg,(Z,F’) and deg,.(Z,G) =
deg(Z,G").

It is easy to see that PL. and SCCL are optionality-ignoring,
while QCL, CCL, and LCL are not.

Proposition 5. Let £ be an optionality-ignoring choice logic.
Then A =£ B iff A =5 B for all L-formulas A, B.

Similar to the above result, we can characterize strong
equivalence by full equivalence in choice logics where, as
soon as two formulas differ in optionality, they can no longer
be safely substituted for each other without affecting satisfac-
tion degrees.

Definition 14. A choice logic L is called optionality-
differentiating if for all L-formulas A and B with opt ,(A) #
opt - (B), there is an L-formula F such that F 25 F[A/B).

PL, QCL, CCL, and LCL are optionality-differentiating
(while SCCL is not). We show this for QCL: Consider
any A, B such that optocp (A) # optgep(B). Then F' =
((AA L)Xa) has the desired property: (A A L) can never be
satisfied, and since optocp (A A L) = optoer(A), F is sat-
isfied by {a} with a degree of optgc (A) + 1. Likewise,
F[A/B] is satisfied by {a} with a degree of optocy (B) + 1.

Proposition 6. Let L be an optionality-differentiating choice
logic. Then A =% B iff A E? B for all L-formulas A, B.

Proof. The if-direction is by Proposition 4. So, let A =% B.
By Proposition 4, A =4 B. Towards a contradiction, assume
opt - (A) # opt(B). Since L is optionality-differentiating,
A" #£5 A'[A/B] for some A’ € Fg, ie. A occurs in A’.
Let B’ = A’[A/B]. By the contrapositive of Proposition 4,
Prf .(F) # Prf (F[A'/B']) for some F € F. Since re-
placing A’ by A’[A/B] in F is the same as simply replacing
Aby Bin F (ie. F[A'/B'| = F[A'/A'[A/B]] = F[A/B)),
Prf .(F)#Prf »(F[A/B)). This contradicts A =% B. [

In fact, strong equivalence and full equivalence are inter-
changeable only for optionality-differentiating choice logics.
Consider a non optionality-differentiating £. Then there are
L-formulas A and B such that opt.(A) # opt,(B), while
for all £-formulas F' we have that F' =5 F[A/B]. This im-
plies A =5 B. But A #f B, since opt ;(A) # opt o (B).

In Section 2.2, we discussed associativity of X in QCL. A
matching strong equivalence result can now be achieved for
CCL as well, and it is easily proven using Proposition 6.

Lem_r)na 1 Choice con@ctivg) ® € CccL is associative, i.e.
(FOG)OH) =" (FO(GOH)) for any F,G, H € Fccr.

To conclude, knowing whether a choice logic
is optionality-ignoring (e.g. SCCL) or optionality-
differentiating (e.g. QCL, CCL, LCL) is useful, since it
allows to decide strong equivalence via degree- or full
equivalence. However, note that choice logics which are
neither optionality-ignoring nor -differentiating do exist.

4 Computational Complexity

Next, we examine the computational complexity of choice
logics. So far we have imposed only few restrictions on
optionality- and degree functions, which means that there are
choice logics whose semantics are given by computationally
expensive or even undecidable functions. For reasons of prac-
ticality, we focus on so-called tractable choice logics.

Definition 15. A choice logic L is called tractable if the
optionality- and degree functions of every choice connective
in L are polynomial-time computable.

All logics presented in this paper are tractable in this sense.

The first decision problems that we look at are concerned
with satisfaction degrees: in £L-DEGREECHECKING we ask
whether, given an L£-formula F, an interpretation Z, and a
satisfaction degree k € N, it holds that deg,(Z, F) < k; in
L-DEGREESAT we ask whether, given an £-formula F' and
a satisfaction degree k € N, there is an interpretation Z such
that deg(Z,F) < k. These two problems are straightfor-
ward generalizations of model checking and satisfiability for
classical propositional logic, and they do not differ in com-
plexity from their classical counterparts.

Proposition 8. For any tractable choice logic L, L-
DEGREECHECKING is in P; L-DEGREESAT is NP-complete.

The picture changes when we reformulate the problems in
terms of preferred models.

Definition 16. We define decision problems

e L-PREFMODELCHECKING: given F' € F, and an in-
terpretation L, does T € Prf (F) hold;

e L-PREFMODELSAT: given F' € F, and variable a, is
there an interpretation L € Prf ,(F') such that a € T.

Proposition 9. £-PREFMODELCHECKING is in coNP for
any tractable choice logic L.

Note that PL-PREFMODELCHECKING is identical to PL-
DEGREECHECKING, since Z € Prfp (F) < I L F.
Hence, we cannot expect coNP-hardness in general, but we
show the result for all logics where degrees other than 1 and
oo are obtainable, and thus for QCL, CCL, SCCL, and LCL.

Proposition 10. £-PREFMODELCHECKING is complete for
coNP in any tractable choice logic L where Dy # {1,000}

We turn to £-PREFMODELSAT and first give an upper
bound for the optionality of choice logic formulas relative to
their size. In the following, |F'| denotes the total number of
variables occurrences in F, e.g. |(z Az Ay)| = 3.

Lemma 11. Let L be a choice logic. Then, for every L-
Sformula F it holds that opt ,(F) < 2011,

This is likely not a tight bound, but it is good enough for
our purposes. Recall that AsP is the class of decision prob-
lems that can be solved in polynomial time on a deterministic
Turing machine with access to an arbitrary number of NP-
oracle calls. ©2P is defined analogously but only a logarith-
mic number of NP-oracle calls is permitted.

Proposition 12. £-PREFMODELSAT is in AsP and NP-hard
Sfor any tractable choice logic L.
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L=PL L€ {QCL,CCL,SCCL} L =LCL Opt-diff./ignor. Tract.
L-DEGREECHECKING in P in P in P in P in P
L-DEGREESAT NP-c NP-c NP-c NP-c NP-c
L-PREFMODELCHECKING in P coNP-c coNP-c in coNP in coNP
L-PREFMODELSAT NP-c ©,P-c AsP-c in AoP/NP-h  in A3P/NP-h
L-FULLEQUIVALENCE coNP-c coNP-c coNP-c coNP-c coNP-c
L-DEGREEEQUIVALENCE coNP-c coNP-c coNP-c coNP-c coNP-c
L-STRONGEQUIVALENCE coNP-c coNP-c coNP-c coNP-c ?

Table 2: Summary of complexity results.
differentiating. Tract. stands for tractable L.

These are tight bounds in the sense that there are choice
logics for which L-PREFMODELSAT is AsP-complete
(Proposition 15) and choice logics for which it is NP-
complete (just take £ = PL). However, there are also
choice logics for which the complexity lies between these two
classes. The key is to restrict optionality.

Proposition 13. L£-PREFMODELSAT is in ©sP for every
tractable choice logic L in which for some constant ¢ and

all L-formulas F it holds that opt -(F) € O(|F|°).

This implies that £-PREFMODELSAT is in ©,P for £ €
{QCL, CCL, SCCL}. In fact, these logics are ©2P-complete.

Proposition 14. L£-PREFMODELSAT is ©sP-complete for
L € {QCL,CCL, SCCL}.

Proof. We show ©5P-hardness for QCL (CCL and SCCL
are similar) via reduction from the ©,P-complete problem
LOGLEXMAXSAT [Creignou et al., 2018]. Consider an in-
stance of LOGLEXMAXSAT, where, given a PL-formula F’
and an ordering z; > --- > x, over n of the variables in F’,
where n < log(|F'|), we ask whether x,, is true in the lexi-
cographically largest interpretation 7 C {x1,...,2,} that
can be extended to a model of F'. We construct an instance
(F',z,) of QCL-PREFMODELSAT as follows: Let J; be
the lexicographically i-th largest interpretation over the given
ordering, e.g. J1 = {z1,...,2n}, Jo = {x1,...,Tn_1},
and J(ony = (. Every J; can be characterized by a clas-
sical formula A; such that |4;] € O(n) and Z = A; iff
ZnA{zy,...,zy} = J; for all Z. Now construct F’' =
FA(AXAyX - QA(zn)). Observe that | F’| is polynomial
in |F| since n < log(|F|). Forall Z, deg(Z, F') = i, where
1< oo, iff ZN{x1,...,x,} =TF;andZ E F. O

In contrast, LCL allows to represent the lexicographic or-
der with an exponentially smaller formula than QCL, CCL,
and SCCL. For LCL, we can thus drop the condition n <
log(] F]) in the construction above, yielding a reduction from
LEXMAXSAT, which is A;P-hard [Creignou et al., 2018].

Proposition 15. LCL-PREFMODELSAT is AsP-complete.

Finally, we consider £-FULLEQUIVALENCE, the problem
of deciding whether A E? B holds for given £-formulas
A and B, as well as £-DEGREEEQUIVALENCE and L-
STRONGEQUIVALENCE which are defined analogously. In
the following result, hardness follows from PL; membership
of (2) is by our characterizations in Section 3.
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Opt-diff./ignor. stands for tractable £ which are either optionality-ignoring or optionality-

Proposition 16. For any tractable choice logic L, (1)
L-FULLEQUIVALENCE and L-DEGREEEQUIVALENCE are
coNP-complete; (2) L-STRONGEQUIVALENCE is coNP-
complete if L is optionality-ignoring or -differentiating.

Table 2 summarizes our complexity results for tractable
choice logics, thus including all specific logics studied so far;
a full analysis may be conducted in a similar way by using
oracles for the optionality- and satisfaction degree functions.

5 Conclusion

We defined and investigated a general framework for choice
logics that captures both QCL and CCL, but also allows
to define new logics as examplified via SCCL and LCL.
We have shown that strong equivalence is interchangeable
with degree-equivalence for optionality-ignoring choice log-
ics (e.g. SCCL) and with full equivalence for optionality-
differentiating choice logics (e.g. QCL, CCL, LCL). More-
over, the computational complexity of tractable choice log-
ics was investigated in detail. An initial definition of our
framework and some further results regardings choice logics
can be found in the master thesis of the first author [Bernre-
iter, 2020]. Moreover, ASP encodings have been provided in
[Bernreiter et al., 2020].

Regarding future work, new choice logics may be defined
explicitly with concrete use cases in mind. Furthermore,
some properties of our framework have yet to be investigated.
This includes a characterization of associativity, general con-
cepts towards normal forms (as examined for QCL and CCL
in [Brewka et al., 2004a; Boudjelida and Benferhat, 2016]) as
well as nonmonotonic consequence relations for choice log-
ics and how they can fit into the framework of [Kraus ez al.,
1990] (examined for QCL in [Brewka et al., 2004al). Investi-
gating the computational complexity of these nonmonotonic
consequence relations in a general manner may also yield in-
teresting results. Furthermore, the complexity of checking for
strong equivalence is still unknown for choice logics that are
neither optionality-ignoring nor optionality-differentiating.
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