
On Belief Change for Multi-Label Classifier Encodings

Sylvie Coste-Marquis1 and Pierre Marquis1,2
1CRIL, Univ. Artois & CNRS, France

2Institut Universitaire de France, France
{coste, marquis}@cril.fr

Abstract
An important issue in ML consists in develop-
ing approaches exploiting background knowledge
T for improving the accuracy and the robustness
of learned classifiers C. Delegating the classifi-
cation task to a Boolean circuit Σ exhibiting the
same input-output behaviour as C, the problem of
exploiting T within C can be viewed as a belief
change scenario. However, usual change opera-
tions are not suited to the task of modifying the
classifier encoding Σ in a minimal way, to make
it complying with T . To fill the gap, we present
a new belief change operation, called rectification.
We characterize the family of rectification opera-
tors from an axiomatic perspective and exhibit op-
erators from this family. We identify the standard
belief change postulates that every rectification op-
erator satisfies and those it does not. We also focus
on some computational aspects of rectification and
compliance.

1 Introduction
Integrating learning and reasoning is one of the key chal-
lenges of AI today, and as such, it attracted much attention
from several scientific communities, especially the neural-
symbolic computation one (NeSy) and the statistical rela-
tional learning and AI one (StarAI) [Raedt et al., 2020;
Besold et al., 2017; d’Avila Garcez et al., 2019; Russell,
2015; Raedt et al., 2016]. The motivations for integrating
learning and reasoning are numerous, giving rise to many re-
search issues and associated methods for handling them.

One of these issues consists in leveraging knowledge to im-
prove machine learning (ML) systems (especially, classifiers
of various types) in terms of accuracy / data efficiency (see
e.g., [Hu et al., 2016; Donadello et al., 2017; Xu et al., 2018;
Xie et al., 2019; Chen et al., 2020]). For instance, a back-
ground theory T can be exploited during the learning phase
used to generate the parameters of C; T can be viewed as a
soft constraint that promotes solutions that are close to satis-
fying assignments, and this proves useful for generating bet-
ter classifiers (see e.g., [Xie et al., 2019]).

However, such approaches do not guarantee that the
learned classifier will classify every new instance in a way

that is consistent with T . Furthermore, they are not applica-
ble when the classifier has already been learned and the train-
ing set is not available any longer. In such a case, the learned
classifier C itself must be modified to comply with T .

Noticeably, recent works have shown how ML classifiers
C of various types can be encoded as Boolean circuits Σ
(alias transparent or “white” boxes) (see e.g., [Narodytska et
al., 2018; Shih et al., 2019; Shi et al., 2020]). In the follow-
ing, we do not make any strong assumption on the nature of
the classifier that is considered. C is supposed to be a discrete
multi-label classifier: given a set X = {x1, · · · , xn} (its el-
ements are Boolean features) and a set Y = {y1, · · · , ym},
that is disjoint with X (its elements are the labels, denoting
classes / concepts), C is a mapping associating with each in-
put instance (a vector x ∈ X of n Boolean values assigned
to the variables of X) a vector y ∈ Y of m Boolean values
assigned to the variables of Y . We also assume that a Boolean
circuit Σ that encodes C is available. Σ is required to have
the same input-output behaviour as C: for any pair (x,y) for
which y = C(x), we have yj = 1 precisely when the output
variable yj of the circuit Σ on the input x is set to 1. Such
a circuit Σ can be viewed as a compact representation of the
classes Y , as they are recognized by C.

Thanks to such encodings, the classification task w.r.t. C
can be based on the associated circuit Σ, and achieved ef-
ficiently from this circuit. Indeed, it is well-known that the
circuit value problem that consists of computing the output
of a given Boolean circuit on a given input is complete for
P under uniform AC0 reductions.1 In terms of time com-
plexity, this problem can be solved in linear time in the
size of the circuit simply by a topological sort. Further-
more, beyond the classification task, both explanation and
verification queries about C can be addressed via the corre-
sponding classification circuit Σ [Darwiche and Hirth, 2020;
Audemard et al., 2020].

Interestingly, it turns out that the problem of modifying
C once learned so that it complies with T can also be del-
egated to the corresponding Boolean circuit Σ. This prob-
lem amounts to a belief change issue, a question studied for
decades in the knowledge representation (KR) community.
Here, T is supposed to be more reliable than Σ because of

1We assume the reader acquainted with basics of complexity the-
ory (see e.g., [Papadimitriou, 1994] otherwise).
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the noise that may pervade the data used to learn the classifier
C. One is then interested in modifying Σ as few as possible
in order to comply with T . What does “comply” mean de-
pends of the nature of change one wants to deal with (e.g.,
belief revision, belief update). However, as we shall show
soon, usual belief change operations (belief revision and be-
lief update) that gave rise to an abundant literature in KR are
not suited to the task at hand. A new change operation dedi-
cated to multi-label classifier encodings is needed.

In the rest of the paper, the following research questions
are considered:

• How to characterize multi-label classifier encodings Σ?
• What does it mean for a multi-label classifier encoding

Σ to comply with some background knowledge T ?
• How to define belief change operators ? that are suited

to the task of making a multi-label classifier encoding Σ
to comply with some background knowledge T ?
• How do ? operators differ from standard belief change

operators, i.e., belief revision and belief update opera-
tors?
• How hard is it to compute rectified classifications, i.e.,

classifications from Σ ? T ?
• How hard is it to evaluate how much a multi-label clas-

sifier encoding Σ complies with a background theory T ?

Our contributions are as follows. A logical characteriza-
tion of multi-label classifier encodings is pointed out. Sev-
eral notions of compliance of multi-label classifier encodings
with some background knowledge are presented. A new be-
lief change operation, called rectification, that is specific to
multi-label classifier encodings, is introduced. We charac-
terize the family of rectification operators from an axiomatic
perspective and exhibit some operators from this family. In
addition, the standard belief change postulates that every rec-
tification operator satisfies and those it does not are identified.
Especially, we prove that the families of rectification opera-
tors and those of revision operators / update operators are dis-
joint. The problem of computing rectified classifications is
shown hard in general, but tractable restrictions of this prob-
lem are provided. Similarly, we show that evaluating how
much a multi-label classifier encoding complies with a back-
ground theory is computationally demanding in the general
case, but easy when some requirements on the representations
of Σ and T are satisfied.

The rest of the paper is organized as follows. After some
formal preliminaries (Section 2), we present in Section 3
a condition, called XY -classification property, that charac-
terizes multi-label classifier encodings; we present as well
several notions of compliance suited to multi-label classi-
fier encodings. In Section 4, the family of rectification op-
erators is defined and its connections to other belief change
operators are investigated. In Section 5, some computa-
tional issues about rectification and compliance are consid-
ered. Section 6 discusses additional related work. Finally,
Section 7 concludes the paper and gives some perspectives
for further research. Proofs are not reported in the paper for
space reasons (a full-proof version of the paper is available at
www.cril.fr/∼marquis/rectification.pdf).

2 Formal Preliminaries
Propositional logic. The propositional languagesL consid-
ered in this paper are defined over a finite and non-empty set
PS of propositional variables (that includes but does not nec-
essarily restrict to X ∪ Y ) and standard connectives. The
elements of a propositional language L are called represen-
tations, and for any such representation Σ, we denote by
Var(Σ) the subset of variables of PS occurring in Σ. As
usual, atomic representations include propositional variables
in PS , and Boolean constants in {>,⊥}. A literal is a propo-
sitional variable, possibly negated, or a Boolean constant.
Any propositional variable x is called a positive literal, and
the negation of x, denoted ¬x or x, is called a negative lit-
eral. If ` is a literal x (resp. ¬x), then its complementary
literal ∼ ` is ¬x (resp. x). For any subset X of PS , LX de-
notes the set of literals based on the variables of X . A term is
a conjunction of literals, and a clause is a disjunction of liter-
als. A canonical term over X is a consistent term into which
every variable of X occurs (as such, or negated).

Given a set of variables V ⊆PS , an interpretation over
V is a mapping ω from V to B = {0, 1}. When a to-
tal ordering < over PS is provided, interpretations can be
represented by bit vectors from the set V . For instance,
if V = {v1, v2} such that v1 < v2, then the mapping ω
such that ω(v1) = 0 and ω(v2) = 1 can be represented by
(0, 1). Propositional representations are interpreted in a clas-
sical way. For a representation Σ and an interpretation over
any superset of V = Var(Σ), we use ω |= Σ to denote
the fact that ω if a model of Σ according to the semantics
of propositional logic. That is, assigning the variables of Σ
to truth values as specified by ω makes Σ true. By [Σ] we
denote the set of models of Σ over Var(Σ), and by ‖Σ‖ we
denote the number of models of Σ over Var(Σ). In particu-
lar, Σ is inconsistent if ‖Σ‖ = 0, and consistent otherwise. Σ
is said to be complete when it has a unique model. A repre-
sentation Σ2 is a logical consequence of a representation Σ1

(denoted Σ1 |= Σ2) if Σ1 ∧ ¬Σ2 is inconsistent. Σ1 and Σ2

are logically equivalent (denoted Σ1 ≡ Σ2) if they are logical
consequences of each other.

Given a representation Σ and a consistent term γ, the con-
ditioning of Σ by γ is the representation obtained by replacing
in Σ every occurrence of a variable v ∈ Var(γ) by > if v is
a positive literal of γ and by ⊥ if ¬v is a negative literal of
γ. When V is a subset of propositional variables from PS , Σ
is said to be independent of V if there is a representation Φ
logically equivalent to Σ such that Var(Φ) ∩ V = ∅. The
forgetting of V in Σ, denoted ∃V.Σ, is (up to logical equiva-
lence) the most general consequence of Σ that is independent
of V . The projection of Σ onto V is the forgetting of V in Σ,
where V denotes the set PS \V . Let us mention that ∃V.Σ
can be computed as a propositional representation, thanks to
the following inductive characterization:
• ∃∅.Σ ≡ Σ,
• ∃{v}.Σ ≡ (Σ | ¬v) ∨ (Σ | v),
• ∃(V ′ ∪ {v}).Σ ≡ ∃V ′.(∃{v}.Σ).
Finally, we are interested in properties of propositional lan-

guages L that state the existence of polynomial-time algo-
rithms for answering some queries (consistency testing CO,
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model counting CT) from representations inL, or for achiev-
ing some transformations over such representations (condi-
tioning CD, forgetting FO, bounded conjunction ∧BC).
See [Darwiche and Marquis, 2002] for details.

Propositional belief change. Belief revision consists in in-
corporating into an existing belief base ϕ (a propositional for-
mula) a new piece of evidence µ (a propositional formula).

The following postulates have been pointed out for char-
acterizing rational revision operators ◦ over a finite proposi-
tional language [Katsuno and Mendelzon, 1991b]:
Definition 1 (KM revision operator). A KM revision oper-
ator ◦ is a mapping associating with a change formula µ ∈ L
and a formula ϕ ∈ L, a new base ϕ ◦ µ from L, such that for
every formula µ, µ′ ∈ L, for any consistent formulae ϕ,ϕ′ ∈
L, it satisfies the following postulates:
(R1) ϕ ◦ µ |= µ;
(R2) If ϕ ∧ µ is consistent, then ϕ ◦ µ ≡ ϕ ∧ µ;
(R3) If µ is consistent, then ϕ ◦ µ is consistent;
(R4) If ϕ ≡ ϕ′ and µ ≡ µ′, then ϕ ◦ µ ≡ ϕ′ ◦ µ′;
(R5) (ϕ ◦ µ) ∧ µ′ |= ϕ ◦ (µ ∧ µ′);
(R6) If (ϕ ◦ µ) ∧ µ′ is consistent,

then ϕ ◦ (µ ∧ µ′) |= (ϕ ◦ µ) ∧ µ′.

Belief update mainly focuses on determining how a belief
state (typically represented by a belief base ψ) should evolve
in order to take into account a new piece of information µ
reflecting an explicit evolution of the world.

The following postulates [Katsuno and Mendelzon, 1991a]
have been pointed out for characterizing rational update op-
erators �:
Definition 2 (KM update operator). A KM update operator
� is a mapping associating with a change formula µ ∈ L and
a formula ψ ∈ L, a new base ψ�µ from L, such that for every
formula µ, µ′ ∈ L, for any consistent formulae ψ,ψ′ ∈ L, it
satisfies the following postulates:
(U1) ψ � µ |= µ;
(U2) If ψ |= µ then ψ � µ ≡ ψ;
(U3) If ψ and µ are consistent then ψ � µ is consistent;
(U4) If ψ ≡ ψ′ and µ′ ≡ µ′ then ψ � µ ≡ ψ′ � µ′;
(U5) (ψ � µ) ∧ µ′ |= ψ � (µ ∧ µ′);
(U6) If ψ � µ |= µ′ and ψ � µ′ |= µ then ψ � µ ≡ ψ � µ′;
(U7) If ψ is complete then (ψ �µ)∧ (ψ �µ′) |= ψ � (µ∨µ′);
(U8) (ψ ∨ ψ′) � µ is equivalent to (ψ � µ) ∨ (ψ′ � µ).

3 Classification and Compliance
Let us first make formal what “classifying” means when deal-
ing with (general) propositional representations:
Definition 3 (classification). Let ϕ be a propositional rep-
resentation in L over PS , and let X and Y be two disjoint
subsets of PS . Let x ∈ X and y ∈ Y . ϕ is said to classify
x (as y) if and only if the propositional representation ϕ(x),
defined by ϕ(x) = ∃Y .(ϕ | x), has a unique model over Y ,

namely y. The set of instances x that are classified by ϕ is
C(ϕ) = {x ∈X | ∃y ∈ Y s.t. ϕ classifies x as y}.
Example 1. Let X = {x1, x2}, Y = {y}, and Z = {z}.
Let ϕ = (x1 ∧ x2 ∧ y ∧ z) ∨ (x1 ∧ y). When x = (1, 1) we
have ϕ(x) ≡ y. Thus ϕ classifies (1, 1) as (1). Similarly, ϕ
classifies (0, 0) and (0, 1) as (0). On the other hand, when
x = (1, 0) we have ϕ(x) ≡ ⊥, showing that ϕ does not
classify (1, 0). We thus have C(ϕ) = {(1, 1), (0, 0), (0, 1)}.

For any propositional representation ϕ ∈ L and any x ∈
X , it can be observed that ϕ(x) ≡ (∃X ∪ Y .ϕ)(x). Intu-
itively, this equivalence indicates that the pieces of informa-
tion in ϕ that do not only depend on X and Y are irrelevant
to the classification task when X represents the features and
Y the labels.

Now, in order to be considered as the encoding of a
Boolean classifier C with features in X and labels in Y , a
propositional representation Σ is expected to exhibit theXY -
classification property:
Definition 4 (XY -classification property). A propositional
representation Σ ∈ L has the XY -classification property
when it is equivalent to an XY -classification circuit, i.e., a
DAG D such that:
• the source nodes of D are associated with the variables

in X and for every variable y of Y , there is a sink node
of D that is associated with y;
• every node N in D, except the source nodes, is asso-

ciated with a specific variable vN from Y ∪ Z; vN is
the output of a gate, the inputs of it being the parents of
N in D; this gate corresponds to an equivalence of the
form vN ⇔ ϕN , where ϕN is a formula from L over the
variables associated with the parents of N .

From a logical standpoint, an XY -classification circuit is
viewed as the conjunction of all the equivalences associ-
ated with its nodes, thus a formula over X ∪ Y ∪ Z where
X,Y, Z ⊆ PS .
Example 2. Let X = {x}, Y = {y}, and Z = {z}. Let
Σ = (x ⇔ z) ∧ (y ⇔ z). Obviously enough, Σ has the
XY -classification property.

When Σ has theXY -classification property, every variable
v of Σ is definable in Σ in terms of X , meaning that there ex-
ists a formula ϕX

v built upon variables of X , only, such that
Σ |= v ⇔ ϕX

v . Though necessary, this definability condi-
tion on the variables is not sufficient to characterize the XY -
classification property. Indeed, any inconsistent representa-
tion Σ satisfies it, but an inconsistent Σ is not equivalent to
any XY -classification circuit. Actually, the right concept re-
quired here is the one of unambiguous definability [Lang and
Marquis, 2008]. Thus, beyond the definability condition, a
propositional representation Σ that has the XY -classification
property must be such that Σ | x is consistent for every
x ∈ X (this is mandatory to ensure that every instance x is
associated with at least one y ∈ Y , the definability condition
guaranteeing the unicity of y).

Obviously enough, every propositional representation Σ
that has the XY -classification property is such that C(Σ) =
X: Σ must classify every instance. Note that the converse
implication does not hold: take X = {x}, Y = {y}, and
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Z = {z}, and ϕ = (x ∧ y ∧ z) ∨ (x ∧ y). ϕ is such that
C(ϕ) = X but ϕ does not have the XY -classification prop-
erty (z is not defined in ϕ in terms of X).

Assuming that a background theory T is available, it is ex-
pected that Σ complies with T . Indeed, T contains pieces of
belief that can be supposed more certain than those implicitly
recorded in Σ since the latter ones have been learned from
data that can be noisy. Accordingly, the primacy is given to
T , and when Σ does not comply with T , Σ should be (mini-
mally) modified so as to become compliant with T . Depend-
ing on what “compliant” means, several belief change opera-
tions can be considered.

Thus, in the belief revision case, Σ complies with T pre-
cisely when Σ is consistent with T . When this is the case, the
change operation that is expected simply consists in conjoin-
ing Σ with T , so as to retain all the models of T which are
also models of Σ. This is imposed by the rationality postulate
(R2) for revision. In the remaining case, some models of T
are selected, the selection process being based on Σ.

It turns out that the notion of compliance and the corre-
sponding change operation required for incorporating a back-
ground theory T into a XY -classification circuit Σ are not
the ones considered in belief revision:

Example 3. Let X = {x1, x2} and Y = {y}. Let Σ =
(x1 ∧x2)⇔ y, T = (x1 ∧x2)⇔ y. Σ∧T is consistent (it is
equivalent to x1 ∧ y), thus following (R2), a rational revision
of Σ by T should be equivalent to x1 ∧ y. However, x1 ∧ y is
not equivalent to any XY -classification circuit.

The problem is that the selection process achieved by the
revision operation is performed modelwise. Indeed, the rep-
resentation theorem for belief revision given in [Katsuno and
Mendelzon, 1991b] indicates that the models of Σ revised by
T are among the models of T that are minimal w.r.t. a faithful
ordering associated with Σ. If one wants to guarantee that the
resulting representation is equivalent to a XY -classification
circuit, the selection process must satisfy a constraint that
concerns the whole set of resulting models (and not each
model taken individually). This constraint is given by the
XY -classification property stating that, after the change, for
every x ∈X there is a unique model extending x (this model
also extends a unique y ∈ Y ). Noticeably, instead of the
standard notion of revision, considering refined revision op-
erators as proposed in [Creignou et al., 2014] for handling
propositional fragments would not be enough to guarantee
that Σ once revised by T has the XY -classification property.

Accordingly, the notion of compliance considered in belief
revision (i.e., recovering consistency) is not convenient here.
Several notions of compliance of anXY -classification circuit
with a background theory T can be considered instead:

Definition 5 (compliances). Let Σ, T be two propositional
representations fromL s.t. Σ has theXY -classification prop-
erty. Let x ∈X .
• Σ is classification-compliant with T on x iff

Σ(x) ≡ T (x).
• Σ is knowledge-compliant with T on x iff

Σ(x) |= T (x).
• Σ is fact-compliant with T on x iff Σ(x) |= F (T,x)

where F (T,x) = > if T | x |= ⊥,
=

∧
`∈LY s.t. T |x|=` ` otherwise.

It can be easily checked that for every T and every x, we have
T (x) |= F (T,x). In addition, for every x that is classified
by T , we have T (x) ≡ F (T,x).

Clearly enough, when Σ is classification-compliant with T
on x, we have x ∈ C(T ): Σ and T classify x in the same
way. Knowledge compliance is less demanding since it re-
quires only that the classification achieved by C (thus, Σ) on
x coheres with what T “says” about the classes of x. Espe-
cially, knowledge compliance does not ask T to classify x.
Fact compliance asks even less since it does not focus on all
what T implies about the classes of x, but only on the class
membership (or non-membership) relations that can be de-
duced from T . Thus, we have the following proposition:
Proposition 1. Let Σ, T be two propositional representations
fromL s.t. Σ has theXY -classification property. Let x ∈X .
• If Σ is classification-compliant with T on x, then Σ is

knowledge-compliant with T on x.
• If Σ is knowledge-compliant with T on x, then Σ is fact-

compliant with T on x.
The converse implications do not hold:

Example 4. Let X = {x1, x2} and Y = {y1, y2}. Let Σ =
(x1 ⇔ y1)∧ (x2 ⇔ y2) and T = ((x1 ∧ x2)⇒ (y1 ∧ y2))∧
(x1 ⇒ (y1 ∨ y2)) ∧ (x1 ⇒ (y1 ∨ y2)). Let x1 = (1, 1),
x2 = (1, 0), x3 = (0, 1). We have:
• T (x1) ≡ y1 ∧ y2: Σ is classification-compliant with T

on x1 since Σ(x1) ≡ y1 ∧ y2.
• T (x2) ≡ y1 ∨ y2: Σ is knowledge-compliant with T on
x2, but not classification-compliant with T on x2, since
Σ(x2) ≡ y1 ∧ y2.
• F (T,x3) is valid, therefore Σ is fact-compliant with T

on x3 but it is not knowledge-compliant with T on x3,
given that T (x3) ≡ y1 ∨ y2 and Σ(x3) ≡ y1 ∧ y2.

Observe that when T is inconsistent with x, any repre-
sentation Σ that has the XY -classification property is fact-
compliant with T on x because F (T,x) is valid. However,
since T (x) is inconsistent, Σ is neither knowledge-compliant
nor classification-compliant with T on x.

4 Rectifying a Classifier Representation
Whatever the notion of compliance under consideration, if Σ
is not compliant with T on a given x, then Σ must be “recti-
fied” so as to make it compliant with T on x since primacy
is given to T . Making it more formal calls for a notion of
rectification operator:
Definition 6 (rectification operator). A rectification opera-
tor ? is a mapping associating with two propositional repre-
sentations T and Σ where Σ has the XY -classification prop-
erty, a propositional representation Σ ? T , called a rectified
representation, such that:
(RE1) Σ ? T has the XY -classification property;
(RE2) If Σ is fact-compliant with T on x ∈X ,

then (Σ ? T )(x) ≡ Σ(x);
(RE3) For any x ∈X , (Σ ? T )(x) |= F (T,x);
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(RE4) If T is inconsistent, then Σ ? T ≡ Σ;
(RE5) If Σ ≡ Σ′ and T ≡ T ′, then Σ ? T ≡ Σ′ ? T ′;
(RE6) Σ ? T ≡ (∃X ∪ Y .Σ) ? (∃X ∪ Y .T ).

The admissible mappings ? are required to satisfy a number
of postulates, namely the rectification postulates (RE1-RE6).
(RE1) states a key condition, asking any rectification opera-
tion to preserve the XY -classification property. It is the most
demanding postulate since it requires that for every x ∈ X ,
Σ?T is consistent with x and furthermore that (Σ?T )∧x has
a single model. (RE2), (RE3), and (RE4) capture the prin-
ciple of minimal change and the primacy of T over Σ. Thus,
(RE2) states that there is no reason to rectify the classifica-
tion of any x as achieved by Σ whenever Σ is fact-compliant
with T on x when Σ is classification-compliant with T on x,
as shown by Proposition 1. In the remaining case, (RE3) con-
strains the way the rectified representation Σ ? T classifies x
by requiring that the class membership relationships imposed
by T on x are satisfied. Indeed, (RE3) ensures that Σ ? T is
fact-compliant with T on every x. For those x that are classi-
fied by T , (RE3) ensures that Σ ? T is knowledge-compliant
with T on x; more than that, (RE1) and (RE3) together guar-
antee that Σ?T is classification-compliant with T on every x
that is classified by T . Note that F (T,x) is valid whenever T
is inconsistent so that (RE3) is trivially satisfied in this case.
(RE4) deals with the case when T is inconsistent; in such a
situation, a minimal change of Σ consists in not modifying it
at all. (RE5) is a (rather standard) syntax-independence pos-
tulate (it has the same form as the ones of (R4) and (U4)).
Finally, (RE6) states that the result of rectifying Σ by T must
not depend on the variables not directly involved in the clas-
sification task, i.e., those variables outside X ∪ Y .

At that stage, it is important is to check that one can find
operators ? that do satisfy (RE1-RE6):
Definition 7 (?D, ?s).
• Let ◦D denote Dalal revision operator [Dalal, 1988],

such that for any ϕ, α, the models of ϕ ◦D α consist of
the models of α which are as close as possible to ϕ w.r.t.
Hamming distance. Let ?D be the mapping associating
with a background formula T and a propositional rep-
resentation Σ that has the XY -classification property, a
propositional representation Σ ?D T such that

Σ ?D T ≡
∨

x∈X

x ∧ (Σ ?D T )(x)

where for any x ∈X , (Σ?DT )(x) = Σ(x)◦DF (T,x).
• Let s be any selection function, i.e., a mapping asso-

ciating with a consistent propositional representation α
over Y a canonical term s(α) representing a model of α.
We assume that s is syntax-independent, meaning that
s(α) = s(α′) whenever α ≡ α′.
Let ?s be the mapping associating with a background
theory T and a propositional representation Σ that has
the XY -classification property, a propositional repre-
sentation Σ ?s T such that

Σ ?s T ≡
∨

x∈X

x ∧ (Σ ?s T )(x)

where for any x ∈X ,
– (Σ ?s T )(x) = Σ(x) if Σ is fact-compliant with T

on x,
– (Σ ?s T )(x) = s(T (x)) otherwise.

Example 5. Let us consider again the sets of variables X =
{x1, x2} and Y = {y1, y2}, and the formula Σ = (x1 ⇔
y1) ∧ (x2 ⇔ y2) given at Example 4, and let us take now
T = (x1 ∧ x2 ∧ y1 ∧ y2) ∨ (x1 ∧ y1). We have T ((0, 1)) ≡
F (T, (0, 1)) ≡ y1. Since Σ((0, 1)) ≡ y1 ∧ y2, Σ is not fact-
compliant with T on (0, 1). We have (Σ ?D T )((0, 1)) ≡
(y1 ∧ y2) ◦D y1 ≡ y1 ∧ y2. If for any x, s(T (x)) is given
as the minimal element of T (x) w.r.t. the ordering < over the
interpretations over Y such that 00 < 01 < 10 < 11, we
have (Σ ?s T )((0, 1)) ≡ s(y1) ≡ y1 ∧ y2. Hence, we have
Σ ?s T 6≡ Σ ?D T .

Observe that ?s is well-defined since for any x such that
T (x) is inconsistent, Σ is fact-compliant with T on x.

Proposition 2. ?D and every ?s are rectification operators.

Taking advantage of ?D for rectifying Σ so as to account
for T simply consists, for every x ∈ X , in revising Σ(x)
by F (T,x) using Dalal revision operator. Since Σ(x) and
F (T,x) are terms over Y , the revision process enforces ev-
ery literal of F (T,x) to hold in (Σ ?D T )(x) while keep-
ing unchanged every other literal of Σ(x) (thus, ensuring that
(Σ ?D T )(x) has a single model over Y ). As expected, the
revision step using ?D has no effect on Σ(x) whenever Σ is
fact-compliant with T on x.

A similar conclusion can be drawn when considering any
?s instead of ?D. However, for those x such that Σ is not
fact-compliant with T on x, when ?s is considered, a more
severe revision of Σ(x) is achieved; indeed, s(T (x)) implies
F (T,x) but the converse does not hold in general. Since
s(T (x)) |= T (x) holds, it is guaranteed that Σ ?s T is
knowledge-compliant with T on such x (note that this prop-
erty of knowledge-compliance is not guaranteed for those x
when ?D is used instead). Clearly, the choice of a ?s operator
comes at the expense of specifying a selection function s, but
in many cases one can take advantage of additional informa-
tion to define s. For instance, one can select a model of T (x)
which is implied by a maximal number of models of Σ (i.e.,
a most frequent class assignment).

Note that when dealing with mono-label classification
problems, ?D and ?s coincide, whatever s:

Proposition 3. If |Y | = 1, then ?s = ?D for every s.

As explained previously, the (RE3) postulate asks the rec-
tified representation Σ ? T to satisfy the less demanding form
of compliance, namely fact-compliance. Two strengthenings
of the (RE3) postulate, suited respectively to knowledge-
compliance and classification-compliance, could have been
envisioned instead:

(RE3’) For any x ∈X , (Σ ? T )(x) |= T (x);

(RE3”) For any x ∈ X , (Σ ? T )(x) |= T (x), and for any
x ∈X that is classified by T , we have

(Σ ? T )(x) ≡ T (x).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1833



(RE3’) strengthens (RE3) in order to ensure that the rec-
tified representation Σ ? T is knowledge-compliant with T
on every x, and (RE3”) strengthens (RE3’) in order to en-
sure in addition that the rectified representation Σ ? T is
classification-compliant with T on every x that is classified
by T . It can be observed that stating (RE3”) as ∀x ∈ X,
(Σ ? T )(x) ≡ T (x) would not be appropriate because this
statement conflicts with (RE1) given that T is not required
to satisfy the XY -classification property. Since the condi-
tion stating that for any x ∈ X that is classified by T ,
(Σ?T )(x) ≡ T (x) holds is already satisfied by the rectifica-
tion operators in the sense of Definition 6, (RE3”) actually is
equivalent to (RE3’) in presence of the other postulates. Thus
considering (RE3”) in addition to (RE1-RE6) and (RE3’)
would be useless.

Finally, (RE3’) has not been retained because this postulate
is incompatible with (RE2). Indeed, it can be the case that
Σ(x) |= F (T,x) while Σ(x) 6|= T (x). Take for instance
X = {x}, Y = {y1, y2}, Σ = (x ⇔ y1) ∧ (x ⇔ y2), and
T = x⇔ (y1 ∨ y2). For x = (1), we have Σ(x) ≡ y1 ∧ y2,
F (T,x) ≡ >, and T (x) ≡ y1 ∨ y2. Thus, no rectification
operator can satisfy (RE3’).

Nevertheless, it can be noted that (RE3’) is compatible
with the following weakening (RE2’) of (RE2):
(RE2’) If Σ is knowledge-compliant with T on x ∈X ,

then (Σ ? T )(x) ≡ Σ(x).
Accordingly, we can define a family of operators ∗s (sim-

ilar to ?s) as follows. Let s be any selection function, as in
Definition 7. We define the ∗s operator by:

Σ ∗s T ≡
∨

x∈X

x ∧ (Σ ∗s T )(x)

where for any x ∈X ,
• (Σ ∗s T )(x) = Σ(x) if Σ is knowledge-compliant with
T on x,
• (Σ ∗s T )(x) = s(T (x)) otherwise.
It can be shown that ∗s operators satisfy (RE2’) and

(RE3’) (for space reasons, we refrain from presenting ∗s op-
erators in more detail in this paper).

Finally, in order to figure out in a more accurate way how
rectification operators differ from other change operators, we
have evaluated the compatibility of the rectification postulates
with those characterizing belief revision operators and belief
update operators. The main results are:
Proposition 4. Every rectification operator satisfies (R3) and
(R4), but none of them satisfies (R1), (R2), (R5), or (R6).
Proposition 5. Every rectification operator satisfies (U2),
(U3), (U4), (U7), and (U8), but none of them satisfies (U1)
or (U5). Some rectification operator satisfies (U6) but not all
of them.

The main consequence of Proposition 4 and Proposition
5 is that the family of rectification operators and the fami-
lies of KM revision (resp. KM update) operators are disjoint.
Accordingly, our results clearly show that, from an axiomatic
point of view, rectification is a change operation that is clearly
distinct from rational revision or update.

5 Some Computational Issues
Computing rectified classifications. We are first interested
in the complexity of determining the class of any input in-
stance x when classified by the rectified classification circuit
Σ ? T . Formally:

Definition 8 (classifying from a rectified classifier encoding).
CLASSIFICATION(?) is the following decision problem:
• Input: Two propositional representations Σ, T s.t. Σ

has the XY -classification property, x ∈X , ` ∈ LY .
• Output: Does (Σ ? T )(x) |= ` hold?

When Σ is a CNF formula obtained by applying Tseitin
transformation [Tseitin, 1968] to a XY -classification circuit,
the class assignment Σ(x) associated with a given x can be
computed in time linear in |Σ| (one can compute the value
of every variable of Σ | x using unit propagation since this
mimicks the way the values of the outputs of the gates are
computed in a XY -classification circuit each time the values
of the inputs are provided). Thus, it is interesting to deter-
mine whether such a tractability result for classification still
holds when Σ ? T is considered instead of Σ. Unfortunately
this is not the case, whatever the rectification operator ?:

Proposition 6. For every rectification operator ?,
CLASSIFICATION(?) is both NP-hard and coNP-hard
even if Σ is a CNF formula obtained by applying Tseitin
transformation to a XY -classification circuit, |Σ| is bounded
by a constant, and T is a CNF formula.

Interestingly, classifying from a rectified classifier encod-
ing is computationally easier for some rectification operators,
provided that T is represented in a propositional language that
offers some specific properties:

Proposition 7. Let x ∈ X be an instance to be classified
by a classifier C encoded by Σ, y ∈ Y be the correspond-
ing prediction (i.e., y = C(x) = Σ(x)), and T be be a
propositional representation from a language that supports
in polynomial time CD, FO, and CO. Then:
• (Σ ?D T )(x) can be computed in time polynomial in
n+m+ |T |.
• If s is any selection function that runs in time polynomial

in the size of its input, then (Σ?sT )(x) can be computed
in time polynomial in n+m+ |T |.

What makes the last proposition useful is the existence
of succinct languages L supporting CD, FO, and CO, es-
pecially the DNNF language [Darwiche, 2001], and the ex-
istence of translators (alias compilers) for turning represen-
tations from more standard languages (in particular the CNF
one) into DNNF representations.

Measuring how much a classifier complies with a back-
ground theory. In order to verify a classifier C via its en-
coding Σ, it is useful to evaluate the proportion of x ∈ X
for which Σ complies with the background theory T on x. If
this proportion is high, there is no problem since one expects
a high level of compatibility between C and T . Otherwise, it
may prove reasonable to learn C again using another training
set, or to clean the training set used before a second training
round. One step further, it can prove useful to determine such
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a proportion when the instances under consideration are com-
patible with a given feature assignment x or x with x ∈ X ,
or more generally with a combination x′ of such feature as-
signments. For instance, when the proportion is lower under
assignment x than in the case no feature assignment has been
considered, this may reflect incorrect values for x in the train-
ing set. To make it more formal, let us consider the following
definition:
Definition 9 (knowledge compliance degree). Given two
propositional representations Σ and T such that Σ has the
XY -classification property, and x′ ∈ X ′ with X ′ ⊆ X ,
the knowledge compliance degree kcd(Σ, T,x′) of Σ with T
given x′ is given by kcd(Σ, T,x′) =

#({x′′ ∈X \X′ | Σ((x′,x′′)) |= T ((x′,x′′))})
2|X\X′| .

Unsurprisingly, computing the knowledge compliance de-
gree of Σ with T given x′ is computationally demanding:
Proposition 8. Computing kcd(Σ, T,x′) is #P-hard, even
under the restriction when T is a monotone 2-CNF formula.

When additional assumptions on the representations of Σ
and T are made, computing kcd(Σ, T,x′) becomes tractable:
Proposition 9. If Σ and T belong to a language L that sup-
ports ∧BC, CD, and CT and T is such that Var(T ) ⊆
X ∪ Y , then for any x′, kcd(Σ, T,x′) can be computed in
time polynomial in the input size.

Again, what makes the last proposition valuable is the
existence of succinct representation languages L supporting
∧BC, CD, and CT, especially the languages of (structured)
d-DNNF respecting a fixed vtree [Pipatsrisawat and Darwiche,
2008; Pipatsrisawat and Darwiche, 2010] and its subsets, SDD
[Darwiche, 2011] and OBDD [Bryant, 1986], as well as the
existence of compilers targeting those languages.

6 Other Related Work
Theory revision is a research question that has stimulated
much effort in the ML community since the 90’s (see e.g.,
[Wrobel, 1994]). In a nutshell, theory revision is the problem
of correcting a given, roughly correct, theory Σ. Typically, Σ
represents pieces of knowledge, provided by an expert, and
it comes with a set of labelled instances x (examples and
counter-examples of a concept). Most of the time, Σ is a log-
ical representation, based on atoms describing features and
concepts (or classes), and x is classified by Σ as an element
of class C (respresented by an atom) whenever C can be de-
duced from Σ and x [Ourston and Mooney, 1990]. When an
instance is not recognized as it should be, Σ must be mini-
mally modified so as to classify all instances correctly, and
this is the purpose of theory revision. A related issue is to
minimize the number of syntactic revision operations (such
as the addition or deletion of literals) needed to obtain the
target theory from Σ [Goldsmith et al., 2002].

Rectification and theory revision are connected by some
common goal (correcting misclassifications). Furthermore,
like rectification, theory revision does not amount to belief
revision: revising a theory by an example using a belief re-
vision operator would enforce the instance to hold in the re-
vised theory, which is not the same as ensuring the revised

theory to classify the instance in the right way. However,
rectification and theory revision are based on different inputs
(in the rectification setting, change formulae do not reduce
to instances but can be complex representations linking fea-
tures and classes) and assumptions (in theory revision, the
theory considered at start is not required to classify every in-
stance, even if it is in an incorrect way, and this property is
not expected to be maintained) and for those reasons, rectifi-
cation operators differ from theory revision operators (espe-
cially, the former ones are typically syntax-dependent while
the latter ones are not).

7 Conclusion
We have presented a new belief change operation, called rec-
tification, that is specific to multi-label classifier encodings
Σ. Such an operation aims to minimally modify such an en-
coding Σ so as to make it to comply with some background
theory T , that is considered more reliable than Σ. Several
notions of compliance have been presented. Focusing mainly
on fact-compliance, we have characterized the family of rec-
tification operators ? from an axiomatic perspective and have
exhibited some operators from this family. We have identi-
fied the standard revision and/or update postulates that every
rectification operator satisfies and those it does not. We have
also identified complexity bounds for the problems of com-
puting rectified classifications and of measuring the knowl-
edge compliance of a given Σ with a given T . Though both
problems are computationally hard, we have found tractable
restrictions of them based on the DNNF language and its sub-
sets. Accordingly, those languages appear as valuable for
representing classifier encodings given that they are already
known as useful for ensuring the tractability of a number of
XAI queries [Audemard et al., 2020].

This work is a step towards leveraging some background
knowledge T within the classification circuit Σ associated
with a classifier C, taking advantage of the fact that T is more
reliable than the data from which C has been learned. Being
a first step, the present work calls for a number of perspec-
tives. One of them consists in deriving representation theo-
rems for the rectification operators, giving constructive char-
acterization results for their family. We plan also to study
in more depth the family of operators ensuring knowledge-
compliance, i.e., operators satisfying (RE2’) and (RE3’) in-
stead of (RE2) and (RE3). Finally, another important per-
spective for further research concerns the representation side:
the rectified representations Σ ?D T and Σ ?s T , as given by
Definition 7, are of size exponential in the number n of fea-
tures. This makes their computation impractical most of the
time. In order to address this issue, more succinct representa-
tions for Σ ?D T and Σ ?s T must be looked for.
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