
Finite-Trace and Generalized-Reactivity Specifications in Temporal Synthesis

Giuseppe De Giacomo1 , Antonio Di Stasio1 , Lucas M. Tabajara2 , Moshe Vardi2 and
Shufang Zhu1∗

1 Sapienza University of Rome, Rome, Italy
2 Rice University, Houston, US

{degiacomo, distasio, zhu}@diag.uniroma1.it, vardi@cs.rice.edu, l.martinelli.tabajara@gmail.com

Abstract
Linear Temporal Logic (LTL) synthesis aims at au-
tomatically synthesizing a program that complies
with desired properties expressed in LTL. Unfortu-
nately it has been proved to be too difficult com-
putationally to perform full LTL synthesis. There
have been two success stories with LTL synthesis,
both having to do with the form of the specification.
The first is the GR(1) approach: use safety condi-
tions to determine the possible transitions in a game
between the environment and the agent, plus one
powerful notion of fairness, Generalized Reactiv-
ity(1), or GR(1). The second, inspired by AI plan-
ning, is focusing on finite-trace temporal synthesis,
with LTLf (LTL on finite traces) as the specification
language. In this paper we take these two lines of
work and bring them together. We first study the
case in which we have an LTLf agent goal and a
GR(1) assumption. We then add to the framework
safety conditions for both the environment and the
agent, obtaining a highly expressive yet still scal-
able form of LTL synthesis.

1 Introduction
Program synthesis is considered the culmination of the ideal
of declarative programming [Finkbeiner, 2016; Ehlers et al.,
2017]. By describing a system in terms of what it should do,
instead of how it should do it, we are able, on the one hand,
to simplify the program design process while avoiding hu-
man mistakes and, on the other hand, to allow an autonomous
agent to self-program itself just from high-level specifica-
tions. Linear Temporal Logic (LTL) synthesis [Pnueli and
Rosner, 1989] is possibly one of the most popular variants
of program synthesis, being the problem of automatically de-
signing a reactive system with the guarantee that all its be-
haviors comply with desired dynamic properties expressed in
LTL, the most used system/process specification language in
Formal Methods. Unfortunately this dream of LTL synthesis
has proven to be too difficult, and, in spite of a full-fledged
theory, we still do not have good scalable algorithms after
more than 30 years [Kupferman, 2012].

∗Corresponding Author

There have been two successful responses to these difficul-
ties, both having to do with limiting the expressive power of
the formalism used for the specification. The first approach,
developed in Formal Methods, has been what we may call
the GR(1), response [Bloem et al., 2012]: essentially you fo-
cus on safety conditions, determining the possible transitions
in a game between the environment and the agent, plus one
powerful notion of fairness called Generalized Reactivity(1),
or GR(1). This approach has found numerous applications,
for example, in robotic motion-and-mission planning [Kress-
Gazit et al., 2009]. The second approach, developed in AI and
inspired by classical AI planning, is of finite-horizon tempo-
ral synthesis, with LTLf (LTL on finite traces) [De Giacomo
and Vardi, 2013] as the specification language. In this ap-
proach [De Giacomo and Vardi, 2015], we specify the agent’s
goal in LTLf , together possibly with some assumptions on the
environment, such as safety conditions, possibly specified as
a nondeterministic planning domains [Camacho et al., 2017;
De Giacomo and Rubin, 2018; Aminof et al., 2018; Camacho
et al., 2018; He et al., 2019], or simple fairness and stability
conditions (both special cases of GR(1) fairness) [Zhu et al.,
2020]. There are also studies in which general LTL assump-
tions are used for LTLf goals, but in this case the difficulties
of handling LTL can indeed manifest [Camacho et al., 2018;
Aminof et al., 2019; De Giacomo et al., 2020b]. Since LTLf

is a fragment of LTL, as shown in [De Giacomo and Vardi,
2013], the problem of LTLf synthesis under LTL assumptions
can be reduced to LTL synthesis, as, e.g., explicitly pointed
out by [Camacho et al., 2018]. However, LTL synthesis al-
gorithms do not scale well due to the difficulty of Büchi au-
tomata determinization, see e.g., [Finkbeiner, 2016].

In this work we propose to take these two lines of work,
which are really the only successful stories in LTL synthesis,
and bring them together. We first study the case in which we
have an LTLf agent goal and a GR(1) assumption. We pro-
pose an approach based on using the automaton correspond-
ing to the LTLf goal as the game arena on which the environ-
ment has to satisfy its GR(1) assumption. This means that we
are able to reduce the problem to that of GR(1) synthesis over
the new arena. We prove the correctness of the approach.

We then add to the framework safety conditions for both
the environment and the agent, obtaining a highly expressive
yet still scalable form of LTL synthesis. These two kinds of
safety conditions differ, since the environment needs to main-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1852

tain its safety indefinitely (as usual for safety), while the agent
has to maintain its safety conditions only until s/he fulfils its
LTLf goal, i.e., within a finite horizon, something that makes
them similar to “maintenance goals” in Planning [Ghallab et
al., 2004]. We show that we can specify these safety condi-
tions in a very general way by using LTLf . In particular, our
safety conditions require that all prefixes of a trace satisfy an
LTLf formula. For the environment safety conditions we con-
sider all finite prefixes of infinite traces, while for the agent
safety conditions we consider all prefixes of the finite trace
satisfying the agent’s LTLf goal. Again we prove the correct-
ness of our approach and demonstrate its scalability through
an experimental analysis.

2 Preliminaries
LTL and LTLf . LTL is one of the most popular logics for
temporal properties [Pnueli, 1977]. Given a set of proposi-
tions Prop, the formulas of LTL are generated as follows:

ϕ ::= a | (ϕ ∧ ϕ) | (¬ϕ) | (©ϕ) | (ϕU ϕ)

where a ∈ Prop. We use common abbreviations, so we have
eventually as 3ϕ ≡ true U ϕ and always as 2ϕ ≡ ¬3¬ϕ.

LTL formulas are interpreted over infinite traces π ∈
(2Prop)ω . A trace π = π0, π1, . . . is a sequence of propo-
sitional interpretations (sets), where for every i ≥ 0, πi ∈
2Prop is the i-th interpretation of π. Intuitively, πi is inter-
preted as the set of propositions that are true at instant i.
Given π, we define when an LTL formula ϕ holds at position
i, written as π, i |= ϕ, inductively on the structure of ϕ, as:

• π, i |= a iff a ∈ πi (for a ∈ Prop);
• π, i |= ¬ϕ iff π, i 6|= ϕ;
• π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2;
• π, i |= ©ϕ iff π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists j ≥ i such that π, j |=
ϕ2, and for all k, i ≤ k < j we have that π, k |= ϕ1.

We say π satisfies ϕ, written as π |= ϕ, if π, 0 |= ϕ.
LTLf is a variant of LTL interpreted over finite traces in-

stead of infinite traces [De Giacomo and Vardi, 2013]. The
syntax of LTLf is exactly the same to the syntax of LTL. We
define π, i |= ϕ, stating that ϕ holds at position i, as for LTL,
except that for the temporal operators we have:

• π, i |= ©ϕ iff i < last(π) and π, i+ 1 |= ϕ;
• π, i |= ϕ1 U ϕ2 iff there exists j such that i ≤ j ≤
last(π) and π, j |= ϕ2, and for all k, i ≤ k < j we have
that π, k |= ϕ1.

where we denote the last position (i.e., index) in the finite
trace π by last(π). In addition we define the weak next oper-
ator • as abbreviation of •ϕ ≡ ¬©¬ϕ. Note that, over finite
traces, ¬©ϕ 6≡ ©¬ϕ, instead ¬©ϕ ≡ •¬ϕ. We say that a
trace satisfies an LTLf formula ϕ, written π |= ϕ, if π, 0 |= ϕ.
Generalized Reactivity(1) formulas. Generalized Reac-
tivity(1) [Piterman et al., 2006], or GR(1), is a fragment of
LTL that generalizes fairness (23ϕ) and stability (32ϕ) for-
mulas (cf. [Zhu et al., 2020]). Given a set of propositions
Prop, a GR(1) formula ϕ is required to be of the form

ϕ =
m∧
i=1

23Ji →
n∧

j=1

23Kj

where Ji and Kj are Boolean formulas over Prop.

Deterministic Automata. A deterministic automaton (DA,
for short) is a tuple A = (Σ, S, s0, δ, α), where Σ is a fi-
nite alphabet, S is a finite set of states, s0 ∈ S is the
initial state, δ : S × Σ → S is the transition function,
α ⊆ Sω is an acceptance condition. Given an infinite word
w = a0a1a2 . . . ∈ Σω , the run of A on w, denoted by A(w)
is the sequence r = s0s1s2 . . . ∈ Sω starting at the initial
state s0 where si+1 = δ(si, ai). The automatonA accepts the
word w if A(π) ∈ α. The language of A, denoted by L(A),
is the set of words accepted by A. In this work we specifi-
cally consider reachability, safety, and reachability-safety ac-
ceptance conditions:
Reachability conditions. Given a set T ⊆ S of target states,
Reach(T) = {s0s1s2 . . . ∈ Sω | ∃k ≥ 0 : sk ∈ T} requires
that a state in T is visited at least once.
Safety conditions. Given a set T ⊆ S of target states,
Safe(T) = {s0s1s2 . . . ∈ Sω | ∀k ≥ 0 : sk ∈ T} re-
quires that only states in T are visited. This is the dual of
reachability conditions.
Reachability-Safety conditions. Given two sets T1, T2 ⊆ S of
target states corresponding to reachability and safety condi-
tions, respectively, Reach − Safe(T1, T2) = {s0s1s2 . . . ∈
Sω | ∃i ≥ 0 : si ∈ T1 and ∀j, i ≥ j ≥ 0 : sj ∈ T2} requires
that a state in T1 is visited at least once, and until then only
states in T2 are visited.
We define the complement of a DA A = (Σ, S, s0, δ, α) as
A = (Σ, S, s0, δ, S

ω\α). Note thatL(A) = Σω\L(A). Note
also that Sω\Reach(T) = Safe(S\T) and Sω\Safe(T) =
Reach(S \ T). Therefore, the complement of a DA with a
reachability acceptance condition is a DA with a safety ac-
ceptance condition, and vice-versa. We also define the in-
tersection of two DAs A1 = (Σ, S1, s

0
1, δ1, α1) and A2 =

(Σ, S2, s
0
2, δ2, α2) asA1∩A2 = (Σ, S1×S2, (s

0
1, s

0
2), δ′, α′),

where δ′((s1, s2), a) = (δ1(s1, a), δ2(s2, a)) and α′ =
{(s01, s02)(s11, s

1
2)(s21, s

2
2) . . . ∈ (S1 × S2)ω | s01s11s21 . . . ∈

α1 and s02s
1
2s

2
2 . . . ∈ α2}. Note that if α1 = Safe(T1)

and α2 = Safe(T2), then α′ = Safe(T1 × T2). If α1 =
Reach(T1) and α2 = Safe(T2) we define a bounded inter-
section, where α′ = Reach− Safe(T1, T2).

GR(1) Games. Following [Piterman et al., 2006], we
define a GR(1) game structure as a tuple G =
〈V , I,O, θa, θp, ρa, ρp, ϕ〉 where:
V = {v1, . . . , vk} is a set of Boolean state variables. A state
of the game is given by an assignment s ∈ 2V of these vari-
ables. I ⊆ V is the set of input variables controlled by the
antagonist. O = V \I is the set of output variables controlled
by the protagonist.
θa is a Boolean formula over I representing the initial states
of the antagonist. θp is a Boolean formula over V representing
the initial states of the protagonist.
ρa is a Boolean formula over V ∪ I ′, where I ′ is the set of
primed copies of I. This formula represents the transition re-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1853

lation of the antagonist, between a state s ∈ 2V and a possible
input sI ∈ 2I for the next state.
ρp is a Boolean formula over V ∪I ′ ∪O′, whereO′ is the set
of primed copies of O. This formula represents the transition
relation of the protagonist, relating a pair (s, sI) ∈ 2V × 2I

of state s and input sI to an output sO.
ϕ is the winning condition for the protagonist given by a
GR(1) formula.
We use the terms antagonist and protagonist instead of envi-
ronment and agent to avoid confusion when we switch roles.

3 LTLf Synthesis under GR(1) Assumptions
In this section, we first study LTLf synthesis under assump-
tions, i.e., assuming that the behaviour of the environment is
forced to satisfy certain restrictions, specified as GR(1) for-
mulas. Formally, we are interested in solving synthesis for
ϕe
GR(1) → ϕa

task
1 ,where ϕa

task is an LTLf formula speci-
fying the agent task, and ϕe

GR(1) is a GR(1) formula that ex-
presses restrictions on the environment behaviour.
Definition 1 (LTLf Synthesis under GR(1) Assumptions).
1. The problem is described as a tuple P =
〈X ,Y, ϕe

GR(1), ϕ
a
task〉, where X and Y are two dis-

joint sets of Boolean variables, controlled respectively
by the environment and the agent, ϕe

GR(1) is a GR(1)
formula, and ϕa

task in an LTLf formula.
2. An agent strategy σag : (2X)∗ → 2Y realizes ϕa

task un-
der assumption ϕe

GR(1) if for every π = π0, π1, . . . ∈
(2X∪Y)ω consistent with σag such that π |= ϕe

GR(1), there
exists k ≥ 0 such that πk = π0, . . . , πk |= ϕa

task.
3. Solving P consists in finding an agent strategy that real-

izes ϕa
task under assumption ϕe

GR(1).

To solve the problem P , we first observe that the agent’s
goal is to satisfy ¬ϕe

GR(1) ∨ ϕa
task, while the environment’s

goal is to satisfy ϕe
GR(1) ∧ ¬ϕa

task. Moreover, we know that
ϕa
task can be represented by a DA with a reachability accep-

tance condition [De Giacomo and Vardi, 2015]. Then, focus-
ing on the environment point of view, we show that P can be
reduced into a GR(1) game in which the game arena is the
complement of the DA for ϕa

task, i.e., a DA with safety con-
dition, and ϕe

GR(1) is the GR(1) winning condition. Since we
want a winning strategy for the agent, we need to deal with
the complement of the GR(1) game to obtain a winning strat-
egy for the antagonist. More specifically, we can solve the
problem by taking the following steps:

1. Translate ϕa
task intoAag = (2X∪Y , S, s0, δ, Reach(T))

that accepts a trace π iff π |= ϕa
task.

2. Complement Aag into Aag = (Σ, S, s0, δ, Safe(T ′))

with T ′ = S \T , and Σ = 2X∪Y . Note thatAag accepts
a trace π iff π has no prefix satisfying ϕa

task.
3. Define a GR(1) game GP with the environment as the

protagonist, where the arena is given by Aag and the
winning condition is given by ϕe

GR(1).

1We refer to [Aminof et al., 2019] for a deep discussion on this.

4. Solve this game for the antagonist, i.e. the agent.

Building the GR(1) Game. We now detail how to build
the GR(1) game GP (c.f., step 3 above). Given Aag =
(2X∪Y , S, s0, δ, Safe(T ′)), we start by encoding the state
space S into a logarithmic set of variables Z (similarly
to [Zhu et al., 2017b]). In what follows we identify assign-
ments to Z with states in S, respectively. Given a subset
Y ⊆ V and a state s ∈ 2V , we denote by s|Y the projec-
tion of s to Y . We then construct the GR(1) game structure
GP = 〈V , I,O, θa, θp, ηa, ηp, ϕ〉 as follows:

• V = X ∪ Y ∪ Z , I = Y , O = X ∪ Z;

• θa = >; θp is a formula satisfied by an assignment s ∈
2V iff s|Z = s0;

• ηa = >; ηp is a formula satisfied by assignments s ∈ 2V

and s′ ∈ 2V
′

iff δ(s|Z , s′|X ′∪Y′) = s′|Z′ , s′|Z′ ∈ T ′;
• ϕ = ϕe

GR(1).

In the game GP , the environment takes the role of protag-
onist, and the agent of antagonist. States in the game are
given by assignments of X ∪ Y ∪ Z , where the X and
Y components represent respectively the last assignment of
the environment and agent variables chosen by the players,
and the Z component represent the current state of Aag .
The agent first chooses the Y component of the next state.
There is no restriction on what it can be, so θa = ηa =
>. Then, the environment chooses the X component, and
based on the chosen assignments assigns the Z variables
as well. θp and ηp enforce that the assignment to the Z
variables is consistent with Aag , and ηp also enforces that
the safety condition Safe(T ′) is not violated. Note that a
play of GP , given by ρ = ρ0ρ1 . . . ∈ (2V)ω , corresponds
to the run r = (ρ0|Z)(ρ1|Z)(ρ2|Z) . . . of Aag on trace
(ρ1|X∪Y)(ρ2|X∪Y) Since ρ0 satisfies θp, ρ0|Z = s0,
and since every (ρi, ρi+1) satisfy ηp, δ(ρi|Z , ρi+1|X∪Y) =

ρi+1|Z . Therefore, r is a valid run for Aag .
Given a play ρ of GP , there are two ways the environment

can lose in ρ. The first is by being unable to pick an assign-
ment that satisfies ηp. Since the transition relation δ of Aag

is total, this can only happen if s|Z 6∈ T ′, meaning that Aag

rejects a run visiting s|Z . The other is by failing to satisfy
ϕe
GR(1). These correspond to the two ways that the specifica-

tion can be satisfied: by satisfying ϕa
task or by violating the

GR(1) assumption. Therefore, a play satisfies the specifica-
tion iff it is losing for the protagonist of GP (i.e, the environ-
ment) and thus wining for the antagonist (i.e., the agent).

Theorem 1. P = 〈X ,Y, ϕe
GR(1), ϕ

a
task〉 is realizable iff the

antagonist has a winning strategy in the GR(1) game GP .

We observe that an alternative approach to the problem of
LTLf synthesis under GR(1) assumptions can be obtained by
a reduction to standard LTL synthesis, as ϕe

GR(1) is a GR(1)
formula (and therefore already in LTL), and ϕa

task is an LTLf

formula, which can be linearly translated into LTL [De Gia-
como and Vardi, 2013; Zhu et al., 2020].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1854

4 Introducing Safety Conditions
Next we introduce safety conditions into the framework.
Safety conditions are properties that assert that the behavior
of the environment or the agent always remains within some
allowed boundaries. A notable example of safety conditions
for the environment are effect specifications in planning do-
mains that describe how the environment can react to agent
actions in a given situation. A notable example of safety con-
ditions for the agent are action preconditions, i.e. the agent
cannot violate the precondition of actions. Another notable
example of safety conditions for the agent coming from plan-
ning are maintenance goals (c.f. [Ghallab et al., 2004]). Ob-
serve though that there is a difference between the safety con-
ditions on the environment and those on the agent: the first
must hold forever, while the second must hold until the agent
task is terminated, i.e., the goal is fulfilled.

Typically we capture general safety conditions as LTL for-
mulas that, if invalid, are always violated within a finite num-
ber of steps.2 Alternatively, we can think of them as prop-
erties that need to hold for all prefixes of an infinite trace.
Under this second view we can also describe the finite variant
of safety by simply requiring that the safety condition holds
for all prefixes of a finite trace determined by the LTLf agent
task requirement. This view of safety conditions as properties
that must hold for all prefixes also allows us to specify them
in LTLf . Indeed all prefixes are indeed finite traces. Formally,
in order to use LTLf formulas to specify safety conditions, we
need to define an alternative notion of satisfaction that inter-
prets a formula over all prefixes of a trace:
Definition 2. A (finite or infinite) trace π satisfies an LTLf

formula ϕ on all prefixes, denoted π |=∀ ϕ, if every
non-empty finite prefix of π satisfies ϕ. That is, πk =
π1, . . . , πk |= ϕ, for every 1 ≤ k ≤ |π|.

Next we show that we can specify all possible safety con-
ditions expressible in LTL, i.e., all first-order (logic) safety
properties [Lichtenstein et al., 1985], using LTLf on prefixes.
Theorem 2. Every first-order safety property can be ex-
pressed as an LTLf formula on all prefixes.

Proof. It has been shown that every first-order safety property
can be expressed by a formula of the form 2ϕ, where ϕ is
PLTLf (pure-past) formula [Lichtenstein et al., 1985]. From
the semantics of 2ϕ when ϕ is a pure-past formula, π |= 2ϕ
iff every non-empty prefix π′ of π satisfies ϕ. Moreover, for
every PLTLf formula ϕ, there exists an LTLf formula ϕ′ such
that every finite trace π that satisfies ϕ (i.e., π, last(π) |= ϕ)
also satisfies ϕ′ (i.e., π, 0 |= ϕ′) [De Giacomo et al., 2020a].
That is to say, π |= 2ϕ happens iff every non-empty prefix
π′ satisfies ϕ′, which by definition happens iff π |=∀ ϕ′.

Turning to safety conditions for the agent, we observe that
the fact that an LTLf formula holds for every prefix of an finite
trace (in our case the trace satisfying the task of the agent),
is expressible in first-order logic on finite traces, and hence
directly as an LTLf formula [De Giacomo and Vardi, 2013].

2Safety LTL is a syntactic fragment of LTL often used to spec-
ify safety conditions. It is, nevertheless, open whether it is able to
capture all safety conditions expressible in LTL [Zhu et al., 2017a].

Nevertheless, translating an LTLf formula on all prefixes to an
LTLf formula may require exponential blowups in general.

5 Adding Safety into LTLf Synthesis under
GR(1) Assumptions

We now enrich our synthesis framework by adding safety as-
sumptions, expressed in LTLf , both on the environment and
on the agent, following the considerations made previously.
In this setting, we are interested in solving the synthesis for:

(ϕe
GR(1) ∧ ϕe

safe)→ (ϕa
task ∧ ϕa

safe)

where ϕe
GR(1) and ϕe

safe are, respectively, a GR(1) formula
and an LTLf formula expressing safety conditions, and ϕa

task
and ϕa

safe are LTLf formulas that express the agent task and
the safety conditions, respectively.

The problem that we aim to solve is defined as follows.

Definition 3 (LTLf under assumptions GR(1) assumptions,
adding safety conditions).
1. The problem is described as a tuple P ′ =
〈X ,Y,Env , Goal〉, where X and Y are two disjoint
sets of Boolean variables, controlled respectively by the
environment and the agent, Env = 〈ϕe

GR(1), ϕ
e
safe〉, and

Goal = 〈ϕa
task, ϕ

a
safe〉, where ϕe

GR(1) is a GR(1) formula
and ϕa

task, ϕe
safe and ϕa

safe are LTLf formulas.
2. An agent strategy σag : (2X)∗ → 2Y realizes Goal under

assumption Env if for every π = π0, π1, . . . ∈ (2X∪Y)ω

consistent with σag s.t. π |= ϕe
GR(1) and π |=∀ ϕe

safe,
then there exists k ≥ 0 s.t. πk |= ϕa

task and πk |=∀ ϕa
safe.

3. Solving P ′ consists in finding an agent strategy that real-
izes Goal under assumption Env .

This class of synthesis problem is able to naturally reflect
the structure of many reactive systems in practice. We il-
lustrate this with a relatively simple example representing a
three-way handshake used to establish a TCP connection.

Example 1. In this example, the server and client involved
in TCP connection are considered as environment and agent,
respectively. Let X = {SynAck} and Y = {Syn,Ack}.

• The server can only send a SYN-ACK message after the
client has sent a SYN message.
ϕe
safe = 2¬Syn→ 2¬SynAck

• If the client keeps sending a SYN message, the server
eventually responds with a SYN-ACK message.
ϕe
GR(1) = 23Syn→ 23SynAck

• The client should eventually send an ACK message, es-
tablishing the TCP connection.
ϕa
task = 3Ack

• The client can only send an ACK message after the
server has sent a SYN-ACK message.
ϕa
safe = 2¬SynAck → 2¬Ack

We now show that the synthesis problemP ′ can be reduced
into a GR(1) game GP′ , analogously to the construction of
GP in Section 3. To solve this problem, the first thing to

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1855

note is that ϕa
task ∧ ϕa

safe can be represented by a DA with
reachability-safety condition. As we will show later in this
section, this DA can then be reduced into one with a pure
reachability condition. Now, since the environment’s goal is
to satisfy ϕe

GR(1) ∧ ϕe
safe ∧ ¬(ϕa

task ∧ ϕa
safe), then we can

reduce P ′ to solving a GR(1) game whose game arena is the
product of the DA for ϕe

safe with safety condition and the
complement of the DA for ϕa

task ∧ ϕa
safe with reachability

condition, i.e. a DA with safety condition. Note that in what
follows, we consider Σ = 2X∪Y .

To solve the synthesis problem P ′ we proceed as follows:

1. Build the DA Aa
t = (Σ, S1, s

0
1, δ1, Reach(T1)) of ϕa

task.

2. Build the DA Aa
s = (Σ, S2, s

0
2, δ2, Safe(T2 ∪ {s02}))

that accepts a trace π iff π |=∀ ϕa
safe.

3. Take the bounded intersection of Aa
t and Aa

s into
Aa

t∧s = (Σ, S1×S2, (s
0
1, s

0
2), δ′, Reach−Safe(T1, T2∪

{s02}). Note that Aa
t∧s accepts a trace π iff there exists

k ≥ 0 such that πk |= ϕa
task and πk |=∀ ϕa

safe.

4. Reduce Aa
t∧s to Aag = (Σ, S1 × S2, (s

0
1, s

0
2),

δ′, Reach(T)), as described later in this section. We
have that L(Aa

t∧s) = L(Aag).

5. Complement Aag into Aag = (Σ, S1 × S2, (s01, s
0
2),

δ′, Safe(T ′)) with T ′ = (S1 × S2) \ T .

6. Build the DA Aenv = (Σ, Q, q0, δ
e, Safe(R)) that ac-

cepts a trace π iff π |=∀ ϕa
safe.

7. Intersect Aag and Aenv into a DA B = (Σ, S1 × S2 ×
Q, (s01, s

0
2, q0), α, Safe(T ′ × R)). Note that B accepts

exactly the safe prefixes for the environment.

8. Define a GR(1) game GP′ with the environment as the
protagonist where the arena is given by B and the win-
ning condition is given by ϕe

GR(1) (see Section 3).

9. Solve this game for the antagonist, i.e. the agent.

We now detail the construction at Step 4 above. Let A =
(Σ, S, s0, δ, α) be a DA with a reachability-safety condition
α = Reach − Safe(T1, T2). We describe a reduction to
a A′ = (Σ, S, s0, δ

′, α′) with a reachability condition α′ =
Reach(T) such that L(A′) = L(A). We define the transition
relation of A′ as follows:

δ′(s, σ) =

{
δ(s, σ) if s ∈ T2
s if s 6∈ T2

Intuitively, the only change we make is to turn all non-safe
states (states not in T2) into sink states. We then define the
reachability condition as α′ = Reach(T1 ∩ T2). Intuitively,
we want to reach a goal state (a state in T1) that is also safe
(i.e., it is in T2). The two automata are indeed equivalent:

Lemma 1. Let A and A′ be as above, then L(A′) = L(A).

Proof. (Sketch) The idea is that since all unsafe states (states
not in T2) are converted to sinks, a run that reaches an unsafe
state always gets stuck there, and therefore never reaches the
accepting states T1 ∪ T2.

Hence, we are able to reduce synthesis problem P ′ =
〈X ,Y,Env , Goal〉 to a GR(1) game as well.
Theorem 3. P ′ = 〈X ,Y,Env , Goal〉, with Env =
〈ϕe

GR(1), ϕ
e
safe〉 and Goal = 〈ϕa

task, ϕ
a
safe〉, is realizable iff

the antagonist has a winning strategy in the GR(1) game GP′ .

Proof. (Sketch) Follows from Theorem 1 and Lemma 1.

6 Experimental Analysis
We implemented the approach described in Section 5, which
subsumes the method described in Section 3, in a tool called
GFSYNTH. In this section, we first describe the implemen-
tation of GFSYNTH, and then introduce two representative
benchmarks that are able to capture commonly used sensor-
based robotic tasks. An empirical evaluation is shown at the
end to show the performance of our approach.

6.1 Implementation
GFSYNTH runs in three steps: automaton construction, re-
duction to GR(1) game, and GR(1) game solving. In the first
step, we use code from the LTLf -synthesis tool SYFT [Zhu
et al., 2017b] to read and parse the input and construct cor-
responding DAs. We then perform the reduction to a GR(1)
game following the steps in Section 5. Since all DAs are sym-
bolically represented by Binary Decision Diagrams (BDDs),
as in [Zhu et al., 2017b], we make use of the BDD li-
brary CUDD-3.0.0 [Somenzi, 2016] to implement operations
such as bounded intersection, the reduction from reachability-
safety to reachability and the final reduction to a GR(1) game.
Finally we save the GR(1) game in the input format of the
GR(1)-synthesis tool SLUGS [Ehlers and Raman, 2016]. To
solve and compute a strategy for the antagonist, we call
SLUGS using the --CounterStrategy option.

6.2 Benchmarks
For the experimental evaluation we use two sets of bench-
marks based on examples of reactive synthesis from the liter-
ature, slightly modified to adapt them to our framework. Both
examples involve an agent navigating around an environment
in order to perform a task. In both cases we can use a param-
eter n to scale the number of regions, and thus measure how
our tool performs as the size of the problem grows.
Finding Nemo. Based on the running example
from [Kress-Gazit et al., 2009]. The agent is a robot
that moves in a workspace consisting of a circular hallway
with n sections, each leading into two different rooms. The
agent is looking for “Nemo”, who can appear in any of the
odd-numbered rooms. The agent has a camera and its task is
to record three timesteps worth of footage of Nemo.
Workstation Resupply. Based on the scenario presented
in [DeCastro et al., 2014] of a robot responsible for resup-
plying workstations in a factory with parts from a stockroom.
The robot’s task is to resupply n separate stations, something
it can only do after picking up a part from the stockroom. A
workstation may be occupied, in which case the robot has to
wait until it is vacated before going inside.

The agent safety conditions ensure movement constraints
and other domain requirements, for example that the agent

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1856

has picked up a part in the stockroom before resupplying
a station. The environment safety conditions guarantee for
example that the sensors are well-behaved and that stations
don’t become occupied while the agent is inside. The GR(1)
condition in Finding Nemo guarantees that if the robot visits
the odd-numbered rooms infinitely often, it will find Nemo
infinitely often, while in Workstation Resupply it guarantees
that each workstation will be vacated infinitely often.

6.3 Empirical Evaluation
Comparing to LTL Synthesis. We want to compare GF-
SYNTH to a state-of-the-art LTL synthesis tool. In Section 3
we pointed out how ϕe

GR(1) and ϕa
task can be translated to

LTL. We can handle the environment safety condition ϕe
safe

by observing that (ϕe
GR(1) ∧ ϕe

safe) → ϕa
task (with ϕe

safe

interpreted on all prefixes) is equivalent to ϕe
GR(1) → ϕa

task
′

with ϕa
task

′ = (¬ϕe
safe ∨ ϕa

task) interpreted using standard
LTLf semantics. Indeed, the agent can violate the environ-
ment safety condition by producing a single prefix that vio-
lates ϕe

safe. Then, (¬ϕe
safe ∨ ϕa

task) can be interpreted as a
single LTLf formula and reduced to LTL. Handling the agent
safety condition ϕa

safe, however, cannot be done easily, since,
as discussed in Section 4, there is no known way to translate
an LTLf formula on all prefixes to LTLf and LTL without ex-
ponential blowups. Hence, in order to compare GFSYNTH
with tools for LTL synthesis, we manually translated the spe-
cific ϕa

safe of our benchmarks above to an equivalent LTLf

formula to be included directly as a new conjunct in ϕa
task.

We then converted the entire specification to LTL and syn-
thesized it with STRIX [Meyer et al., 2018], the winner of
the LTL-synthesis track of the synthesis competition SYNT-
COMP 2020 [Jacobs and Perez, 2020], using it as the baseline
of comparison to our tool. Note that since our benchmarks
assume that the agent moves first, while STRIX assumes the
environment moves first, we had to slightly modify the spec-
ifications by adding a © before all variables controlled by the
environment, a transformation that essentially corresponds to
ignoring the first move by the environment.

Baseline and Experiment Setup. All tests were run on a
computer cluster. Each test had exclusive access to a node
with Intel(R) Xeon(R) CPU E5-2650 v2 processors running
at 2.60GHz. Time out was set to two hours (7200 seconds).

Correctness. Our implementation was verified by compar-
ing the results returned by GFSYNTH with those from STRIX.
No inconsistency encountered for the solved cases.

Results. We compared GFSYNTH against STRIX by per-
forming an end-to-end (from specification to winning strategy
if realizable) comparison experiment over the benchmarks de-
scribed in Section 6.2. Comparison on both classes of bench-
marks show that GFSYNTH outperforms STRIX.

Figure 1 and Figure 2 show the running time of GFSYNTH
and STRIX on both benchmarks, respectively. The x-axis in-
dicates the value of the scalable parameter n for each bench-
mark. The y-axis is in log scale. Results of cases on which
both tools failed are not shown. For benchmark Finding
Nemo, in small cases where n ≤ 2, there is no large gap

1 2 3 4

#Number of sections

10−1

100

101

102

103

R
u

n
n

n
in

g
ti

m
e

(s
ec

on
d

s)

Strix

GFSynth

Figure 1: Benchmark Finding Nemo

1 2 3 4 5

#Number of stations

10−1

100

101

102

103

104

R
u

n
n

n
in

g
ti

m
e

(s
ec

on
d

s)

Strix

GFSynth

Figure 2: Benchmark Workstation Resupply

in the time cost. However, as n grows, the time cost of GF-
SYNTH increases linearly, while the time cost of STRIX in-
creases exponentially. Regarding benchmark Workstation Re-
supply, the exponential gap is not so obvious. Nevertheless,
as the benchmark grows, STRIX almost always takes around
10 times longer than GFSYNTH. STRIX also failed for n = 5.
Discussions. Looking deeper into GFSYNTH, we observed
that on those cases where GFSYNTH fails, the automata can
not be constructed by the MONA library employed by SYFT
for automata construction from LTLf . There has been various
studies on LTLf -to-automata translation. Possibly the most
successful attempt is the decompositional approach presented
in [Bansal et al., 2020]. For future work, we will take this
approach into account to improve GFSYNTH.

Acknowledgments
Research partially supported by the ERC Advanced Grant
WhiteMech (No. 834228), the EU ICT-48 2020 project TAI-
LOR (No. 952215), NSF grants IIS-1527668, CCF-1704883,
IIS-1830549, and an award from the Maryland Procurement
Office.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1857

References
[Aminof et al., 2018] Benjamin Aminof, Giuseppe De Gia-

como, Aniello Murano, and Sasha Rubin. Planning and
synthesis under assumptions. CoRR, 2018.

[Aminof et al., 2019] Benjamin Aminof, Giuseppe De Gia-
como, Aniello Murano, and Sasha Rubin. Planning under
LTL environment specifications. In ICAPS, 2019.

[Bansal et al., 2020] Suguman Bansal, Yong Li, Lucas M.
Tabajara, and Moshe Y. Vardi. Hybrid compositional rea-
soning for reactive synthesis from finite-horizon specifica-
tions. In AAAI, pages 9766–9774, 2020.

[Bloem et al., 2012] Roderick Bloem, Barbara Jobstmann,
Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of
Reactive(1) designs. J. Comput. Syst. Sci., 78(3):911–938,
2012.

[Camacho et al., 2017] Alberto Camacho, Eleni Triantafil-
lou, Christian Muise, Jorge A. Baier, and Sheila McIl-
raith. Non-deterministic planning with temporally ex-
tended goals: LTL over finite and infinite traces. In AAAI,
pages 3716–3724, 2017.

[Camacho et al., 2018] Alberto Camacho, Meghyn Bien-
venu, and Sheila A. McIlraith. Finite LTL synthesis with
environment assumptions and quality measures. In KR,
pages 454–463, 2018.

[De Giacomo and Rubin, 2018] Giuseppe De Giacomo and
Sasha Rubin. Automata-theoretic foundations of fond
planning for LTLf /LDLf goals. In IJCAI, pages 4729–
4735, 2018.

[De Giacomo and Vardi, 2013] Giuseppe De Giacomo and
Moshe Y. Vardi. Linear temporal logic and linear dynamic
logic on finite traces. In IJCAI, pages 854–860, 2013.

[De Giacomo and Vardi, 2015] Giuseppe De Giacomo and
Moshe Y. Vardi. Synthesis for LTL and LDL on finite
traces. In IJCAI, 2015.

[De Giacomo et al., 2020a] Giuseppe De Giacomo, Antonio
Di Stasio, Francesco Fuggitti, and Sasha Rubin. Pure-past
linear temporal and dynamic logic on finite traces. In IJ-
CAI 2020, pages 4959–4965, 2020.

[De Giacomo et al., 2020b] Giuseppe De Giacomo, Antonio
Di Stasio, Moshe Y. Vardi, and Shufang Zhu. Two-stage
technique for LTLf synthesis under LTL assumptions. In
KR, 2020.

[DeCastro et al., 2014] Jonathan A. DeCastro, Rüdiger
Ehlers, Matthias Rungger, Ayca Balkan, Paulo Tabuada,
and Hadas Kress-Gazit. Dynamics-based reactive synthe-
sis and automated revisions for high-level robot control.
CoRR, abs/1410.6375, 2014.

[Ehlers and Raman, 2016] Rüdiger Ehlers and Vasumathi
Raman. Slugs: Extensible GR(1) synthesis. In CAV, vol-
ume 9780 of Lecture Notes in Computer Science, pages
333–339. Springer, 2016.

[Ehlers et al., 2017] Rüdiger Ehlers, Stéphane Lafortune,
Stavros Tripakis, and Moshe Y. Vardi. Supervisory control
and reactive synthesis: a comparative introduction. Dis-
crete Event Dynamic Systems, 27(2):209–260, 2017.

[Finkbeiner, 2016] Bernd Finkbeiner. Synthesis of Reactive
Systems. Dependable Software Sys. Eng., 45:72–98, 2016.

[Ghallab et al., 2004] Malik Ghallab, Dana S. Nau, and
Paolo Traverso. Automated planning – Theory and Prac-
tice. Elsevier, 2004.

[He et al., 2019] Keliang He, Andrew M. Wells, Lydia E.
Kavraki, and Moshe Y. Vardi. Efficient symbolic reactive
synthesis for finite-horizon tasks. In ICRA, pages 8993–
8999, 2019.

[Jacobs and Perez, 2020] Swen Jacobs and Guillermo A.
Perez. 7th Reactive Synthesis Competition: SYNTCOMP
2020. http://www.syntcomp.org/syntcomp-2020-results/,
2020.

[Kress-Gazit et al., 2009] Hadas Kress-Gazit, Georgios E.
Fainekos, and George J. Pappas. Temporal-logic-based
reactive mission and motion planning. IEEE Trans.
Robotics, 25(6):1370–1381, 2009.

[Kupferman, 2012] Orna Kupferman. Recent Challenges
and Ideas in Temporal Synthesis. In SOFSEM 2012, pages
88–98, 2012.

[Lichtenstein et al., 1985] Orna Lichtenstein, Amir Pnueli,
and Lenore D. Zuck. The glory of the past. In Logic of
Programs, pages 196–218, 1985.

[Meyer et al., 2018] Philipp J. Meyer, Salomon Sickert, and
Michael Luttenberger. Strix: Explicit Reactive Synthesis
Strikes Back! In CAV, pages 578–586, 2018.

[Piterman et al., 2006] Nir Piterman, Amir Pnueli, and Yaniv
Sa’ar. Synthesis of reactive(1) designs. In VMCAI, LNCS,
pages 364–380. Springer, 2006.

[Pnueli and Rosner, 1989] Amir Pnueli and Roni Rosner. On
the synthesis of a reactive module. In POPL, 1989.

[Pnueli, 1977] Amir Pnueli. The temporal logic of programs.
pages 46–57, 1977.

[Somenzi, 2016] Fabio Somenzi. CUDD: CU decision di-
agram package 3.0.0. universiy of colorado at boulder.
2016.

[Zhu et al., 2017a] Shufang Zhu, Lucas M. Tabajara, Jian-
wen Li, Geguang Pu, and Moshe Y. Vardi. A symbolic
approach to Safety LTL synthesis. In HVC, pages 147–
162, 2017.

[Zhu et al., 2017b] Shufang Zhu, Lucas M. Tabajara, Jian-
wen Li, Geguang Pu, and Moshe Y. Vardi. Symbolic LTLf

synthesis. In IJCAI, pages 1362–1369, 2017.
[Zhu et al., 2020] Shufang Zhu, Giuseppe De Giacomo,

Geguang Pu, and Moshe Y. Vardi. LTLf synthesis with
fairness and stability assumptions. In AAAI, pages 3088–
3095, 2020.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1858

