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Abstract
Consider a set of agents with initial beliefs and a
formal operator for incorporating new information.
Now suppose that, for each agent, we have a for-
mula that we would like them to believe. Does there
exist a single announcement that will lead all agents
to believe the corresponding formula? This paper
studies the problem of the existence of such an an-
nouncement in the context of model-preference de-
finable revision operators. First, we provide two
characterisation theorems for the existence of an-
nouncements: one in the general case, the other
for total preorders. Second, we exploit the char-
acterisation theorems to provide upper complexity
bounds. Finally, we also provide matching optimal
lower bounds for the Dalal and Ginsberg operators.

1 Introduction
The beliefs of a group of agents can be manipulated through
announcements. For instance, consider politicians that should
announce the COVID-19 vaccine campaign organization. In
order to prevent the call center to break down, they have to
tailor a suitable public announcement to be sure that only peo-
ple that need the vaccine will call. Such announcement can
be difficult to conceive and has to take into account agents
with different beliefs and that may have different inconsistent
goals, depending on the population backgrounds.

Public announcements have previously been studied in
modal logics [Plaza, 2007; Balbiani et al., 2007; Ditmarsch
et al., 2008]. However, our focus here is strictly on proposi-
tional announcements in the context of formal belief revision
operators. The problem is still significant in this context, as
there are many natural applications involving announcements
that do not involve nested beliefs.

We assume that each agent has an initial belief state as
well as a formal mechanism for incorporating new informa-
tion. When an announcement is made, each agent’s beliefs
change accordingly. Now suppose that, for each agent i, we
have an epistemic goal ψi; that is, we would like the agent
i to believe that ψi is true. The propositional announcement
problem consists in finding a single formula φ that will en-
sure that each agent believes their epistemic goal following
the announcement of φ. In this paper, we are concerned with

the computational complexity of the propositional announce-
ment problem.

In this paper, we present a complete analysis of the compu-
tational complexity of the propositional announcement prob-
lem (PAP). Specifically, we make the following contributions:

1. We show that PAP as formulated in [Hunter et al., 2017]
is Σp2-hard, thus closing a problem that was left open.

2. We characterize the existence of announcements, both in
the general case and for all AGM-style operators.

3. We show that, for all AGM-style operators with com-
plexity in PNP, which include Dalal’s, Σp2 is an upper
complexity bound.

4. For popular change operators like Ginsberg’s [1986] we
show that PAP is EXPTIME-complete in general.

In addition to the complexity results, we demonstrate how to
construct solutions to announcement finding problems.

Outline. The paper is organized as follows. In Section 2,
we recall the basics about belief revision. In Section 3, we
recall the propositional announcement problem and provide
characterization results. In Section 4, we give the upper
bound and lower bound complexity results. Finally, in Sec-
tion 5 we firt present related work and then we conclude.

2 Preliminaries
2.1 AGM Belief Revision
We assume a finite set P of propositional variables, called a
vocabulary. A belief set over P is a deductively closed set K
of propositional formulas, also called a knowledge base; we
may view K as a single formula given by

∧
{φ ∈ K}. The

notions of satisfaction and entailment are as usual. Interpre-
tations µ : P → {0, 1} are also viewed as sets of variables
assigned true, i.e., {p ∈ P | µ(p) = 1}. We write mod(φ)
resp. mod(K) to denote the set of interpretations where φ
resp. K is true (i.e., its models).

An AGM revision operator ∗ assigns each belief set K and
formula φ a belief set K ∗φ that satisfies the AGM postulates
[Alchourrón et al., 1985]. Semantically, AGM revision oper-
ators have been characterized in terms of model selection as
follows [Katsuno and Mendelzon, 1992]. For every K and φ,

mod(K ∗ φ) = min�K (mod(φ)), (1)
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i.e., the models of the revision are the minimal (closest) mod-
els of φ in some total preorder µ �K µ′ of the interpretations
that fulfill further conditions, viz. (i) µ |= K implies for every
µ′ that µ � µ′ and if µ′ �K µ then µ′ |= K and (ii) K ≡ K ′
implies�K =�K′ . As usual, µ ≺K µ′ denotes the strict ver-
sion of µ �K µ′: it means µ �K µ′ and not µ′ �K µ. On
the other hand, each such total preorder�K induces an AGM
revision operator.

A canonical example is the Dalal operator [Dalal, 1988],
denoted by ∗d. Here the ordering µ �DK µ′ is based on
the Hamming distance dH(ν, µ) between interpretations ν, µ,
which is the cardinality of the set diff (ν, µ) = {p ∈ P |
ν |= p ⇔ µ 6|= p} of variables with different truth values in
ν and µ. Then µ �DK µ′ iff dH(µ,K) ≤ dH(µ′,K), where
dH(µ,K) = minν|=K dH(µ, ν) is this least Hamming dis-
tance between µ and any model ν of K. Then, mod(K ∗d φ)
are those models µ of φ such that dH(µ,K) is minimal.

2.2 Beyond AGM Revision
Besides AGM revision, many further change operators have
been proposed in the literature which do not satisfy the AGM
postulates, even in a finite setting cf. [Eiter and Gottlob,
1992; Nebel, 1998]. A prominent such example is Gins-
berg’s [1986] operator ∗G, which is defined for knowledge
bases K and formulas φ by

K ∗G φ = {K ′ ∪ {φ} | K ′ ∈W (K,φ)}, (2)
where W (K,φ) are the models comprising the maximal sub-
sets K ′ ⊆ K that are satisfiable with φ. Semantically,
K ∗G φ is regarded as the disjunction K1 ∨ · · · ∨ Kn of
all Ki in K ∗G φ = {K1, . . . ,Kn}. Notably, this oper-
ator is known as the “flock” approach in databases [Fagin
et al., 1986], and it underlies in varieties consistent query
answering from data and knowledge bases [Bertossi, 2019;
Bienvenu and Bourgaux, 2016].

It is possible to capture ∗G by model selection as in (1), if
we view � as a preference relation (and disregard (ii)). For
each model µ and knowledge base K let Kµ = {α ∈ K |
µ |= α} be the formulas in K that are satisfied by µ.
Proposition 1. For every knowledge base K and formula φ,

(i) W (K,φ) = max⊆({Kµ | µ |= φ}),
(ii) mod(K ∗G φ) = {µ | µ = arg max⊆,µ|=φKµ}.

That is, we can compare models µ and µ′ as follows: µ �GK
µ′ iffKµ ⊇ Kµ′ . This is in fact a partial ordering, and it leads
to the following result:
Proposition 2. For any K and formula φ, mod(K ∗G φ) =
min�GK (mod(φ)).

This is just one example. In a similar manner, we can con-
sider generic preference-based operators, i.e., that can be de-
fined by minimal model selection (1) in terms of a preorder
�K that depends on K (possibly embracing conditions such
as variable preference, formula protection, etc.).

3 The Propositional Announcement Problem
3.1 The Basic Problem
We define the announcement problem more formally. Given
n agents and n AGM belief revision operators ∗i as input; we

are looking for a consistent formula φ such that
Ki ∗i φ |= ψi, i = 1, . . . , n (3)

where Ki and ψi represent the belief set and the goal of the
agent i, respectively. If

∧
i ψi is consistent, simply announce

it! So the problem is only of interest if
∧
i ψi is inconsistent.

Example 1. Consider a pair of “herding” agents R1 and R2

that must collaborate to herd a flock of sheep. Each agent
acts independently, influenced by a single controller mak-
ing announcements. Assume the vocabulary is {corner,
retrieve}. Informally, a herder will believe corner if the
sheep must be cornered so they can not move. A herder will
believe retrieve if there is a stray sheep that must be re-
trieved.

Let the initial beliefs of R1 and R2 be as follows:
KR1

= {¬corner ∨ retrieve}
KR2

= {¬corner ∨ ¬retrieve}
Suppose the controller sees one sheep has left the flock. Is
there a formula that can be broadcast to immediately get R1

to retrieve the sheep whileR2 corners the rest of the animals?
In other words, is there a formula φ such that:

{¬corner ∨ retrieve} ∗ φ |= retrieve

{¬corner ∨ ¬retrieve} ∗ φ |= ¬retrieve ∧ corner
If we assume both agents use the Dalal revision operator, the
answer is yes; we can set φ = corner. This instance of the
announcement problem has a solution.

The announcement problem was previously considered in
[Hunter et al., 2017], where the following basic results are
shown.
Proposition 3. For all n > 1, there are instances of (3) with
no solution.
Proposition 4. Let P be a vocabulary and let the number of
agents n satisfy n < 2|P | . Then there is an instance of (3)
over P with inconsistent goals that has a solution.

Hence, there are cases with no solution and there are cases
with a solution; the question is how hard it is to tell which is
the case. We are therefore concerned with the complexity of
the following decision problem.
The Propositional Announcement Problem (PAP(∗i))

Input: a list K1, . . . ,Kn of formulas (initial beliefs).
a list ψ1, . . . , ψn of formulas (goals).

Ouput: yes, if some φ satisfying (3) exists, no, otherwise.
Note that an instance of the problem is written as PAP(∗i) to
emphasize that it depends on given revision operators ∗i.

In [Hunter et al., 2017], it is proved that this decision prob-
lem is in Σp2 = NPNP if we restrict attention to the Dalal
operator. The hardness of PAP is left open in that paper.

3.2 Characterisation
Recall that all AGM revision operators can be characterised
by taking minimal models in some preference ordering. In
fact, when we can obtain the revision models as the minimal
models of a preorder� (not necessarily a total one, i.e., mod-
els may be incomparable; in short by model preference), then
we can characterize solutions φ to a propositional announce-
ment problem (PAP) P = (Ki, ψi)

n
i=1 as follows.
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Proposition 5. Let φ be consistent and let P be a PAP with
model-preference definable operators ∗i, 1 ≤ i ≤ n. Then a
formula φ is a solution to P iff for all i = 1, . . . , n and µ, if
µ |= φ ∧ ¬ψi then some µ′≺Ki µ exists s.t. µ′ |= φ∧ψi.

The characterisation in Proposition 5 says that models µ
violating the query ψi must be eliminated by models µ′ which
do satisfy the query and are closer to the knowledge base Ki.

In fact, without loss of generality, one can limit the so-
lutions to fulfill mod(φ) ⊆

⋃
i mod(ψi) i.e., replace φ by

φ ∧
∨
i ψi, because every model that does not satisfy any of

the ψi must be eliminated under revision.

Proposition 6. If φ is a solution to a model-preference defin-
able PAP P , then φ ∧

∨
i ψi is also a solution of P .

In general, there can be multiple solutions φ, of course;
however, there are interesting observations.

Proposition 7. Every PAP P with model-preference defin-
able operators ∗i has a unique weakest solution φ∗, i.e., for
every solution φ, it holds that φ |= φ∗.

The reason for this is simple: if φ1 and φ2 are solutions,
then also φ1 ∨ φ2 is a solution; in terms of models, the union
of the set of models of solutions is also a solution.

Total Preorders
Smaller solutions with few models might exist, as in the case
of Dalal’s operator. There, at most n models are needed to
find a solution. This can in fact be generalized to operators
that are definable by total prorders �Ki , i.e., either µ �K µ′

or µ′ �K µ holds for all models µ and µ′.

Proposition 8. Let P be a PAP with model-preference defin-
able operators ∗i where all preorders�Ki are total. Then the
following are equivalent:

1. P has some solution,
2. There is (µ1, . . . , µn) with µi |= ψi and for all j, either
µj |= ψi or µi ≺Ki µj .

3. {µ1, . . . , µn} as in point 2 is a solution of P .

Proof. (1⇒2) Let φ be a solution. Pick µi in
min�Ki (mod(φ)) which is non-empty because φ is consis-
tent. As φ is a solution, µi |= ψi. Suppose that µj 6|= ψi.
We also have µj |= φ. By Proposition 5, there exists µ′
such that µ′ |= φ, µ′ |= ψi and µ′ ≺Ki µj . As µi is in
min�Ki (mod(φ)), and as µi and µ′ are�Ki -comparable, we
must have µi �Ki µ′. By transitivity, we have µi ≺Ki µj .

(2⇒3). Let us show that min�Ki ({µ1, . . . , µn}) |= ψi.
Take a �Ki -minimal µj . As we do not have µi ≺Ki µj , we
must have µj |= ψi.

4 Computational Complexity
It was shown in [Hunter et al., 2017] that for Dalal’s op-
erator, the PAP(∗d) problem is in Σp2, by exhibiting a non-
deterministic guess and check algorithm based on an ad-hoc
instance of Proposition 8. However, the authors left the issue
open whether this bound can be improved. We show that this
bound is tight, proving Σp2-hardness by a nontrivial construc-
tion. Furthermore, we establish that the PAP problem is Σp2-
complete in general for partial ordering definable operators ∗i

with complexity in PNP, while we show that it is EXPTIME-
complete for model-preference operators ∗i in general. In
particular, EXPTIME-hardness is shown for Ginsberg’s oper-
ator. Hence, there is a considerable complexity gap between
operators that are relevant in practice.

4.1 Upper Bounds
Total Preorders
For operators ∗ definable by total preorders, Proposition 8
implies that we can use a guess and check algorithm to decide
the existence of a solution.

Theorem 1. Let ∗i be operators that are definable by total
preorders �Ki . If checking µ �Ki µ′ is feasible in complex-
ity C, then PAP(∗i) is decidable in NPC .

Proof. Consider the following non-deterministic algorithm:

for i := 1 to n do
(∃)(∃)(∃) choose µi in mod(ψi)

for i, j ∈ {1, . . . , n} do
if µi 6|= ψj then

Check that µj �Ki µi ∧ µi 6�Ki µj
The correctness follows by Proposition 8.

For all belief revision operators that satisfy the AGM pos-
tulates, it is by Proposition 8 a matter of the complexity of
model comparison which may dominate the overall complex-
ity. But in any case, we have a small result for the revision!

In particular for complexityC = PNP, we obtain from The-
orem 1 membership in NPPNP

= NPNP. Applied to Dalal’s
operator, we thus obtain the following result.

Corollary 1 (cf. [Hunter et al., 2017]). PAP(∗d) is in ΣP2 .

Proof. Given an interpretation µ and an integer k, deciding
dH(µ, ν) ≤ k is in NP. Thus, computing dH(µ,K) is feasi-
ble in polynomial time with an NP oracle, and so is deciding
µ �DK µ′; Theorem 1 implies membership in Σp2.

For knowledge bases K in special form, the NP-oracle
may be eliminated so that lower complexity results. For ex-
ample, we have the following result.

Proposition 9. PAP(∗d) is in NP, if each Ki is rewritable
into a DNF formula in polynomial time.

Indeed, for a DNF α = D1 ∨ · · · ∨ Dn, determining the
smallest distance dH(µ, µ′) of a model µ to any model µ′ of
α is feasible in polynomial time.

General Case
Theorem 2. Given model-preference definable operators ∗i
such that µ′ �Ki µ is decidable in exponential time, PAP(∗i)
is in EXPTIME.

Sketch of proof. Consider the following alternating algorithm
in which the existential player builds φ on the fly, and that
checks the assumption of Proposition 5:
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(∃)(∃)(∃) a model µ0

check(µ0, 0)
procedure check(µ, 0)

if s < 2|P | then
(∀)(∀)(∀) j ∈ {1, . . . , n}:
if µ 6|= ψj then

(∃)(∃)(∃) µ′ in mod(ψj), µ
′≺Kj µ:

check(µ′, s+1)

Note that at stage s = 2|P |, a loop must have been entered,
which allows for acceptance. As APSPACE = EXPTIME
[Chandra and Stockmeyer, 1976], the check µ′ �Kj µ (i.e.,
µ′ �Kj µ and µ 6�Kj µ′) is feasible with alternations in poly-
nomial space. Overall, the algorithm runs with alternations in
polynomial space, which shows EXPTIME-membership.

In the alternating PSPACE algorithm above the universal
branching is only about polynomially many values. It may be
tempting to believe that this branching can be eliminated and
simulated deterministically. However, the recursion depth is
not necessarily polynomially bounded, so this may end up in
exponential space consumption. Notably, even if each rela-
tion ≺Ki is acyclic, their interaction may create a cycle.

Example 2. Let K1 = {¬evidence ∨ guilty} be the prosecu-
tor’s andK2 = {¬guilty∨¬evidence} be the accused’s KB in
a trial. The judge may announce proper account of evidence
(φ = evidence) to achieve ψ1 = guilty and ψ2 =¬guilty un-
der Dalal’s operator. The models µ1 = {evidence, guilty}
and µ2 = {evidence} of φ satisfy µ1≺K1

µ2 and µ2≺K2
µ1.

However, no acyclic paths of length 2|P |are possible.
In case of just two agents and easier preference checking,

we interestingly get a better complexity bound:

Theorem 3. For a PAP P with n = 2 and model-preference
definable operators ∗i such that µ′ �Ki µ is decidable in
polynomial space, deciding solution existence is in PSPACE.

Proof. In this case, no alternation in the algorithm above is
needed: as µi |= ψi resp. µ′ |= ψj , for at most one j ∈
{1, 2} a guess µ′ ∈ mod(ψj) will be made; thus (∀)(∀)(∀) can be
eliminated deterministically. As checking µ′ �Kj µ is in
PSPACE, membership in NPSPACE = PSPACE follows.

4.2 Lower Bounds
PAP with Dalal’s Operator
Theorem 4. The PAP(∗d) problem (all ∗i are ∗d) is Σp2-hard.

Proof. We reduce the evaluation of QBFs of the form

Φ = ∃X∀Y E(X,Y ), (4)

whereX =X1, . . . , Xm and Y =Y1, . . . , Yl are lists (viewed
as sets) of propositional variables in polynomial time to this
problem. Without loss of generality, we assume that the fol-
lowing property (see Supplement):

(*) |Y | is even, and if an assignment σ to X ∪ Y does not
satisfy E, it sets exactly half of the variables in Y to 1,
i.e., |{Yi ∈ Y | σ(Yi) = 1}| = |{Yi ∈ Y | σ(Yi) = 0}|.

We now construct knowledge bases Ki and formulas ψi,
i = 1, . . . , n such that deciding whether some formula φ ex-
ists such that Ki ∗d φ |= ψi encodes the evaluation of Φ.

From Proposition 8, φ has w.l.o.g. the form µ1 ∨ · · · ∨ µn,
where each µi is a model of ψi and the following holds: no
µj that violates ψi will be closer to Ki than µi, i.e., satisfy
dH(µj ,Ki) < dH(µi,Ki).

In our encoding we need only n= 2. The idea is that in-
tuitively, we use the pair (K2, ψ2) to generate a candidate
assignment σ to X via a model µ2 that will not be closer
to K1 than any model µ1 for a solution φ = µ1 ∨ µ2 if
¬E(σ(X), Y ) is unsatisfiable, i.e., ∀Y E(σ(X), Y ) evaluates
to true. Specifically, we define:

K1 := [¬E(X,Y ) ∧
∧
Xi∈X EQ(Xi, X

i)] ∨ (B ∧ Y ),

ψ1 := B ∧ Y,
K2 := B ∧ Y ,
ψ2 := B ∧ Y ∧

∧
Xi∈X EQ(Xi, X

i).

Here B and the Xi are disjoint sets of fresh variables, such
that 2|B| = |Y | and |Xi| = |B|; we write B resp. Y for
the conjunction of all variables in B resp. Y , and similarly B
resp. Y for the conjunction of all negated variables in B resp.
Y (e.g. forB = {B1, B2}we have thatB stands forB1∧B2

and B for ¬B1∧¬B2). Furthermore, EQ(Xi, X
i) expresses

that all variables in Xi have the same value as Xi:

EQ(Xi, X
i) =

∧
Z∈Xi(Xi ↔ Z). (5)

The purpose of B is to ensure that the distance of a candidate
model µ1 for φ to K1 is at least |B| = |Y |/2; the purpose of
the Xi is to ensure that the cost of flipping in a model µ2 of
ψ2 a variable Xi to obtain a model of the left disjunct of K1

is, due to the variables in Xi, at least |B|+ 1.
We now argue that Φ evaluates to true if and only if the

constructed PAP instance has a solution.

(⇒) Let σ be an assignment to X such that ∀Y E(σ(X), Y )
evaluate to true; hence, ¬E(σ(X), Y ) is unsatisfiable. We
consider interpretations µ1 and µ2 as follows:

µ1 = Y ∪µ2 and µ2 =
⋃
{{Xi}∪Xi | Xi∈X : σ(Xi)=1}.

Note that µi |= ψ1 ∧ ¬ψ2 while µ2 |= ψ2 ∧ ¬ψ1. Consider
now the distances dH(µi,Kj) for i, j = 1, 2:

• dH(µ1,K1) = |B|, as flipping B is enough to arrive at
a model of the right disjunct of K1; there is no cheaper
cost, as to satisfy the left disjunct of K1, by unsatisfia-
bility of ¬E(σ(X), Y ) we would need to flip some Xi

and the associated Xi, causing a distance > |B|;
• dH(µ2,K1)> |B|: to arrive at a model of the left dis-

junct of K1, since ¬E(σ(X), Y ) is unsatisfiable we
need to flip some Xi and its associated variables Xi,
which causes a distance > |B|; to arrive at a model of
right disjunct of K1, flipping B ∪ Y has cost |B|+ |Y |;
• dH(µ1,K2) = |B|+ |Y |: just flip B ∪ Y ;

• dH(µ2,K2) = |B|: just flip B.
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Hence, the disjunction φ = µ1 ∨ µ2 of the models µ1 and µ2

is a solution to the PAP from above.

(⇐) Suppose that without loss of generality some models µ1

and µ2 of ψ1 and ψ2, respectively, exist such that their dis-
junction φ = µ1 ∨ µ2 yields a solution of the PAP instance.

Then µ1 satisfies B ∧ Y and µ2 satisfies B ∧ Y . Let us
consider the distance of µ1 to K1:

• d(µ1,K1) ≤ |B|, as it is sufficient to flip B to satisfy
the right disjunct of K1;

• d(µ1,K1) ≥ |Y |/2, as if we do not flip B, we must flip
exactly half of Y and perhaps someXi andXi to satisfy
¬E(X,Y ) in the left disjunct of K1.

As |B| = |Y |/2 it follows d(µ1,K1) = |B| = |Y |/2.
Now let σ be the assignment to X s.t. σ(Xi) = 1 iff µ2 |=

Xi, i = 1, . . . , n. We argue that ∀Y E(σ(X), Y ) evaluates to
true. As µ2 6|= ψ1, we have dH(µ1,K1) < dH(µ2,K1);
hence d(µ2,K1) > |Y |/2. As K1 is of the form K1 =
K1,1 ∨ K1,2, each K1,j must satisfy d(µ2,K1,j) > |Y |/2,
in particular K1,1 = ¬E(X,Y ) ∧

∧
Xi∈X EQ(Xi, X

i). As
µ2 |=

∧
Xi∈X EQ(Xi, X

i), this means that whenever ex-
actly half of Y is flipped, the resulting interpretation does not
satisfy ¬E(X,Y ); hence, for the respective assignment µ to
Y , E(σ(X), µ(Y )) is satisfied. Hence ∀Y E(σ(X), Y ) eval-
uates to true, and so does Φ. This proves Σp2-hardness.

Two remarks should be noticed:
(1) We can rewrite the KBs Ki and queries ψi to CNFs in
polynomial time, if we assume w.l.o.g. that E(X,Y ) is in
DNF. Thus the Σp2-hardness inherits to the CNF fragment.
(2) If we assume that E(X,Y ) is in CNF and no Y vari-
ables occur in E(X,Y ), then we can rewrite K1 and K2 to
DNF (note that we can rewrite in (5) EQ(Xi, X

i) to a DNF
(Xi∧

∧
Z∈Xi Z)∨(¬Xi∧

∧
Z∈Xi ¬Z). This then shows NP-

hardness as evaluating the QBF in (4) is NP-hard under these
restrictions. Combined with Proposition 9, we thus obtain:

Theorem 5. For PAP(∗d), deciding solution existence is NP-
complete if all knowledge bases Ki are in DNF.
It is possible to extend the construction in order to have only
Horn KBs Ki and Horn ψi; the idea is to simulate positive
disjunction with choice of an atom for closer distance.

PAP with Ginsberg’s Operator
We now provide matching lower bounds for the upper bounds
for the PAP-problem in the general model preference case
from above, specifically for Ginsberg’s operator.

Theorem 6. For PAP(∗G), deciding solution existence is (i)
EXPTIME-hard in general and (ii) PSPACE-hard if n = 2.

We sketch a proof of this result, which involves a reduction
from the following problem.

A bipartite and-or graph is a tuple G = (N1, N2, E1, E2)
of disjoint sets N1 and N2 of nodes, and of edges E1 and E2,
respectively, where any edge in E1 (resp., E2) is of the form
(n1, n2, n

′
2) ∈ N1×N2×N2 resp. (n2, n1) ∈ N2×N1. we

assume that every node in N1 occurs in at most one edge of
E1. Intuitively, the nodes inN1 are and-nodes and have either

no or two (not necessarily) distinct successors, while N2 are
or-nodes that can have multiple possible successors;

A nonempty set N ⊆ N1 ∪ N2 of nodes is serial in G, if
for every n1 ∈ N ∩N1, some edge (n1, n2, n

′
2) ∈ E1 exists

and both n2, n′2 are in N , and for every n2 ∈ N ∩ N2 some
(n2, n1) ∈ E2 exists such that n1 ∈ N .

Lemma 1. Let γ1(X,Y, Z) and γ2(Y,X), where X =
X1, . . . , Xn and Y = Y1, . . . , Yn, Z = Z1, . . . , Zn are
Boolean formulas that describe the edges E1 resp. E2 of
an and-or graph G with nodes N1 = {0}×{0, 1}n−1 and
N2 = {1}×{0, 1}n−1. Deciding whether G has some serial
node set N is EXPTIME-hard.

Informally, this lemma holds as the and-or graph G may
represent computations of an alternating Turing machine T ,
where nodes represent configurations c. In accepting c’s with
no successors, T is modified to loop back to the initial config-
uration c0, while other loops are excluded. Then a serial set
N exists iff the modified T has a looping run on all branches,
i.e., the original T accepts on all branches. As T runs in poly-
nomial space, deciding the latter is EXPTIME-hard.

We now construct a PAP instance as follows:

K1 = X ∪X ′ ∪ {¬X0} and
ψ1 = ¬X0 ∧ Y0 ∧ Z0 ∧ γ1(X,Y, Z) ∧Op′(X;Y ;Z);

K2 = Y ∪ Y ′ ∪ {¬Y0} and
ψ2 = X0 ∧ ¬Y0 ∧ Z0 ∧ γ2(Y,X) ∧Op′(X;Y ;Z);

K3 = Z ∪ Z ′ ∪ {¬Z0} and
ψ3 = X0 ∧ Y0 ∧ ¬Z0 ∧ γ2(Z,X) ∧Op′(X;Y ;Z);

where
Op′(X;Y ;Z) = (X↔¬X ′)∧(Y ↔¬Y ′)∧(Z↔¬Z ′).

Here X ′, Y ′ and Z ′ are copies of X , Y , and Z, respectively,
and X0, Y0, Z0 are fresh variables.

Intuitively, ψ1 describes edges from “universal” nodes in
N1, while ψ2 and ψ3 describe edges from “existential” nodes
in N2, where the variables X ′, Y ′ and Z ′ serve to create in-
comparability among the encoding of nodes (to avoid clutter
by possible world maximization revision ∗G). The formulas
ψ1, ψ2 and ψ3 are pairwise mutually inconsistent via the vari-
ables X0, Y0, and Z0. Thus a move from an and-node n0 to
n1 and n′1 expressed by a model of ψ1 must be followed by
a move from n1 (resp. n′1) to some and-node n2 (resp. n′2)
expressed by a model of ψ2. It can be shown that the and-or
graph G has a nonempty serial set N iff the PAP(∗G) given
by P = (Ki, ψi)

3
i=1 has a solution.

Case n = 2: with a simplified construction, we can obtain
PSPACE-hardness: if each universal state has a single tran-
sition i.e., (n1, n2, n

′
2) ∈ E1 implies n2 = n′2, we have an

ordinary graph (intuitively describing non-alternating com-
putations). The Z variables can then be replaced by Y , and
K3 and ψ3 can be dropped.

4.3 Constructing PAP Solutions
The algorithms above are constructive and can be used to
obtain a solution to a PAP. In fact, Theorems 1 and 4 (re-
spectively their proof) establish that computing some PAP
solution for AGM-style revision operators is complete for the
multi-valued function analog of Σp2, i.e. the search problems
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that can be solved by a nondeterministic Turing machine with
an output tape and an NP oracle in polynomial time.

For model-preference based PAPs, the solutions obtained
may not be of polynomial size. Indeed, as decidingK∗Gφ |=
ψ is Πp

2-complete [Eiter and Gottlob, 1992], it follows that
verifying whether a formula φ is a solution of a PAP(∗G) P
has the same complexity. Thus if always some polynomial
size φ would exist, a guess and check algorithm would put
solution existence in Σp3 and EXPTIME ⊆ Σp3 would follow.

Polynomial-size solutions φ can be guessed and the condi-
tions in Proposition 5 checked in exponential time. Note that
the weakest solution φ∗ of a model-preference based PAP P
is an envelope, computable by an elimination algorithm:

1. Initially, set X0 to the set of all interpretations.
2. Remove then iteratively from Xi a model µ, such that
µ 6|= ψj for some j and no model µ′ ∈ Xi with µ′ |= ψj
and µ′ ≺j µ exists, i.e., set Xi+1 := Xi \ {µ}.

Any µ in Step 2 is a “bad model” and must be eliminated, as
it would be a revision model but fails to satisfy the query. If
X(P ) denotes the final Xi, then we have:
Proposition 10. For a PAP P with model-preference oper-
ators ◦i, the weakest solution φ∗ fulfills mod(φ∗) =X(P ),
where no solution exists if X(P ) = ∅.

4.4 Reasoning About Solutions
It is of interest to know whether a formula α is a semantic
core for the solutions, given by α |= φ for every solution φ,
and dually, whether a formula β is an envelope for the solu-
tions, given by φ |= β for every solution φ. In a sense, a core
describes possible models that must be compatible with ev-
ery announcement for belief manipulation, while an envelope
limits the models that can be used. Based on the results and
techniques above, we can show:
Theorem 7. Deciding whether α is a core (resp., β is
an envelope) for a PAP P is (i) EXPTIME-complete for
model-preference decidable in exponential time and (ii) Πp

2-
complete for operators ◦i definable with total preorders ≺Ki
decidable in PNP.

In fact, φ∗ coincides with the logically strongest envelope
β∗, i.e., β∗ |= β for each envelope β; it is intuitively the
vaguest statement that one can make to accomplish belief ma-
nipulation. A formula γ is thus implied by every solution φ
iff it is implied by φ∗. Dually, a unique weakest core α∗ ex-
ists, i.e., α |= α∗ for every core α, which is equivalent to the
conjunction of all solutions. Intuitively, it is a lower bound of
vagueness for the announcement, which can be void if e.g. so-
lutions φ and φ′ are incompatible, i.e., φ∧ φ′ is unsatisfiable.
For deciding whether β∗ |= γ resp. α∗ |= γ holds for given
PAP and γ, similar results as in Theorem 7 can be obtained,
with the interesting exception that in (ii) deciding α∗ |= γ is
Σp2-complete by exploiting Proposition 8.

5 Related Work
5.1 Dynamic Epistemic Logic
Dynamic Epistemic Logic (DEL) refers to a class of modal
logics for reasoning about actions and belief [Ditmarsch et

al., 2008]. In DEL, the announcement problem is addressed
in arbitrary public announcement logic (APAL) [Balbiani et
al., 2007]. Contrary to us, APAL does not provide any revi-
sion mechanism, but allows for higher-order knowledge sen-
tences. The model checking problem of APAL is in PSPACE
[Ågotnes et al., 2010], but contrary to our case, their input
model is represented explicitly. Closer to our setting, the
model checking of APAL in its succinct form is NEXPTIME-
complete [Charrier and Schwarzentruber, 2015] (see also
[Charrier et al., 2019] for a more comprehensive study). The
satisfiability problem of APAL is undecidable [French and
van Ditmarsch, 2008], but gets decidable when announce-
ments are propositional [van Ditmarsch and French, 2017].

5.2 Non-Modal Belief Revision
Schwind et al. [2019] considered a related problem called in-
verse revision (IR): when is Ki ∗i φ = ψi for all agents i
possible, where φ and any AGM-style revision operators ∗i
can be chosen; the set of all such φ is called the frame, which
is complete if any φ and φ′ are logically equivalent. Checking
whether a formula φ is in the frame is co-NP-complete, and
deciding frame-completeness is Πp

2-complete.
Apparently, IR solutions are PAP solutions when the oper-

ators are fixed, but not the other way around. In fact, the aims
of IR and PAP are different: the former wants to achieve an
exact local belief state, while PAP aims to achieve goal fulfill-
ment by an announcement. Our complexity results show that
for AGM operators, the reasoning tasks can be intertranslated
in polynomial time; studying this remains for future work.

6 Conclusion
We have considered the complexity of public announcement
finding in a non-modal setting, where agents incorporate an-
nouncements using a revision operator. We have shown that
for all AGM style operators, deciding existence of a solution
is always in Σp2 and Σp2-hard for Dalal’s operator, closing an
open problem. Furthermore, we have shown that for all op-
erators definable by preorders, the problem is in EXPTIME in
general and EXPTIME-hard for Ginsberg’s operator. More-
over, we proved lower complexity under restrictions.

Our work can be extended in different directions. First,
one may consider other revision operators, such as those
in [Eiter and Gottlob, 1992] or iterated revision operators
[Darwiche and Pearl, 1997; Jin and Thielscher, 2007]. In
this context, extending our main results to relations �K
that always allow for revision models seems possible. Sec-
ond, besides AGM revision operators Katsuno and Mendel-
zon [1991] characterized update operators � as in [Winslett,
1988; Forbus, 1989], which reflect change of the world rather
than of the belief about the world, by model selection; specif-
ically, mod(K �φ) =

⋃
µ|=K min�µ(mod(φ))), where �µ is

a preorder. Using update operators for public announcements
is natural; by our techniques, the respective solution existence
problems can be solved in exponential time.

Finally, in addition to extending our approach to different
revision operators, it would also be interesting to consider
the application of the techniques used in this paper in other
domains, such as preference aggregation.
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