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Abstract
Argumentation is a widely applied framework for
modeling and evaluating arguments and its rea-
soning with various applications. Popular frame-
works are abstract argumentation (Dung’s frame-
work) or logic-based argumentation (Besnard-
Hunter’s framework). Their computational com-
plexity has been studied quite in-depth. Incor-
porating treewidth into the complexity analysis is
particularly interesting, as solvers oftentimes em-
ploy SAT-based solvers, which can solve instances
of low treewidth fast. In this paper, we ad-
dress whether one can design reductions from ar-
gumentation problems to SAT-problems while lin-
early preserving the treewidth, which results in
decomposition-guided (DG) reductions. It turns
out that the linear treewidth overhead caused by our
DG reductions, cannot be significantly improved
under reasonable assumptions. Finally, we consider
logic-based argumentation and establish new upper
bounds using DG reductions and lower bounds.

1 Introduction
Argumentation is a widely applied framework for modeling
and evaluating arguments and its reasoning with various ap-
plications. Many different directions of argumentation theory
have been successfully perused in the area of AI [Amgoud
and Prade, 2009; Maher, 2016; Rago et al., 2018]. Popu-
lar frameworks are abstract argumentation (Dung’s frame-
work) [Dung, 1995; Rahwan, 2007] or logic-based argumen-
tation [Besnard and Hunter, 2008].

In abstract argumentation, one describes arguments by no-
tions that state acceptability with respect to an abstract frame-
work, such as stable or admissible. Such arguments are then
called extensions of a framework. In the logic-based method,
one aims for inclusion-minimal consistent sets Φ of formu-
las (the support) that entail a claim α, which is encoded by a
Boolean formula. If such a pair exists, then one calls (Φ, α)
an argument. In this context, we consider three central de-
cision problems. The first, ARG, asks, given a set ∆ of
∗The work is supported by Austrian Science Fund (FWF), Grants

Y698 and P32830, the Vienna Science and Technology Fund, Grant
WWTF ICT19-065, and the DFG (ME4279/1-2) under 247444366.

formulas, the so-called knowledge-base (KB), and a formula
α, whether there exists a subset Φ ⊆ ∆ such that (Φ, α) is
an argument in ∆. The two further problems of interest are
ARG-Check, which asks whether a given set is a support for
a given claim, and ARG-Rel, for which—besides given KB
and claim—a formula has to be contained in the support.
Example 1. (A1) Support: We have enough money (xem) and
there is no travel restriction, so we can travel (xtr). Claim: We
can travel to Montreal (xtM). (A2) Support: Corona cases are
increasing (xC) and governments are imposing travel restric-
tions. Claim: We cannot travel to anywhere anymore. For-
malizing these yields: A1 : Φ1 = {xem, xtr, (xem ∧ xtr) →
xtM}, α1 = {xtM}, A2 : Φ2 = {xC, xC → ¬xtr}, α2 =
{¬xtr}. Each argument supports its claim, whereas, together
they are conflicting, as A2 attacks A1.

The computational complexity of abstract argumentation
has been studied quite in-depth for different problems and
fragments of existence [Dunne and Bench-Capon, 2002;
Dvořák and Woltran, 2010; Dvořák, 2012], (projected) count-
ing [Baroni et al., 2010; Fichte et al., 2019], and enu-
meration [Kröll et al., 2017] with results mostly on the
first or second level of the polynomial hierarchy. Similarly
for logic-based argumentation, ARG was shown to be Σp

2 -
complete [Parsons et al., 2003]. More in-depth works con-
sider the dichotomy between classes of tractability and in-
tractability [Creignou et al., 2011; Creignou et al., 2014].
Also, more fine-grained analyzes when incorporating addi-
tional structure have been established [Dvořák et al., 2012;
Fichte et al., 2019; Lampis et al., 2018], for example,
treewidth, which is defined on graph representations of the
input. Treewidth k of an instance describes the hardness for
evaluating the instance (bucket elimination) [Dechter, 1999;
Cygan et al., 2015], when designing an algorithm that avoids
backtracking and brute-forces only f(k) times. Treewidth is
particularly interesting for analyzing the complexity, as ab-
stract argumentation solvers oftentimes employ solvers based
on SAT and extensions [Brochenin et al., 2018; Charwat et
al., 2015; Alviano, 2018], which can solve instances of low
treewidth fast [Atserias et al., 2011; Bacchus et al., 2003].
However, employing low treewidth only works in practical
settings if the reduction to (extensions of) SAT is not already
very expensive in the treewidth; more precisely, if there are
reductions from problems of abstract argumentation to SAT
or 2-QBF that linearly preserve the treewidth and can be
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computed reasonably fast. Surprisingly, this is unknown for
abstract argumentation. For logic-based argumentation even
bounded treewidth results are missing.
Contributions. In more detail, we address these questions:

1. We present decomposition-guided reductions (DG) for
abstract argumentation problems when parameterized by
treewidth. Our DG reductions are guided by a tree de-
composition and allow to compile argumentation prob-
lems into SAT or 2-QBF with low (tree)width overhead.

2. We confirm that such reductions cannot be significantly
improved under the exponential time hypothesis (ETH).

3. Furthermore, we consider the setting of logic-based ar-
gumentation. We establish new upper bounds using DG
reductions and lower bounds by reducing from 2-QBF
(ARG and ARG-Rel) or SAT (ARG-Check).

Related Works. Upper bounds by reductions to QBF
for problems in abstract argumentation and treewidth un-
der admissible and preferred semantics have been consid-
ered [Lampis et al., 2018]. Dynamic programming algo-
rithms and lower bounds have been established for various
semantics [Fichte et al., 2019]. We go beyond and present a
systematic approach for the full set of standard semantics that
linearly preserves the treewidth. Hecher [2020] recently es-
tablished reductions that employ decompositions for answer-
set programming. Various works considered QBF and ETH
lower bounds for treewidth [Chen, 2004; Lampis and Mitsou,
2017]. Solvers that explicitly exploit treewidth proved useful
in various applications, e.g., model counting [Hecher et al.,
2020] and QBF [Charwat and Woltran, 2019].

2 Preliminaries
We assume familiarity with computational complexity [Pip-
penger, 1997], graph theory [Bondy and Murty, 2008], and
Boolean logic [Biere et al., 2009].
Quantified Boolean Formulas. Let ` be a positive inte-
ger, which we call (quantifier) rank later, and > and ⊥ be
the constant always evaluating to 1 and 0, respectively. For
a Boolean formula F , we abbreviate by var(F ) the vari-
ables occurring in F and F (X1, . . . , Xl) to indicate that
X1, . . . , Xl ⊆ var(F ). A quantified Boolean formula φ (in
prenex normal form), qBf for short, is an expression of the
form φ = Q1X1.Q2X2. · · ·Q`X`.F (X1, . . . , X`), where for
1 ≤ i ≤ `, we have Qi ∈ {∀, ∃} and Qi 6= Qi+1, the
Xi are disjoint, non-empty sets of Boolean variables, and
F is a Boolean formula. We let matrix(φ) := F and we
say that φ is closed if var(matrix(F )) =

⋃
i∈`Xi. We

evaluate φ by ∃x.φ ≡ φ[x 7→ 1] ∨ φ[x 7→ 0] and ∀x.φ ≡
φ[x 7→ 1] ∧ φ[x 7→ 0] for a variable x. W.l.o.g. we assume
that matrix(φ) = ψCNF ∧ ψDNF, where ψCNF is in CNF (dis-
junction of conjunctions of literals) and ψDNF is in DNF (con-
junction of disjunctions of literals). Then, depending on Q`,
either ψCNF or ψCNF is optional, more precisely, ψCNF might
be >, if Q` = ∀, and ψDNF is allowed to be >, otherwise.
The problem `-QBF asks, given a closed qBf φ = ∃X1.φ

′ of
rank `, whether φ ≡ 1 holds. The problem #`-QBF asks,
given a closed qBf ∃X1.φ of rank `, to count assignments α
to X1 such that φ[α] ≡ 1. For brevity we might omit `.

Tree Decompositions and Treewidth. For a rooted (di-
rected) tree T = (N,A) with root root(T ) and a node t ∈ N ,
we let children(t) be the set of all nodes t′, which have an
edge (t, t′) ∈ A. Let G = (V,E) be a graph. A tree decom-
position (TD) of a graph G is a pair T = (T, χ), where T is
a rooted tree, and χ is a mapping that assigns to each node t
of T a set χ(t) ⊆ V , called a bag, such that:

1. V =
⋃
t of T χ(t) and E ⊆

⋃
t of T {{u, v} | u, v ∈ χ(t)}

2. for each s lying on any r-t-path: χ(r) ∩ χ(t) ⊆ χ(s).
Then, define width(T ) := maxt of T |χ(t)|−1. The treewidth
tw(G) of G is the minimum width(T ) over all tree decompo-
sitions T ofG. Observe that for every vertex v ∈ V , there is a
unique node t∗ with v ∈ χ(t∗) such that either t∗ = root(T )
or there is a node t of T with children(t)={t∗} and v /∈ χ(t).
We refer to the node t∗ by last(v). For arbitrary but fixedw ≥
1, it is feasible in linear time to decide if a graph has treewidth
at most w and, if so, to compute a TD of width w [Cygan et
al., 2015]. In this work, we assume only TDs (T, χ), where
for every node t of T , we have that |children(t)| ≤ 2. Such
a TD can be obtained from any TD in linear time without
increasing the width.

Treewidth and qBfs. For a given qBf φ with matrix(φ) =
ψCNF ∧ ψDNF, we define the primal graph Gφ = Gmatrix(φ),
whose vertices are var(matrix(φ)). Two vertices of Gφ are
adjoined by an edge, whenever the corresponding variables
share a clause or term of ψCNF or ψDNF, respectively.

Let tower(i, p) be tower(i−1, 2p) if i > 0 and p otherwise.
Further, we assume that poly(n) is any polynomial for given
positive integer n. The following result is known for QBF.

Proposition 2 (Chen, 2004). For any arbitrary qBf φ of
quantifier rank ` > 0, the problem `-QBF can be solved in
time tower(`,O(tw(Gϕ))) · poly(|var(φ)|).

Assuming the exponential time hypothesis (ETH) [Impagli-
azzo et al., 2001], one cannot significantly improve this run-
time in the worst case. Intuitively, the ETH implies that nei-
ther SAT=1-QBF nor #SAT=#1-QBF can be decided in time
better than 2o(|var(ϕ)|) for an arbitrary formula ϕ.

Proposition 3 (Fichte et al., 2020). Under ETH, for any ar-
bitrary qBf ϕ of quantifier rank ` > 0, problem `-QBF cannot
be solved in time tower(`, o(tw(Gϕ))) · poly(|var(ϕ)|).
Abstract Argumentation. We use Dung’s argumentation
framework [Dung, 1995] and consider only non-empty and
finite sets of arguments A. An (argumentation) frame-
work (AF) is a directed graph F = (A,R) where A is a set of
arguments and R ⊆ A× A, a pair of arguments representing
direct attacks of arguments. An argument s ∈ S, is called de-
fended by S in F if for every (s′, s) ∈ R, there exists s′′ ∈ S
such that (s′′, s′) ∈ R. The family defF (S) is defined by
defF (S) := {s | s ∈ A, s is defended by S in F}. In ab-
stract argumentation, one strives for computing so-called ex-
tensions, which are subsets S ⊆ A of the arguments that have
certain properties. The set S of arguments is called conflict-
free in S if (S × S) ∩ R = ∅; S is admissible in F if (1) S
is conflict-free in F , and (2) every s ∈ S is defended by S
in F . Let S+

R := S ∪ { a | (b, a) ∈ R, b ∈ S } and S be
admissible. Then, S is a) complete in F if defF (S) = S; b)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1881



preferred in F , if no S′ ⊃ S exists that is admissible in F ; c)
semi-stable in F if no admissible set S′ ⊆ A in F with S+

R (
(S′)+R exists; and d) stable in F if every s ∈ A\S is attacked
by some s′ ∈ S. A conflict-free set S is stage in F if there
is no conflict-free set S′ ⊆ A in F with S+

R ( (S′)+R. For
a semantics S ∈ {adm, comp, pref, semiSt, stab, stag}, we
write S(F ) for the set of all extensions of semantics S in F .
Given an AF F =(A,R). Then, problem S asks if S(F ) 6= ∅
and #S asks to compute |S(F )|. The problems cS and sS
question for c∈A and s∈A, whether c is in some S ∈ S(F )
(“credulously accepted”) and s is in every S ∈ S(F ) (“skep-
tically accepted”), respectively. Finally, problem #cS asks
for c ∈ A, to compute |{S | S ∈ S(F ), c ∈ S}|.
TDs for AFs. Consider for AF F = (A,R) the primal
graph GF , where we simply drop the direction of every
edge, i.e., GF = (A,R′) where R′ := {{u, v} | (u, v) ∈ R}.
For any TD T = (T, χ) of GF and any node t of T , we
let Rt := R ∩ {(a, b) | a, b ∈ χ(t)} be the bag attacks of t.
Logic-based Argumentation. We study logic-based argu-
mentation (LA) [Besnard and Hunter, 2008] using notions of
Creignou et al. [2014]. Given sets Φ and ∆ of Boolean for-
mulas and a Boolean formula α, the tuple (Φ, α) is an argu-
ment for α if (1) Φ is consistent, (2) Φ |= α, and (3) Φ is
subset-minimal w.r.t. (2). In case of Φ ⊆ ∆, tuple (Φ, α) is
an argument in ∆. We call α the claim, Φ the support of the
argument, and ∆ the knowledge-base. We consider the fol-
lowing problems. The problem ARG (argument existence)
asks, given a set of formulas ∆ and a formula α, is is there a
set Φ ⊆ ∆ such that (Φ, α) is an argument in ∆? The prob-
lem ARG-Check (verification) asks, given a set of formulas
Φ and a formula α, is is (Φ, α) an argument? The problem
ARG-Rel (relevance) asks, given a set of formulas ∆, and
formulas ψ ∈ ∆ and α, is is there a set Φ ⊆ ∆ with ψ ∈ Φ
such that (Φ, α) is an argument in ∆? Note that for deciding
ARG and ARG-Rel, Condition (3) above is irrelevant.

In this work, we assume w.l.o.g. that the KB ∆ is a set
of clauses (CNF) and that α is in DNF. This simplifies pre-
sentation, but is not a hard restriction, as problems ARG and
ARG-Rel remain Σp

2 -, whereas ARG-Check remains DP-
complete [Parsons et al., 2003; Creignou et al., 2011].
TDs for LA. In order to apply treewidth for logic-based ar-
gumentation, we let ∆ be a set of clauses and α be a Boolean
formula in DNF. Then, the primal graph G(∆,α) := G∆∧α,
where ∆ is viewed as a CNF formula. Further, for any
TD T = (T, χ) of G(∆,α) and any node t of T , let ∆t :={φi |
φi ∈ ∆, var(φi) ⊆ χ(t)} be the bag knowledge base of t.
Example 4. Consider the argument (Φ1, α1) from Exam-
ple 1. Notice that the support Φ1 can be written in CNF as
Φ1 = {xem, xtr,¬xem ∨ ¬xtr ∨ xtM} and α1 = {xtM}. Then,
G(Φ,α) has {xem, xtr, xtM} as the set of vertices and there are
edges between all three, because they share a clause.

3 Decomposition-Guided Reductions for AFs
We briefly discuss a new type of reductions below.

3.1 Decomposition-Guided Reductions to QBF
Inspired by recent related work [Hecher, 2020], we in-
troduce so-called decomposition-guided reductions as fol-

χ(t3)t3

χ(t1)

t1
χ(t2) t2

χ(t4)

t4
χ(t5)t5T :

f(t3, χ(t3), {χ′(t1), χ′(t2)})

f(t1, χ(t1), ∅) f(t2, χ(t2), ∅)

f(t4, χ(t4), ∅)

T ′: f(t5, χ(t5), {χ′(t3), χ′(t4)})

Figure 1: Illustration of a DG reduction R from problem P to QBF,
where we take an instance I of problem P and a TD T = (T, χ)
of GI . Then, since the DG reduction is constructed for each node t
of T , it immediately yields a TD T ′ = (T, χ′) of Gϕ of the resulting
qBf ϕ. Each bag χ′(t) of a node t of T functionally depends on t,
χ(t), as well as χ′(t′) of every child node t′ ∈ children(t).

lows. A decomposition-guided (DG) reduction R is a
function that takes both an instance I of a problem P
and a TD T = (T, χ) of GI , and returns a qBf ϕ in
time tower(`, o(width(T )))·poly(|var(ϕ)|). The time restric-
tion ensures that R does not already solve the resulting qBf
(cf. Proposition 2). The way a DG reduction is constructed,
it has to yield a TD T ′ = (T, χ′) of Gϕ. So, the idea of
such a DG reduction is to construct ϕ from a TD node’s
point of view. Thereby, for each node t of T , the constructed
bag χ′(t) functionally depends on the original bag χ(t), but
also on the constructed bags χ′(t1), . . . , χ′(to) of its child
nodes {t1, . . . , to} = children(t). This gives rise to a func-
tion f that takes a tree decomposition node t, its bag χ(t)
and a set χ′(children(t)) := {χ′(ti) | ti ∈ children(t)} of
constructed bags for the child nodes of t. Figure 1 illus-
trates that function f taking a node t, its original bag χ(t),
as well as χ′(children(t)), to construct each bag χ′(t) =
f(t, χ(t), χ′(children(t))). Then, since width(T ) is bounded
by O(maxt of T (|χ(t)|)), also the treewidth of the resulting
qBf is at most O(maxt of T (|f(t, χ(t), χ′(children(t))|)). In-
tuitively, DG reductions are guided by a TD T = (T, χ) and
adhere to ideas of dynamic programming along TD T . How-
ever, the DG reduction has to ensure that T ′ is a TD of Gϕ.

Next, we present DG reductions for problems originating
from abstract argumentation that linearly preserve treewidth.
These problems serve as a demonstration of DG reductions.
To this end, we assume for the rest of this section that F =
(A,R) is an AF and that T = (T, χ) is a given TD of GF .

3.2 Stable Extensions
First, we compute stable extensions via a reduction to SAT,
i.e., such that the extensions are represented via a Boolean
formula. To this end, we start with the following reduction.
We use a variable ea for every argument a ∈ A, which indi-
cates whether a is in the extension or not. These variables are
part of the extension variables E := {ea | ea ∈ A}. We use
sub-formulas confR(E) and inOrXR(E) to ensure conflict-
freeness and to determine that every argument is either in the
extension or attacked by the extension, respectively. More
formally, we let confR(E) :=

∧
(a,b)∈R(¬ea ∨ ¬eb) and

inOrXR(E) :=
∧
a∈A(

∨
(b,a)∈R eb ∨ ea).

These definitions can be used to encode stab, but also
#cstab: ∃E.confR(E) ∧ inOrXR(E) ∧ ec. While confR(E)
already preserves the treewidth, inOrXR(E) does not. This is
witnessed by the observation that formula inOrXR(E) could
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cause dense parts in the primal graph of the formula.

DG Reduction. Consequently, one needs to split
inOrXR(E) in order to linearly preserve the treewidth.
To this end, we design a DG reduction, where we also
consider the TD T . We split inOrXR(E) with the help of
auxiliary variables of the form dta for every node t of T
and argument a ∈ A to indicate whether a is attacked
(“defeated”) by an argument b ∈ χ(t) of the extension. This
leads to defeated variables D := {dta | a ∈ A, t in T}.

Then, we define a DG reductionR#cstab→#SAT(F, T ) by
R#cstab→#SAT(F, T ) := ∃E,D.ϕ#stab(E,D) ∧ ec,

where ϕ#stab(E,D) is a CNF consisting of Formulas (1)–(3):

dta ↔
∨

t′∈children(t),
a∈χ(t′)

dt
′

a ∨
∨

(b,a)∈Rt

eb for every t of T, a ∈ χ(t) (1)

confR(E) (2)

ea ∨ dlast(a)a for every a ∈ A. (3)

Intuitively, Formulas (1) guide information of defeated argu-
ments along the TD and Formulas (3) ensure that an argument
is either in the extension or defeated. Since the reduction is
constructed for each node of T , it is easy to see that the DG
reduction is correct and preserves the (tree)width linearly.

Theorem 5 (TW-Awareness). Let F = (A,R) be an AF
and T = (T, χ) be a TD of F of width k. Then, the DG re-
duction R#cstab→#SAT(F, T ) constructs a qBf ψ that linearly
preserves the width, i.e., tw(Gmatrix(ψ)) ∈ O(k).
Proof (Sketch). We construct a TD T ′ = (T, χ′) of Gψ as fol-
lows. For every node t of T , we let χ′(t) := χ(t) ∪ {ea, dta |
a ∈ χ(t)} ∪ {dt′a | a ∈ χ(t) ∩ χ(t′), t′ ∈ children(t)}.
Since |children(t)| ≤ 2, we have that |χ′(t)| ≤ 5 · |χ(t)|.

Interestingly, it is not expected that one can significantly
improve (decrease) the treewidth in such a DG reduction.

Theorem 6 (TW-LB). Let F = (A,R) be an AF and T be a
TD of F . Under ETH, the DG reductionR#cstab→#SAT(F, T )
cannot be significantly improved, i.e., there is no reduc-
tionR′ from cstab to SAT yielding a qBf ψ in time 2o(tw(GF )) ·
poly(|A|) with tw(Gψ) ∈ o(tw(GF )).
Proof (Sketch). Assume towards a contradiction that there
is such a reduction R′. Then, we apply R′ in order to
solve cstab for F in time 2o(tw(GF )) · poly(|A|), which con-
tradicts ETH [Fichte et al., 2019].

3.3 Admissible Extensions
Similar to above, for computing admissible extensions, we
follow a plain reduction to SAT. As above, we use exten-
sion variables E as well as sub-formula confR(E) to deter-
mine conflict-freeness. Further, we require defR(E) to en-
sure that attackers of the extension are defeated, respectively.
Let defR(E) :=

∧
(b,a)∈R(

∨
(c,b)∈R ec ∨ ¬ea).

Then, these definitions can be used to encode adm as fol-
lows: ∃E.(confR(E) ∧ defR(E)). While confR(E) already
preserves the treewidth, defR(E) does not, which is wit-
nessed by the same argument as for inOrXR(E) above.

DG Reduction. Towards a DG reduction, one needs to
split defR(E) in order to linearly preserve the treewidth. Sim-
ilar to above, we split defR(E) with the help of auxiliary vari-
ables, namely the defeated variables D. However, we also
need further auxiliary variables of the form na for every ar-
gument a ∈ A to indicate whether a never attacks an argu-
ment of the extension. These variables are referred to by the
no-attacking variables N := {na | a ∈ A}.

Then, we define DG reductionRadm→SAT(F, T ) to SAT

Radm→SAT(F, T ) := ∃E,D,N.ϕadm(E,D,N), where

ϕadm(E,D,N) consists of Formulas (1), (2) and (4), (5):

¬na ∨ ¬eb for every (a, b) ∈ R (4)

ea ∨ na ∨ dlast(a)a for every a ∈ A. (5)

Thereby, Formulas (4) define na and Formulas (5) gener-
alize Formulas (3) towards admissible semantics.
Lifting to #cadm. In order to bijectively preserve admissi-
ble extensions of F , we add to ϕadm(E,D,N) the following
Formulas (6), (7), which finally results in ϕ#adm(E,D,N):
¬na ∨ ¬ea for every a ∈ A (6)

¬na ∨ ¬dlast(a)a for every a ∈ A. (7)

So, R#cadm→#SAT(F, T ) :=∃E,D,N.ϕ#adm(E,D,N) ∧
ec. As before, this reduction linearly preserves the (tree)width
and it is not expected that the treewidth increase can be sig-
nificantly reduced. Consequently, we obtain similar results to
Theorems 5 and 6 for problems #cadm and cadm, which can be
solved by enforcing that the argument of concern is in the ex-
tension. We can further lift the reduction for problems ccomp

and #ccomp, as shown in an extended (self-archived) version.

3.4 Preferred Extensions
Reusing the definitions from above, one can reduce pref to
2-QBF, where we use a set Ẽ of fresh variables obtained
from E s.t. Ẽ := {ẽa | ea ∈ E}, by: ∃E.∀Ẽ.[confR(E) ∧
defR(E)∧(Ẽ 6⊃E∨¬confR(Ẽ)∨¬defR(Ẽ))],where encod-
ing Ẽ 6⊃E accordingly is not difficult.

Towards a DG reduction, we keep reusing confR(Ẽ) over
variables Ẽ. However, checking equality needs to be guided
along the TD. We use inequality variables qa (qt), indicating
that ea ↔ ¬ẽa (for some a ∈ A below t), respectively. We
define Q := {qt, qa | t of T, a ∈ A}. Eventually, use fresh
sets D̃, Ñ of variables obtained from D, N , respectively.

Then, we define a DG reductionR#pref→#2-QBF(F, T ) :=

∃E,D,N.∀Ẽ, D̃, Ñ , Q.[ϕ#adm(E,D,N)∧
(ϕẼ 6⊃E(E, Ẽ,Q) ∨ ¬ϕ#adm(Ẽ, D̃, Ñ))],

where ϕ#adm is constructed as above and ϕẼ 6⊃E(E, Ẽ,Q) is
in DNF consisting of Formulas (8)–(11):
ea ∧ ¬ẽa for every a ∈ A (8)
¬(qa ↔ ẽa ∧ ¬ea) for every a ∈ A (9)

¬(qt ↔
∨

t′∈children(t)

qt
′
∨

∨
a∈χ(t)

qa) for every t of T (10)

¬qroot(T ). (11)
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Formulas (8) allow the extension over E to contain an ar-
gument not in Ẽ, Formulas (9) define inequality and Formu-
las (10) guide inequality along the TD. Finally, with Formu-
las (11), equal extensions over E and Ẽ are allowed. These
formulas can be converted to DNF easily, where, e.g., Formu-
las (9) result in (qa ∧ ¬ẽa) ∨ (qa ∧ ea) ∨ (ẽa ∧ ¬ea ∧ ¬qa).

As before, the (tree)width is preserved linearly. While cpref
can be already decided via cadm, one can solve spref with this
reduction above by adding clause¬es and inverting the result.

3.5 Semistable and Stage Extensions
The idea from above can be reused in order to design DG
reductionR#csemiSt→#2-QBF(F, T ) :=

∃E,D,N.∀Ẽ, D̃, Ñ , Q.[ϕ#adm(E,D,N) ∧ ec
(ϕẼ+

R 6⊃E
+
R
(E, Ẽ,Q) ∨ ¬ϕ#adm(Ẽ, D̃, Ñ))],

where ϕẼ+
R 6⊃E

+
R
(E, Ẽ,Q) is in DNF and consists of Formu-

las (10), (11), and (12)–(18) below. Similar to Formulas (8),
Formulas (12) and (13) allow that E+

R might contain argu-
ments not in Ẽ+

R :
ea ∧ ¬ẽa ∧ ¬d̃last(a)a for every a ∈ A (12)

dlast(a)a ∧ ¬ẽa ∧ ¬d̃last(a)a for every a ∈ A (13)

Similar to Formulas (9), we define qa for ranges of E and Ẽ,
corresponding to ¬(qa ↔ (ẽa ∨ d̃last(a)a ) ∧ ¬ea ∧ ¬dlast(a)a ):
qa ∧ ¬ẽa ∧ ¬dlast(a)a for every a ∈ A (14)
qa ∧ ea for every a ∈ A (15)

qa ∧ dlast(a)a for every a ∈ A (16)

ẽa ∧ ¬ea ∧ ¬dlast(a)a ∧ ¬qa for every a ∈ A (17)

d̃last(a)a ∧ ¬ea ∧ ¬dlast(a)a ∧ ¬qa for every a ∈ A (18)

DG Reduction for #cstage. Analogously to above, we im-
mediately obtain a DG reduction from #cstage to #2-QBF by
R#cstage→#2-QBF(F, T ) := ∃E.∀Ẽ,Q.[confR(E) ∧ ec∧

(ϕẼ+
R 6⊃E

+
R
(E, Ẽ,Q) ∨ ¬confR(Ẽ))].

Indeed, these reductions are correct and treewidth-aware.
Theorem 7 (Correctness). Given an AF F = (A,R) and a
TD T = (T, χ) of GF . Then, the DG reductionR#cS→#2-QBF

for S ∈ {semiSt, stage} is correct, i.e., #cS on F coincides
with #2-QBF onR#cS→#2-QBF(F, T ).
Theorem 8 (TW-Awareness TW-LB). Given an AF F =
(A,R) and a TD T =(T, χ) of GF of width k. Then, the
DG reduction R#cS→#2-QBF(F, T ) for S ∈ {semiSt, stage}
constructs qBf ψ with tw(Gmatrix(ψ)) ∈ O(k). Under ETH,
there is no reduction from cS to 2-QBF yielding qBf ψ in time
tower(2, o(tw(GF ))) · poly(|A|) with tw(Gψ)∈ o(tw(GF )).

4 A Complexity Study for Logic-Based Arg.
4.1 Argument Existence and Relevance
We reduce an instance (∆,α) of ARG to an instance of
2-QBF. Let ∆ = {Ci, | 1 ≤ i ≤ n} be a collection of
clauses and α be a Boolean formula in DNF. We use a vari-
able ei for each i to encode whether Ci is contained in the

support. Consequently, let the support variables E be de-
fined by E := {ei | 1 ≤ i ≤ n}. Then, let M be the set
of variables over var(∆). Moreover, let N := var(∆ ∪ {α})
and let Ñ denote the renaming of variables in N . That is
Ñ := {x̃i | xi ∈ N} and each x̃i is a fresh variable. Fi-
nally, by C̃, α̃ and ∆̃ denote C, α and ∆ over renamed vari-
ables. Now, let cons∆(E,M) :=

∧
Ci∈∆(¬ei ∨ Ci) and

ent∆,α(E, Ñ) :=
∨
Ci∈∆(ei∧¬C̃i)∨ α̃. Then, we construct

ψ′ARG = ∃E,M.∀Ñ .(cons∆(E,M) ∧ ent∆,α(E, Ñ)).
Intuitively, setting ei ∈ E to 1 implies that the correspond-

ing Ci ∈ ∆ constitutes a support Φ. Then, ent∆,α(E, Ñ)

achieves that whenever an assignment over variables Ñ is a
model of each C̃i, the assignment also models α̃.

Theorem 9 (Correctness). Let (∆,α) be an instance of
ARG. Then, there is a support Φ ⊆ ∆ such that (Φ, α) is
an argument in ∆ if and only if ψ′ARG is true.

The two subformulas cons∆(E,M) and ent∆,α(E, Ñ) do
not preserve the treewidth (one bag may contain variables
from multiple clauses causing many ei). For this reason, we
split the formula in order to linearly preserve the treewidth.

DG Reduction. Let T = (T, χ) be a TD of G(∆,α). Then,
we define a labeled TD (LTD) T ′ = (T, χ, δ) of T , where
labeling δ : T → ∆ is such that δ(t) ∈ ∆t and ∆ =⋃
t of T {δ(t)}. Note that an LTD can be easily obtained from

any TD without changing the width by copying nodes accord-
ingly. Next, we assume such an LTD T ′ = (T, χ, δ) of T .
Then, we construct the following formula,
RARG→2-QBF(I, T ′) := ∃E,M.∀Ñ .ϕARG(E,M, Ñ),

where ϕARG is built for every node t of T by
cons{δ(t)}(E,M) ∧ ent{δ(t)}(E, Ñ).

Indeed, both subformulas preserve the treewidth linearly.

Theorem 10 (TW-Awareness). Let I = (∆,α) be an in-
stance of ARG, T be a TD of G(∆,α) of width k, and T ′ be
an LTD of T . Then, the DG reduction RARG→2-QBF(I, T ′)
constructs a qBf ψARG with tw(Gmatrix(ψARG)) ∈ O(k).
Proof (Sketch). For any given LTD T ′=(T, χ, δ) of T , the
reduction yields a TD T2-QBF=(T, χ′) where the set T re-
mains unchanged. Bag χ′(t) for each node t is constructed
by adding a renamed copy of variables in χ(t) and the sup-
port variable ei to χ(t), where ei is such that δ(t) = Ci.

This immediately yields the following runtime result.

Theorem 11 (Runtime UB). Let I = (∆,α) be an instance
of ARG. Then, ARG can be solved in time tower(2,O(k)) ·
poly(|var(∆) ∪ var(α)|), where k = tw(GI).
Proof. We construct a TD T of GI of treewidth at most 5·k in
time 2O(k) ·poly(|var(∆) ∪ var(α)|) [Cygan et al., 2015] and
LTD T ′ of T . Then, we use reduction RARG→2-QBF(I, T ′),
which together with Proposition 2 establishes the result.

Unluckily, this can probably not be significantly improved.

Theorem 12 (Runtime LB). Let I = (∆,α) be an in-
stance of ARG. Then, under ETH, ARG cannot be solved
in time tower(2, o(tw(GI)) · poly(|var(∆) ∪ var(α)|).
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Abstract Argumentation Logic-based Argumentation

cstab, cadm, ccomp, cpref , spref / #cpref
csemiSt, cstage, ARG

ARG-Check
#cstab, #cadm, #ccomp #csemiSt, #cstage ARG-Rel

TW-Awareness O(k)O(k)O(k)∗ O(k)O(k)O(k)∗ O(k)O(k)O(k) O(k)O(k)O(k) O(k)O(k)O(k)
TW-LB (ETH) Ω(k)Ω(k)Ω(k) Ω(k)Ω(k)Ω(k) / open Ω(k)Ω(k)Ω(k) Ω(k)Ω(k)Ω(k) Ω(k)Ω(k)Ω(k)

Runtime UB 2O(k) · poly(n) 22
O(k) · poly(n) 22

O(k) · poly(n) 22
O(k) · poly(n)22
O(k) · poly(n)22
O(k) · poly(n) 2O(k) · poly(n)2O(k) · poly(n)2O(k) · poly(n)

Runtime LB (ETH) 2o(k) · poly(n) 22
o(k) · poly(n) / open 22

o(k) · poly(n) 22
o(k) · poly(n)22
o(k) · poly(n)22
o(k) · poly(n) 2o(k) · poly(n)2o(k) · poly(n)2o(k) · poly(n)

Table 1: Overview of results, where k = tw(GF ) and n = |A| for given AF F = (A,R) of abstract arg., and k = tw(G(∆,α)), n =
|var(∆) ∪ var(α)| for an instance (∆,α) of logic-based arg. Bold results form new contributions; for known results see [Lampis et al., 2018;
Fichte et al., 2019]. ∗: While DG reductions preserving widths are new, reductions for linearly preserving treewidth are known for adm and
pref [Lampis et al., 2018]. “TW-Awareness” refers to the treewidth increase caused by DG reductions, “TW-LB (ETH)” refers to treewidth
lower bounds of DG reductions under ETH, “UB” are runtime upper bounds, and “LB (ETH)” are runtime lower bounds under ETH.

One cannot expect to improve the DG reduction much.
Theorem 13 (TW-LB). Let I = (∆,α) be an instance of
ARG. Under ETH, there is no reduction R′ from ARG to
2-QBF yielding a qBf ψARG in time tower(2, o(tw(GI))) ·
poly(| var(∆) ∪ var(α)|) with tw(GψARG

) ∈ o(tw(GI)).
Argument Relevance Problem (ARG-Rel). Consider the
reduction for ARG again. The question of ARG-Rel now
reduces to forcing one particular element of E in the solu-
tion. W.l.o.g., assume that ψ = C1 with C1 ∈ ∆. Then,
(∆,α, ψ) ∈ ARG-Rel if and only if there is a support Φ
that contains C1. This can be encoded by ∃E,M.∀Ñ .(e1 ∧
ϕARG(E,M, Ñ)). The correctness proof, treewidth preser-
vation, as well as upper bounds remain the same as for ARG.

Furthermore, notice that the problem ARG-Rel is as hard
as the problem ARG. This is because an instance (∆,α)
of ARG has a support Φ if and only if an instance (∆ ∪
{ψ}, α, ψ) of ARG-Rel has one, where ψ 6∈ ∆ is a satisfi-
able formula over fresh variables not in var(∆). This implies
that lower bounds under ETH transfer to ARG-Rel.

4.2 Argument Verification Problem
It seems challenging to reduce a given instance I = (Φ, α),
where |Φ| = n, of ARG-Check to one instance of SAT as
ARG-Check is DP-complete. A direct reduction encoding
all three sub-questions (Φ is consistent, Φ |= α and no proper
subset of Φ entails α) gives a 2-QBF instance. In the fol-
lowing, we reduce (Φ, α) to a collection of qBfs where each
subformula contains one quantifier, but no alternation within
each subformula. Then, we argue that the resulting qBfs have
(tree)width linear in the width of a given TD T of G(Φ,α).

Let M := var(Φ) ∪ var(α). In order to encode three sepa-
rate conditions, we use n+ 1 many additional copies of vari-
ables of M , which we address with M̃ and M˜i for 1 ≤ i ≤
n. Finally, for a formula φ (resp., a clause Cj) over M , we
write φ̃ (C̃j) and φ˜i (Cj˜i) for the corresponding formula
(clause) over M̃ and M˜i, respectively.

Then, ψARG-Check consists of the n+2 qBfs of the follow-
ing three forms. (i) ∃M.Φ, (ii) ∀M̃.(

∨
1≤i≤n ¬C̃i ∨ α̃) and

for 1 ≤ i ≤ n, (iii) ∃M˜i.(θi˜
i ∧¬α˜i), where θi = Φ\{Ci},

that is, the formula obtained from Φ by removing the i-th
clause. The matrix of the Formula (ii) is in DNF, which en-
codes that for each assignment over variables in M , either it

does not satisfy some clause Ci ∈ Φ or it satisfies α. Formu-
las (iii) encode that for each Ci ∈ Φ there is an assignment
over M , such that the formula θi does not entail α. Notice
that all n + 2 formulas are independent of each other, this is
because each is constructed over a different set of variables.
Further, one can merge Formula (i) with Formulas (iii) into
one qBf, which together with (ii) results in two qBfs. By
slightly abusing notation, we refer to these two qBfs (con-
junction) by RARG-Check→QBF(I, T ) := ψARG-Check. No-
tice that reduction RARG-Check→QBF consists of several DG
reductions corresponding to Formulas (i), (ii), and (iii).

Theorem 14 (Correctness). Let (Φ, α) be an ARG-Check-
instance. Then, (Φ, α) is an argument iff ψARG-Check is true.

The treewidth is preserved (independent copy variables).

Theorem 15 (TW-Awareness). Let I=(Φ, α) be an instance
of ARG-Check and T = (T, χ) be a TD of GI of width k.
Then, RARG-Check→QBF(I, T ) constructs a qBf ψARG-Check

with tw(Gmatrix(ψARG-Check)) ∈ O(k).
This implies that ARG-Check can be solved in time

2O(tw(GI)) ·poly(|var(Φ) ∪ var(α)|). Moreover, we obtain the
matching LB results, similar to Theorem 12 and and 13.

Theorem 16 (Runtime LB). Let I = (Φ, α) be an instance
of ARG-Check. Then, under ETH, ARG-Check cannot be
solved in time 2o(tw(GI)) · poly(|var(Φ) ∪ var(α)|).

5 Conclusions
Our results (summarized in Table 1) provide new theoreti-
cal insights and strengthen the applicability of solvers that
implicitly solve instances by means of tree decompositions.
They might also be helpful for solvers that are indirectly able
to solve instances of low treewidth fast. We present new
treewidth-aware lower bounds (under ETH) as well as tight
upper complexity bounds for logic-based argumentation.

As future work, we plan to study practical implementation
of this framework and thereby further verify its robustness.
Another investigation regarding the strong ETH might under-
line the strength of our approach. As the reductions preserve
the solutions bijectively, they are applicable in the enumera-
tion complexity setting [Fomin and Kratsch, 2010], however a
more rigorous approach might lead to further insights. Could
other parameters obey similar types of reductions?
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