Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Scalable Non-observational Predicate Learning in ASP

Mark Law'*, Alessandra Russo', Krysia Broda' and Elisa Bertino?

Tmperial College London, UK
2Purdue University, USA

{mark.law09, a.russo, k.broda} @imperial.ac.uk, bertino@purdue.edu

Abstract

Recently, novel ILP systems under the answer set
semantics have been proposed, some of which are
robust to noise and scalable over large hypothe-
sis spaces. One such system is FastLAS, which is
significantly faster than other state-of-the-art ASP-
based ILP systems. FastLAS is, however, only ca-
pable of Observational Predicate Learning (OPL),
where the learned hypothesis defines predicates
that are directly observed in the examples. It cannot
learn knowledge that is indirectly observable, such
as learning causes of observed events. This class
of problems, known as non-OPL, is known to be
difficult to handle in the context of non-monotonic
semantics. Solving non-OPL learning tasks whilst
preserving scalability is a challenging open prob-
lem.

We address this problem with a new abductive
method for translating examples of a non-OPL task
to a set of examples, called possibilities, such that
the original example is covered iff at least one of
the possibilities is covered. This new method al-
lows an ILP system capable of performing OPL
tasks to be “upgraded” to solve non-OPL tasks. In
particular, we present our new FastNonOPL sys-
tem, which upgrades FastLAS with the new pos-
sibility generation. We compare it to other state-of-
the-art ASP-based ILP systems capable of solving
non-OPL tasks, showing that FastNonOPL is sig-
nificantly faster, and in many cases more accurate,
than these other systems.

1 Introduction

The goal of Inductive Logic Programming (ILP) [Muggle-
ton, 1991] is to find a set of logical rules, called a hypoth-
esis, that, together with some existing background knowl-
edge, explains a set of examples. Many of the early ILP sys-
tems were tailored to solve Observational Predicate Learning
(OPL) tasks, where the concept (or predicate) to be learned
is directly observable from the examples. But in practice,
learnable concepts often impact the observable world only

*Contact Author

indirectly, through some (already known) background knowl-
edge. For instance, consider the following example policy
learning problem. An organisation is migrating from one ac-
cess control policy system to a new one based on security lev-
els for files and clearance levels for people. Any person may
access any file whose security level is lower than or equal
to their clearance level. Rules defining the security levels of
files and the clearance levels of people can be learned from
logs of the previous policy that say which people should have
access to which files. An instance of this problem is shown
in Figure 1. Examples of has_access are given, and be-
cause the concepts of security level and clearance level im-
pact has_access through the background knowledge, even
though no explicit examples of these concepts are given, they
are learnable. Learning concepts (or predicates) that are not
directly observable is known as non-Observational Predicate
Learning (non-OPL).

Non-OPL tasks are known to be difficult to handle, es-
pecially in the context of non-monotonic semantics. More
modern non-monotonic ILP systems, such as [Ray, 2009;
Corapi et al., 2010; Corapi et al., 2012; Law et al., 2014],
are able to solve non-OPL tasks but at the cost of scalabil-
ity over large hypothesis spaces. On the other hand, Fast-
LAS [Law et al., 2020al, a novel non-monotonic ILP system
under the answer set semantics [Gelfond and Lifschitz, 1988;
Brewka et al., 2011], has been proven to be significantly
faster and more scalable to larger hypothesis spaces than
other current state-of-the-art ASP-based ILP systems. But,
FastLAS is only capable of solving OPL tasks and solving
non-OPL learning tasks whilst preserving scalability still re-
mains an open problem.

In this paper, we present a new system, called Fast-
NonOPL, which maintains the scalability of FastLAS with
respect to large hypothesis spaces, but expands the applica-
bility to non-OPL tasks and programs with multiple answer
sets. FastNonOPL relies upon a new approach called pos-
sibility generation, which translates each example of a given
non-OPL task to a set of “observational” examples called pos-
sibilities such that the original example is covered if and only
if at least one possibility is covered. In non-OPL tasks where
each example leads to a single possibility, each of the origi-
nal examples can be replaced with its unique possibility and
FastLAS can be used to solve the translated task. We call
such non-OPL tasks non-branching. In the case of branching

1936

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

has_access(P,F):-person(P),file(F), not denied(P,F).
denied(P,F):- not cleared-to_see(P,L), sec_1v(F,L), person(P).
cleared_to_see(P,0..L):-clr_1v(P,L).

P,3):-role(P, ceo).
P,2):-role(P,manager).
P,1):-role(P,analyst).

sec_1v(F, 3) :- trade_secrets(F).
sec_1v(F,2):-employment(F).
sec_1v(F,1):-financial(F).

File | Employment | Financial | Trade Secrets Background:
£, No Yes No
fs Yes Yes No
fs No No Yes
Person Role Access Solution:
Alice CEO {f1, 2,13}
Bob | Manager {f1, 2} clr1v(
Charlie | Analyst {f1} clr 1v(
David Cleaner 0 elrdv(

Figure 1: Policy Example. This representation allows files to have multiple security levels, the highest of which is effective.

non-OPL tasks, where examples lead to multiple possibili-
ties, FastLAS cannot be applied directly. A modified version
of FastLLAS is used which tries to cover one possibility for
each example, instead of attempting to cover all possibilities.
The possibility generation approach is general, so in principle
the modifications to FastLLAS could be made to any “observa-
tional” ILP system to allow it to be used in a similar pipeline
to solve non-OPL tasks.

We evaluate FastNonOPL on datasets which require sys-
tems to solve both branching and non-branching tasks. Fast-
NonOPL maintains the scalability of FastLAS over the hy-
pothesis space on non-branching tasks and can also be ap-
plied to branching tasks, outperforming the state-of-the-art
ILASP [Law et al., 2015a] ASP-based ILP system in terms
of accuracy and running time.

The rest of the paper is structured as follows. The next
section recalls background material. The two subsequent sec-
tions present the FastNonOPL pipeline, and a method for pos-
sibility generation, together with proofs of correctness. These
are followed by an evaluation of FastNonOPL. The paper
concludes with discussions of related and future work.

2 Preliminaries

In this section we introduce basic notions and termi-
nologies used throughout the paper. Given any atoms

h, by,...,by, C1,...,Cu, a normal rule is of the form
h:-by,...,b,, not cy,..., not c,, where h is the head
and by,...,b,, not cy,..., not ¢, (collectively) is the

body of the rule, and “not” represents negation as failure.
A rule is safe if every variable in the rule occurs in at least
one positive literal (i.e. the b;’s in the above rule) in the body
of the rule. A program is a set of safe normal rules. The
Herbrand Base of a program P, denoted HBp, is the set of
variable free (ground) atoms that can be formed from predi-
cates and constants in P. The subsets of HBp are called the
(Herbrand) interpretations of P. Given a program P and an
interpretation I C HBp, the reduct PT is constructed from
the grounding of P in two steps: first, remove rules whose
bodies contain the negation of an atom in [; then remove all
negative literals from the remaining rules. Any I C HBp is
an answer set of P if it is a minimal model of the reduct P7.
We denote the set of answer sets of a program P with AS(P).

A partial interpretation ep; is a pair of disjoint sets of
atoms (e, ec7¢) called the inclusions and exclusions re-
spectively. An interpretation I extends ep; (written I < ep,;)
iff eé’}c C Tand ej“ N1 = 0. A weighted context-

dependent partial interpretation (WCDPI) is a tuple e =
(€id, €pen, €pi, €ctz), Where e;q4 is an identifier for e, epey, is
either a positive integer or oo called a penalty, e,; is a par-
tial interpretation and e, is a program consisting of normal
rules, called a context. A WCDPI e is accepted by a program
P iff there is an answer set of PUe, that extends e,;. Often,
it is convenient to discuss WCDPI’s without considering the
penalty and identifier, as CDPIs of the form (e,;, ecty)-

Many ILP systems (e.g. [Muggleton, 1995; Ray, 2009;
Srinivasan, 2001]) use mode declarations as a form of lan-
guage bias to specify hypothesis spaces. A mode bias M
is defined as a pair of sets of mode declarations (M, M),
where M}, (resp. M) are called the head (resp. body) mode
declarations. Each mode declaration is a literal whose ab-
stracted arguments are either var(t) or const(t), for some
constant t (called a type). Informally, a literal is compatible
with a mode declaration m if it can be constructed by replac-
ing every instance of var(t) in m with a variable of type
t, and every const(t) with a constant of type t.! For in-
stance, c1r_1v(P, 1) is compatible with the mode declaration
clr_lv(var(person), const(1v)) (where P is a variable of
type person and 1 is a constant of type 1v).

Definition 1 Given a mode bias M = (M},, My,), the search
space Sy is the set of normal rules R s.t. (i) the head of R
is compatible with a mode declaration in My, (ii) each body
literal of R is compatible with a mode declaration in My; and
(iii) no variable occurs with two different types.

We now recall the definition of a learning task, as used
by the ILASP system [Law er al., 2015a]. We consider a
simplification which only allows positive examples.

Definition 2 A Positive Learning from Answer Sets
(ILPZFAS) task is a tuple T = (B,M,E™) where B is a
program, M is a mode bias and E™ is a finite set of WCDPIS.
For any hypothesis H C Sy;:

e Foranye € E, H covers e iff BU H accepts e.

o Sien(H,T) is the number of literals in H plus the

penalty of each example in T which is not covered by
H.

!The set of constants of each type is given with a task, together
with the maximum number of variables in a rule, giving a set of
variables Vi, ..., Vpax that can occur in each rule of a hypothesis.
Whenever a variable V of type t occurs in a rule, the atom t(V) is
added to the body of the rule to enforce the type.

1937

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

e H is an optimal solution of T iff Sjen (H, T') is finite and
there isno H' C Sys s.t. Sjen(H',T) < Sien(H, T).

The goal of any system for [LPZr Ag 1s to find an optimal
solution of an input 1 LPE' A task.

Definition 3 A task T = (B, M, E™) is non-observational if
S contains a rule whose head uses a predicate which occurs
in a rule body either in B or in a context in ET.

Example 1 Reconsider the problem in Figure 1, which can
be formalised as an 1 LPZr Ag task. B is the background in
the figure plus the facts defining the domain of each type (e.g.
{1v(1). ... 1v(3).} to define the security/clearance levels).
E™ contains a set of examples, one for each person/file pair
(there are 12 such examples). One such example e has the
context {role(alice, ceo). financial(f1).} and the par-
fial interpretation ({has_access(alice,f1)},0) (for files
that cannot be accessed, the has_access atom is in the ex-
clusions). Finally, the mode declarations are as follows:
My — { clr_lv(var(person), const(1v)), }

h =) sec_lv(var(file),const(1v))
role(var(person), const(role)),
employment(var(file)),
trade_secrets(var(file)),
financial(var(file))

This task is non-observational because there is a predicate
in My, which occurs in the body of a rule in B.

My, =

FastLAS [Law et al., 2020a] is an algorithm for solving a
subset of 1 LPZr 4g tasks. At the core of the algorithm is a
notion of an OPT-sufficient subset of the hypothesis space. A
subset of the hypothesis space of a task is OPT-sufficient iff it
either contains at least one optimal solution of the task or the
original task is unsatisfiable. FastLAS works by first com-
puting an OPT-sufficient subset of the hypothesis space, and
then searching within it for an optimal solution. We omit the
details of how FastLAS constructs this OPT-sufficient subset,
as they are not necessary to understand the rest of the paper.
FastLLAS has a number of restrictions which limit its appli-
cability; for instance, it is incapable of non-OPL or learning
programs with multiple answer sets. Specifically, an I LPE' AS
task T = (B, M, E™) is a FastLAS task if for each e € ET,
|AS(B U ect;)| = 1 and no predicate in M}, occurs in M, or
in any rule body in B U e.,. The method presented in this
paper lifts some of these restrictions to allow non-OPL and
learning programs with multiple answer sets.

3 The FastNonOPL Pipeline

The subset of I LPE' Ag tasks supported by FastNonOPL is
formalised by the following definition. For any program P,
head_preds(P) and body_preds(P) denote the predicates oc-
curring in the heads and bodies (respectively) of the rules in
P.

Definition 4 An ILP} ¢ task T = (B, M,E*) is non-
recursive if for each e € ET, B U ey, can be partitioned
into two programs bottom(B U e,) and top(BUe ;) s.t. no
predicate in My, or the head of a rule in top(B U e,) occurs
in My or the body of a rule in bottom(B U ec,.). In other

1938

words, for any H C Sy, head_preds(top(BUet,) UH) and
body_preds(bottom(B U e,) U H) are disjoint.

The intuition is that B U e.¢, U H has three components: (1)
a bottom program defining the predicates used in the bodies
of the learned rules in H; (2) a middle program (H); and (3)
a top program, which uses the predicates defined by H to de-
fine further predicates that may be used in the inclusions or
exclusions of the example. Although this partitioning is not
necessarily unique, we assume (w.l.o.g.) a fixed partitioning
and refer to the bottom and top programs. The task is less
restrictive than FastLAS’s task, which would correspond, in
these terms, to a non-recursive task with an empty top pro-
gram and a bottom program with one answer set. For the rest
of this paper all tasks are assumed to be non-recursive.

Example 2 The task in Example 1 is a non-recursive task.
For each of the examples ¢ € E™, bottom(B U e,) is the
program By U eciq, where By is the set of facts defining the
domains of types and top(B U e,) = B\Bjy.

FastNonOPL addresses the problem of non-OPL using a
new approach for translating a “non-observational” example
e into a set of “observational” examples. These new observa-
tional examples are the possible ways that e could be covered,
given a background knowledge B, and so we refer to them as
the possibilities of e. A possibility p is a CDPI (pp;, pas),
with the rough intuition being that p,s is an answer set of
the bottom program (bottom(B U ec)) and pp; is a partial
interpretation (over the ground instances of heads of rules in
the hypothesis space), such that covering p,; (i.e. proving the
inclusions and none of the exclusions) is sufficient to cover
the original partial interpretation e,;. Examples may have
a single possibility, many possibilities or even no possibili-
ties. There are two ways that an example can have multiple
possibilities: firstly, the bottom program could have multiple
answer sets — in this case, any one of the answer sets could
be used to cover the example; secondly, non-OPL can lead
to multiple ways to prove the inclusions of a given example,
leading to distinct partial interpretations p,;. Note that in this
definition (with a minor abuse of notation) p,s is treated as
both an answer set and a set of facts.

Definition 5 Let T be a learning task, e be a WCDPI and Ab
be the set of atoms which occur in the head of at least one
rule in ground(Syr). A possibility p of e (w.r.t. T) is a CDPI
<ppi7pas> s.1.

1. pus € AS(bottom(B U ecty));

2. p;?c, ppi¢ € Ab;

3. VA C Ab s.t. A<dpp;, 3T € AS(pos UAUtop(BUecty))
s.t. I <ep;.

A possibility p is said to be minimal if there is no possibility
p/ of e s.t. p/ # D> Pas = pfwy p;nc C Pinc and p/eu C Pexe-
We write poss(T, e) (resp. poss*(T,e)) to denote the set of
all possibilities (resp. minimal possibilities) of e.

While the task of generating possibilities shares some sim-
ilarity with standard definitions of abduction — e.g. [Kakas
et al., 1992] — the definition of a possibility is considerably
stronger than that of an abductive solution. Usually, abduc-
tive solutions are complete interpretations of the abducibles,

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

meaning that if 6 ¢ A, then ¢ is assumed to be false. Con-
versely, the first component of a possibility is a partial inter-
pretation of the abducibles s.t. every extension A is similar
to a traditional abductive solution. This stronger definition is
required by FastNonOPL to guarantee the correctness when
translating multiple examples.

Example 3 Reconsider the task and example e in Exam-
ple 1. There are four minimal possibilities. The con-
text pqs of each is the answer set of bottom(B U et,)
({role(alice,ceo). financial(f1).} U By, where By is
the set of facts defining the domains of types) and the four
partial interpretations are:

1. py; = ({clr1lv(alice,3)},0);
2. pgi = ({clr_1lv(alice,2)}, {sec_1v(f1,3)});

3. pd; = ({clr1v(alice, 1)}, {sec 1v(f1,2),
sec_1v(f1,3)}); and

4. pp; = (0, {sec1v(f1,1),sec 1v(f1,2),
sec_1v(f1,3)}).

Each of the first three partial interpretations specifies that
alice must have a clearance level n such that £1 does not
have a security level higher than n (the maximum security
level is 3). The final partial interpretation represents the case
where £1 has no security level. In this case, according to
the background knowledge, £1 can be accessed by Alice no
matter what her clearance level is.

The solution given in Figure 1 covers the possibility con-
structed using the first partial interpretation (B U H U pgs
has exactly one answer set and, as this answer set contains
clr_1v(a,3), it extends p);). Note that to actually learn
the hypothesis in Figure 1, further examples would need to
be given (including examples relating to managers and ana-
lysts).

Theorem 1 shows that we can determine whether an ex-
ample is accepted using its minimal possibilities. The proofs
of all theorems are given in the online supplementary mate-
rial document, available at https://github.com/spike-imperial/
FastLLAS/blob/master/fast_non_opl_proofs.pdf.

Theorem 1 Let T be a learning task and e be a WCDPI. For
any hypothesis H C S);, BU H accepts e iff there is at least
one possibility p € poss*(T, e) s.t. H accepts p.

We call a learning task non-branching if each example has
at most one possibility and branching if this is not the case.
The significance of non-branching tasks is that if a general
problem is guaranteed to always produce a non-branching
learning task, then the single possibilities can be precomputed
and solved using an “observational” ILP system such as Fast-
LAS.2 Theorem 2 demonstrates that even for branching tasks,

% To use the possibility generation method described in this pa-
per with another observational ILP system it must (a) support CDPIs
and (b) either support, or be modified to support groups of examples
such that at least one should be covered. Note that as I LP;, ¢ tasks
can be translated to brave induction tasks (used by many other ASP-
based ILP systems), many ASP-based ILP systems for brave induc-
tion can be used, provided they satisfy (b). We modified FastLAS to
support (b).

most of the FastLAS algorithm can be used unchanged, com-
puting an OPT-sufficient subset as before.

Theorem 2 Let T = (B, M, E*), and Ty be the FastLAS
task (0, M, {(pia, 1, ppi, Pas) | € € ET,p € poss*(T,e)}).
The subset of the hypothesis space constructed by FastLAS
Jor Tp,o5 is OPT-sufficient for T.

After calculating the set of possibilities for each example,
FastLAS can be used to generate an OPT-sufficient subset of
the hypothesis space. Finding an optimal solution within this
subset can then be done as in FastLAS’s solving stage, but
with the minor difference that (in the non-noisy case) Fast-
NonOPL searches for a hypothesis that covers at least one
possibility of each example (rather than covering each exam-
ple). Just as in FastLAS, this final solving stage can be en-
coded in ASP? and solved using the ASP solver Clingo [Geb-
ser et al., 2016]. As this process will find an optimal solution
within any OPT-sufficient subset, FastNonOPL is guaranteed
to return an optimal solution of any non-recursive task.

4 Using Abduction to Generate Possibilities

This section describes the abductive method used to generate
all possibilities for an example. The method works by itera-
tively extending a set of CDPIs. In each iteration it performs a
kind of “anti-abduction” to search for exceptions to the CDPIs
found in the previous iteration and performs “conventional”
abduction” to find fixes to the exceptions. Example 4 shows a
simple learning task to give the intuition.

Example 4 Consider a task with B = {q:- not r, not s.
r:-t, not u.}, Sy = {s. t. u.} and a set of examples E*
including the CDPI e = {{{q},(),0). Our approach starts
from a set of partial possibilities (of e) pp. Usually, this is a
set of CDPIs of the form ({0, 0), A), where A is an answer set
of bottom(B U ey), but in this case, bottom(B U ecyy) = 0,
so there is only one CDPI p in pp (Where A =).

Although in this case the empty hypothesis covers e, other
examples in E' may require learning rules which cause e
not to be covered, which is why the definition of possibilities
in the previous section requires every extension of p to cover
e. Note that p is not a (complete) possibility because there
are some A C Ab s.t. A <pp; and pgs U A U top(B U egyy)
has no answer sets that extend ey;. In this case, there are two
minimal such A: {s} and {t}. These are called exceptions
to p, and finding all such minimal exceptions is what we call
anti-abduction. There are two ways of resolving exceptions.
One way (called a negative fix) is to extend the exclusions of p
so that none of the minimal exceptions can occur — in this in-
stance, this yields the new possibility ({0, {s,t}), (). Exten-
sions constructed in this way are guaranteed to be (complete)
possibilities. The other way is to resolve an individual excep-
tion by abducing further inclusions. In this case, adding u to
p;?c resolves the first exception — we call {u} a positive fix
of the exception. Extensions constructed in this way may still

3The encoding in the online supplementary material document.

“Both “anti-abduction” and “conventional” abduction are
achieved with ASP encodings, which are given in the supplemen-
tary material document.

1939

https://github.com/spike-imperial/FastLAS/blob/master/fast_non_opl_proofs.pdf
https://github.com/spike-imperial/FastLAS/blob/master/fast_non_opl_proofs.pdf

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 1 abduce_possibilities(T, e)
pp = {{(0,0),{a. | a € A})|A € AS(bottom(B U e.t:))};
poss = ;
while pp # 0 do
pp’ =0
for p € ppdo
p_exceptions = m_except(T, e, p);
for A € p_exceptions do
for A}Lm € m_fixT(T,e,p,A) do
pp’ = pp’ U{{{pp° UAT,, 0), pas) };
for A%, € m fix” (T, p-exceptions) do
poss = poss U {<<p;)1:c7 A;iz>apas>};
pp =pp’;
return poss;

have exceptions, and thus require further iterations. These
concepts are formalised by the next definition.

Definition 6 Let T' be a learning task and e be a WCDPI,
P = (PpisPas) be a CDPI and Ab be the set of atoms which
occur in the head of at least one rule in ground(Syy).

e Any A C Ab is an exception to p if A < p,; and BA €
AS(pas UAUtop(BU egiy)) s.t. A<ep;.

e Any A}”m C Ab is a positive fix of an exception A to p
if3A € AS(pas UAU A}"iz Utop(BUeciy)) 5.t. Aep;.

e Any A;i . C Ab\p;ﬁC is a negative fix of a set of excep-

tions exs to p if VA € exs, A, NA # 0.

The sets of all minimal exceptions of p, minimal posi-
tive fixes of an exception A and minimal negative fixes of
a set of exceptions exs are denoted by m_except(T, e, p),
m_fixt (T, e,p, A) and m_fix~ (T, exs), respectively.

The idea of Algorithm 1 is to iteratively interleave the
search for minimal exceptions and fixes to a set of CD-
PIs. In an arbitrary iteration, each CDPI p in pp is taken
in turn. The first step is to compute the set of minimal ex-
ceptions to p. Note that if there are no minimal exceptions,
p is a possibility and is directly added to the set poss (be-
cause m_fix_ (T, () = {0}). If there are minimal exceptions,
they are resolved using the two methods described in Exam-
ple 4: the two inner loops search for positive and negative
fixes to the exceptions. The following theorem proves that
Algorithm 1 is guaranteed to terminate and return a set of
possibilities that includes the set of minimal possibilities for
any WCDPI. This can then be filtered to remove non-minimal
possibilities (in practice, filtering takes place during the exe-
cution of the algorithm to reduce unnecessary computation).

Theorem 3 For any learning task T and any WCDPI e,
abduce _possibilities(T, €) is guaranteed to terminate, and re-
turns a set S such that poss*(T,e) C S C poss(T,e).

1940

5 Evaluation

This section presents an evaluation of FastNonOPL’ on non-
OPL tasks, demonstrating that it outperforms other ASP-
based ILP systems. In particular, it is significantly faster than
ILASP [Law et al., 2015a]. The ILASP system consists of a
collection of algorithms, each with various parameters. For
both scenarios in this evaluation, we performed initial experi-
ments to determine the best performing version of ILASP for
the scenario and report results only for this version.® Specif-
ically, for the agent scenario we used ILASP2i [Law et al.,
2016], and for the CAVIAR scenario we used ILASP4 [Law,
2020]. Full details of the flags used can be found in the sup-
plementary material document.”

Agent Experiments

We investigate the problem of an agent learning how to navi-
gate a grid (inspired by [Law et al., 2014]). The agent starts
with complete knowledge of the map, which is a 10x10 grid
containing walls, locked cells (which can be unlocked by vis-
iting the corresponding key) and link cells (which allow the
agent to go directly to another cell) but no knowledge of the
meaning of the various components of the grid, nor how they
impact which actions the agent can take in future time points.
At each time point, the agent is informed of which actions
it can take by an oracle. The agent must learn a definition
of valid_action, defining the actions that are valid at each
time point, from examples of previous episodes involving the
agent, which are labelled as either valid or invalid. An
episode is labelled as valid iff every action executed by the
agent in that episode is a valid_action. This can be cap-
tured by the following (background knowledge) rules.

valid :- not invalid.

- time(T), execute(A, T),
not valid_action(A, T).

invalid

This task is branching because invalid episodes only im-
ply that at least one action in the episode must not have been a
valid_action. The correct definition of valid_action is:

valid_action(Cl, T) :- agent_at(C2, T),
not wall(Cl, C2), adjacent(Cl, C2),
unlocked(Cl, T).

valid_action(Cl, T) :- agent_at(C2, T),
link(C2, C1), unlocked(Cl, T).

ILASP and FastNonOPL were run on a set of 10 learning
tasks, each consisting of 50 valid episodes and 50 invalid
episodes (all learning tasks are available at https://github.
com/spike-imperial/FastLAS/blob/master/FastL.AS2/data).

FastNonOPL can be run by downloading the latest version
of FastLAS (currently 2.0.0) from https://spike-imperial.github.io/
FastLLAS/ and running FastLAS with the --nopl flag.

®For details on the differences between the various ILASP sys-
tems, see [Law et al., 2020b].

TAll experiments for FastNonOPL, FastLAS and ILASP were
run on an Ubuntu 18.04 desktop machine with a 3.4 GHz Intel®
Core™ i7-6700 processor and with 16GB RAM. The results for
OLED are quoted from [Katzouris et al., 2016].

https://github.com/spike-imperial/FastLAS/blob/master/FastLAS2/data
https://github.com/spike-imperial/FastLAS/blob/master/FastLAS2/data
https://spike-imperial.github.io/FastLAS/
https://spike-imperial.github.io/FastLAS/

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

[0]
_ 2400 ILASP —— § 35000 ILASP ——
<z | FastNonOPL —=— | @ 30000 t FastNonOPL 1
o 2000 8
S -
£ S 25000 | System [Average Fi [Average Time |
o 16007 o TLASP 0.846 48875 (3.39)
€ 1200 ¢ g 20000 ¢ OLED 0.792 107
E] ‘g 15000 FastNonOPL 0.917 297.6s (4.3s)
& 8001 2 10000 | ©
= (0]
j% 400 g 5000 | System [Average Fi [Average Time |
0 : g 0] ILASP 0.827 | 749.0s (12.95)
0 1 2 3 1 2 3 FastNonOPL 0.883 502.9s (12.2s)
Extra predicates Extra predicates (d)
(@ (b)
Figure 2: (a) and (b) show the average running time and hypothesis space size for ILASP and FastNonOPL on the agent problem with

varying numbers of extra predicates in the bias; (c) and (d) show the F; scores and running times for ILASP, OLED and FastNonOPL on the
non-branching CAVIAR scenario and for ILASP and FastNonOPL on the branching scenario. OLED’s time is quoted from [Katzouris et al.,

2016] and is not directly comparable with the other times.

The accuracy of each hypothesis was evaluated on a set
of 1000 episodes.® Both ILASP2i and FastNonOPL are
guaranteed to return an optimal solution of any learning task
and therefore achieve the same average accuracy of 99.5%.
To evaluate the relative scalability of the two systems we
ran each learning task with different language biases. All
biases contained the predicates which occur in the target
solution and between 0 and 3 extra predicates which occur
in the background knowledge but not in the target solution.
Figure 2 shows the average hypothesis space size and running
time for both systems. As ILASP enumerates the hypothesis
space in full, the average hypothesis space size for ILASP is
the full set of rules that ILASP considers (as ILASP bounds
the number of literals in a rule, this is still smaller than the
full hypothesis space). On the other hand FastNonOPL uses
FastLAS to construct a smaller OPT-sufficient hypothesis
space, which is well over two orders of magnitude smaller
than the space constructed by ILASP. This is reflected by the
shorter running times for FastNonOPL.

CAVIAR

We compared FastNonOPL to OLED [Katzouris et al., 2016],
FastLLAS and ILASP on the CAVIAR dataset, which consists
of data gathered from a video stream [Fisher et al., 2004].
The dataset has been manually annotated, adding information
such as the positions of people and when two people are in-
teracting. We consider a task from [Katzouris et al., 2016], in
which the aim is to learn initiating and terminating conditions
for two people meeting.

ILASP struggles with large hypothesis spaces [Law, 2018],
because it enumerates the hypothesis space in full. A small
subset of the hypothesis space (from [Law et al., 2018b]) used
by OLED was used in the ILASP experiments, restricting the
number of literals in the body, employing several “common
sense” constraints, such as a person cannot be walking and
running at the same time. This restricted hypothesis space
contains 3370 rules.
8The accuracy is %, where tp, tn, fp, fn are the numbers
of true positives, true negatives, false positives and false negatives.

On the other hand, FastNonOPL does not need to gener-
ate the hypothesis space in full, and can therefore use a much
larger hypothesis space. On real data, where the best hypoth-
esis is not likely to be known beforehand, this has the advan-
tage that larger hypothesis spaces are likely to contain better
solutions than handcrafted smaller hypothesis spaces. In the
FastNonOPL experiments, we used the bias from [Law et al.,
2020al, which represents a hypothesis space containing over
242 non-isomorphic rules. The results’ of performing 10-fold
cross validation are shown in Figure 2. FastNonOPL is signif-
icantly faster than ILASP, and as FastNonOPL is able to use
a larger hypothesis space, it returns better quality solutions
with a higher average F) score. OLED is faster than both
ILASP and FastNonOPL on this dataset; however, as it does
not guarantee optimality, this is expected. OLED’s average
F score is significantly lower than the other systems.

As this task is non-branching, it can be preprocessed and
run in FastLAS (similarly to the FastNonOPL approach,
but with domain-specific preprocessing, rather than Fast-
NonOPL’s general approach). This experiment was per-
formed in [Law er al., 2020al, and we repeated it for a com-
parison with FastNonOPL. FastLLAS achieved a similar F}
score of 0.920 (the small difference is caused by the two sys-
tems finding different optimal solutions in some folds) with
a lower running time of 75.9s. The lower running time is
because FastLAS does not need to run the possibility gener-
ation phase of FastNonOPL, because the tasks have already
been preprocessed to remove the need for any non-OPL.

Branching Experiment

We performed a second experiment, in which the learner was
given less information in each example. The examples were
now labelled as either having no meetings or at least one
meeting, rather than explicitly labelling each meeting that
was occuring. This is a branching task, because in each ex-
ample where a meeting is occuring, the learner can “choose”
from all pairs of people in the scene. As this is a branching

The F} score is the harmonic mean of the precision (1p/(1p +
fp)) and the recall (p/(tp + fin)). We use Fi scores, micro averaged
across the folds, for comparison with the OLED result.

1941

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

task, only ILASP and FastNonOPL are capable of solving
it.!% FastNonOPL again outperforms ILASP, both in terms
of the quality of the learned solution and the running time,
showing that even for branching tasks, FastNonOPL main-
tains FastLAS’s increased scalability (w.r.t. the size of the
hypothesis space) over ILASP. The F} scores of both systems
are slightly lower than in the simpler non-branching experi-
ment, which is unsurprising because the learner is given less
information in each example. However, just as before, Fast-
NonOPL’s larger hypothesis space compared to ILASP means
that FastNonOPL is able to find a better quality solution than
ILASP.

6 Related Work

FastNonOPL uses the FastLAS [Law et al., 2020a] system
at its core. FastNonOPL is much more general than Fast-
LAS, as it supports non-observational predicate learning and
programs with multiple answer sets, meaning that although
FastNonOPL can solve any task that FastLAS can solve, the
converse does not hold. When FastNonOPL is executed on a
task that FastLAS can solve, all examples are guaranteed to
have exactly one possibility.

The generation of an OPT-sufficient subset of the hypothe-
sis space in FastLAS (and therefore FastNonOPL), is related
to early bottom clause ILP approaches used by Progol [Mug-
gleton, 1995], Aleph [Srinivasan, 2001] and later generalised
by HAIL [Ray er al., 2003]. A key difference is that the early
systems used iterative approaches to construct a hypothesis.
A single positive example (corresponding to a single inclu-
sion of an example in this paper) is considered in each itera-
tion. The systems compute the best rule (or rules in the case
of HAIL) that covers the example, and add it to the hypothe-
sis. This means that none of these systems guarantee finding
an optimal solution, as although each iteration might find an
optimal rule to add to the hypothesis, the final hypothesis may
still be sub-optimal. Theorem 2 shows that FastNonOPL, like
FastLLAS, searches an OPT-sufficient subset of the hypothesis
space, and is therefore guaranteed to return an optimal solu-
tion.

XHAIL [Ray, 2009] also uses abduction to find the heads
of rules in the hypothesis. However, the abductive task only
requires finding a set of atoms A s.t. B U A entails every ex-
ample. If this set A does not lead to an inductive solution,
it finds another A using an iterative deepening strategy on
the size of A. This method will return an inductive solution
if one exists; however, it may be sub-optimal, especially on
learning tasks with noisy examples, which can adversely af-
fect the performance of the learned program on unseen data.
Computing all abductive solutions would address this prob-
lem, but is computationally infeasible. By computing partial
interpretations that capture classes of abductive solutions, the

'O OLED must be able to count the number of true positives, false
positives and false negatives (over the training data) caused by a rule.
In branching tasks a rule does not have a fixed count; for example,
terminating two people meeting might clearly cause a false negative
in the original CAVIAR task, but in the branching task, false nega-
tives can only occur if there are no people meeting.

1942

set of minimal possibilities captures the full set of abductive
solutions without needing to compute them all.

The OLED (Online Learning of Event Definitions) [Kat-
zouris et al., 2016] system is an ILP system that is specifi-
cally targeted at learning Event Calculus axioms from large
amounts of sequential data. Similarly to XHAIL, OLED may
return sub-optimal inductive solutions. Although OLED is
capable of some non-OPL, it is not able to solve branching
tasks. Our evaluation showed that on non-branching tasks,
FastNonOPL outperformed OLED in terms of average F}
score, but OLED was faster.

The ILASP [Law er al., 2015a] systems also learn ASP
programs. Our evaluation shows that FastNonOPL is signifi-
cantly faster than ILASP when applied on the same learning
tasks. This increase in speed is because ILASP starts by con-
structing the hypothesis space in full, whereas FastNonOPL
constructs a small OPT-sufficient subset of the hypothesis
space. On the other hand, ILASP is much more general as
it can (resources permitting) learn any ASP program [Law et
al., 2018al, including programs with choice rules and weak
constraints [Law et al., 2015b], and supports recursion and
predicate invention [Law, 2018].

7 Conclusion and Future Work

Non-OPL is an important feature of modern ILP systems, al-
lowing them to be applied to many more datasets. Although
the FastLAS [Law er al., 2020a] system is highly scalable, its
inability to perform non-OPL is therefore a severe limitation.
FastNonOPL’s new possibility generation enables non-OPL,
meaning that FastNonOPL increases on the applicability of
FastLAS, while still maintaining its scalability w.r.t. the hy-
pothesis space (as shown in the evaluation). The next step
will be to extend FastNonOPL even further, to support learn-
ing recursive rules and predicate invention.

Acknowledgements

This research was sponsored by the U.S. Army Research
Laboratory and the U.K. Ministry of Defence under Agree-
ment Number W911NF-16-3-0001. The views and conclu-
sions contained in this document are those of the authors
and should not be interpreted as representing the official poli-
cies, either expressed or implied, of the U.S. Army Research
Laboratory, the U.S. Government, the U.K. Ministry of De-
fence or the U.K. Government. The U.S. and U.K. Govern-
ments are authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright nota-
tion hereon.

References

[Brewka et al., 2011] Gerhard Brewka, Thomas Eiter, and
Mirostaw Truszczyniski. Answer set programming at a
glance. Communications of the ACM, 54(12):92-103,
2011.

[Corapi et al., 2010] Domenico Corapi, Alessandra Russo,
and Emil Lupu. Inductive logic programming as abductive
search. In LIPIcs-Leibniz International Proceedings in In-
formatics, volume 7. Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2010.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

[Corapi et al., 2012] Domenico Corapi, Alessandra Russo,
and Emil Lupu. Inductive logic programming in answer
set programming. In Inductive Logic Programming, pages
91-97. Springer, 2012.

[Fisher et al., 2004] Robert Fisher, Jose Santos-Victor, and
James Crowley. CAVIAR: Context aware vision using
image-based active recognition. http://homepages.inf.ed.
ac.uk/rbf/CAVIARDATA1/, 2004. Accessed: 2019-08-28.

[Gebser et al., 2016] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Max Ostrowski, Torsten Schaub, and
Philipp Wanko. Theory solving made easy with clingo
5. In Technical Communications of the 32nd International
Conference on Logic Programming (ICLP 2016). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In ICLP/SLP, volume 88, pages
1070-1080, 1988.

[Kakas ef al., 1992] Antonis C Kakas, Robert A. Kowalski,
and Francesca Toni. Abductive logic programming. Jour-
nal of logic and computation, 2(6):719-770, 1992.

[Katzouris et al., 2016] Nikos Katzouris, Alexander Artikis,
and Georgios Paliouras. Online learning of event defini-

tions. Theory and Practice of Logic Programming, 16(5-
6):817-833, 2016.

[Law et al., 2014] Mark Law, Alessandra Russo, and Krysia
Broda. Inductive learning of answer set programs. In Ed-
uardo Fermé and Jodo Leite, editors, Proceedings of the
Fourteenth European Conference on Logics in Artificial
Intelligence, 2014, Funchal, Madeira, Portugal, Septem-
ber 24-26, 2014., volume 8761 of Lecture Notes in Com-
puter Science, pages 311-325. Springer, 2014.

[Law et al., 2015a] Mark Law, Alessandra Russo, and
Krysia Broda. The ILASP system for learning answer set
programs. www.ilasp.com, 2015.

[Law et al., 2015b] Mark Law, Alessandra Russo, and
Krysia Broda. Learning weak constraints in answer set

programming. Theory and Practice of Logic Program-
ming, 15(4-5):511-525, 2015.

[Law et al., 2016] Mark Law, Alessandra Russo, and Krysia
Broda. Iterative learning of answer set programs from con-
text dependent examples. Theory and Practice of Logic
Programming, 16(5-6):834-848, 2016.

[Law et al., 2018a] Mark Law, Alessandra Russo, and
Krysia Broda. The complexity and generality of learning
answer set programs. Artificial Intelligence, 259:110-146,
2018.

[Law et al., 2018b] Mark Law, Alessandra Russo, and
Krysia Broda. Inductive learning of answer set programs
from noisy examples. Advances in Cognitive Systems,
2018.

[Law et al., 2020a] Mark Law, Alessandra Russo, Elisa
Bertino, Krysia Broda, and Jorge Lobo. FastLLAS: Scal-
able inductive logic programming incorporating domain-

1943

specific optimisation criteria. In AAAI. Association for the
Advancement of Artificial Intelligence, 2020.

[Law et al., 2020b] Mark Law, Alessandra Russo, and
Krysia Broda. The ILASP system for inductive learning
of answer set programs. The Association for Logic Pro-
gramming Newsletter, 2020.

[Law, 2018] Mark Law. Inductive Learning of Answer Set
Programs. PhD thesis, Imperial College London, 2018.

[Law, 2020] Mark Law. Conflict-driven inductive logic pro-
gramming. arXiv preprint arXiv:2101.00058, 2020.

[Muggleton, 1991] Stephen Muggleton. Inductive logic pro-
gramming. New Generation Computing, 8(4):295-318,
1991.

[Muggleton, 1995] Stephen Muggleton. Inverse entailment
and Progol. New Generation Computing, 13(3-4):245—
286, 1995.

[Ray et al., 2003] Oliver Ray, Krysia Broda, and Alessandra
Russo. Hybrid abductive inductive learning: A generali-
sation of progol. In Inductive Logic Programming, pages
311-328. Springer, 2003.

[Ray, 2009] Oliver Ray. Nonmonotonic abductive inductive
learning. Journal of Applied Logic, 7(3):329-340, 2009.

[Srinivasan, 2001] Ashwin Srinivasan. The aleph manual.
Machine Learning at the Computing Laboratory, Oxford
University, 2001.

http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/
www.ilasp.com

	Introduction
	Preliminaries
	The FastNonOPL Pipeline
	Using Abduction to Generate Possibilities
	Evaluation
	Agent Experiments.
	CAVIAR.
	Branching experiment.

	Related Work
	Conclusion and Future Work

