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Abstract

Description Logics (DLs) support so-called anony-
mous objects, which significantly contribute to the
expressiveness of these KR languages, but also
cause substantial computational challenges. This
paper investigates reasoning about upper bounds on
predicate sizes for ontologies written in the expres-
sive DL ALCHOZQ extended with closed predi-
cates. We describe a procedure based on integer pro-
gramming that allows us to decide the existence of
upper bounds on the cardinality of some predicate in
the models of a given ontology in a data-independent
way. Our results yield a promising supporting tool
for constructing higher quality ontologies, and pro-
vide a new way to push the decidability frontiers. To
wit, we define a new safety condition for Datalog-
based queries over DL ontologies, while retaining
decidability of query entailment.

1 Introduction

Knowledge Representation and Reasoning (KR&R) is playing
an increasingly important role in intelligent data management,
especially for complex and knowledge-intensive problem do-
mains. Specifically, KR&R offers Description Logics (DLs)
as languages suitable for describing complex domains in terms
of ontologies, and automated reasoning tools allow us to in-
fer useful insights from data repositories leveraging such on-
tologies. DLs are expressive enough to capture and reason
about UML and ER diagrams, which are popular modeling
languages in the development of data-centric applications [Be-
rardi ef al., 2005]. The adequate expressiveness and good
computational properties of DLs have also led to the emer-
gence of the so-called Ontology-based Data Access (OBDA)
paradigm for information integration; see [Xiao er al., 2018;
Schneider and §imkus, 2020] for an overview of this area.

A distinguishing feature of DLs, aimed at dealing with
information incompleteness, is the ability to describe and
reason about anonymous objects, that is, elements in the do-
main of interest that are not represented by known individ-
uals but whose existence is logically implied by the back-
ground knowledge. Consider a simple TBox with two ax-
ioms Employee = {Robin} Ll {Skyler} and Employee T
—Task M > 2hasTask.Task M < 5hasTask.Task, which tells
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that Robin and Skyler are precisely the employees of a com-
pany, that employees are not tasks, and that each employee
must be assigned from 2 to 5 tasks to work on. If we inspect the
models of this TBox, then the named objects corresponding
to Robin and Skyler will be associated with 2 to 5 anonymous
objects corresponding to tasks.

When the number of anonymous objects cannot be bounded
(e.g., when it is forced to be infinite by a recursive TBox), one
often faces high computational complexity of standard rea-
soning tasks, and undecidability of more sophisticated prob-
lems, like answering Datalog-based recursive queries (see,
e.g., [Levy and Rousset, 1998; Rosati, 2007]) or reasoning
about data-manipulating actions (see, e.g., [Bagheri Hariri
et al., 2013]). However, in many scenarios, the number of
anonymous objects in relevant predicates can be inferred to be
bounded due to numeric constraints present in the TBox. E.g.,
if we add to the above TBox the statement that every task must
be associated to an employee (Task C JhasTask™ .Employee),
then the extension of Task in any model is bounded by 10. We
suggest [Bednarczyk er al., 2020] for a longer discussion of
numeric constraints in DLs.

The question we investigate in this paper is the existence of
upper bounds on predicate sizes for ontologies written in the
very expressive DL ALCHOZQ with closed predicates [Fran-
coni et al., 2011; Lutz et al., 2013]. In the context of relational
databases, closed predicates are related to the notion of master
data, corresponding to the static part of a database [Fan and
Geerts, 2010]. E.g., in a database with a (frequently updated)
table of sales transactions, the supporting tables of employees,
products and clients will likely be relatively static and thus
can be considered master data. Using a TBox, closed and non-
closed (open) predicates can be related by means of inclusion
axioms, analogously to the way that sales transactions can be
related to employees, products and customers via database de-
pendency constraints. Our goal is to understand when and how
we can infer bounds on the sizes of open predicates from the
extensions of closed predicates, by taking into account the (nu-
meric and other) constraints specified in a TBox. Our results
not only yield a promising tool for supporting the construction
of high-quality ontologies, but also open a new way to push
the decidability frontiers for challenging data management
tasks. Our contributions can be summarized as follows.

o We introduce the notion of bounded predicates for DLs
with closed predicates. Intuitively, a predicate is bounded in
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a knowledge base, if there exists an integer constant that pro-
vides an upper bound on the size of the predicate’s extension
in all models of the knowledge base. Since we are interested in
aiding the design of ontologies and of the so-called ontology-
mediated queries (OMQs), in the paper we consider a stronger
variant of predicate boundedness that requires the predicate
to be bounded independently of the actual extensional data
stored in a knowledge base. More precisely, we require the
existence of a function f such that f(n) is an upper bound for
all ABoxes of size at most n.

o We formalize two decision problems — checking pred-
icate boundedness in the weak and in the strong sense,
and we characterize their computational complexity. For
ALCHOIQ, our method is based on integer programming
and it involves an intermediate step that reformulates the prob-
lem in terms of another problem called finite-infinite satisfia-
bility. The task in this problem is to check whether a TBox
has a model in which some specific predicates have finite
extensions, while some other given predicates have infinite ex-
tensions. This is closely related to mixed satisfiability studied
in [Gogacz et al., 2020a] and is interesting in its own right.

o We show that our results yield worst-case optimal com-
plexity bounds in all cases. Specifically, checking bound-
edness in the weak and the strong sense is CONEXPTIME-
complete for ACCHOZQ TBoxes. Moreover, in case predi-
cate boundedness is inferred, the concrete bound can be readily
computed; it is double exponential in the size of the input. This
is worst-case optimal: one can craft a TBox that forces a dou-
ble exponential number of elements in a bounded predicate.
However, in case of strong boundedness, the function f as
mentioned above is a polynomial function, i.e.if we fix the
TBox, the number of elements in bounded predicates will grow
polynomially in the size of the input ABox.

o Finally, we show how our results can be used to define a
new decidability-ensuring safety condition for OMQs based
on ALCHOZQ and Datalog, providing worst-case optimal re-
sults on the combined and data complexity. This is interesting
because there are very few positive results on query answering
in this expressive DL. We also infer that the data complexity
of satisfiability of ALCHOZQ KBs with closed predicate is
CONP-complete.

An extended version of this paper can be found at
https://dbai.tuwien.ac.at/staff/simkus/papers/ijcai2 1-bnd.pdf

2 Preliminaries

We now introduce ALCHOZQ, the main DL investigated in
the paper. We assume countably infinite and mutually dis-
joint sets Ng, Ng, and Nj of concept names, role names, and
constants, respectively. Roles are expressions of the form p
and p~, where p € Ng. We let N,J;{r be the set of all roles. With
a slight abuse of notation, we write r~ to denote p~ if r = p,
and p if » = p~, for p € Ng. The role r~ is the inverse of
r. Given a set R of roles, R~ denotes the set {r~ : r € R}.
ALCHOIQ concepts are defined according to the following
syntax: C ;=T | L | A|{a} | -C |CUC|CNTC |
Vr.C' |< nr.C |> nr.C |= nr.C, where A € Ng, r is a role,
a € Njand n > 0. Concepts of the form {a}, where a € N,

are nominals. An ABox is a finite set of assertions of the form
A(a) orp(a,b), where a,b € N}, A € Ng, and p € Ng. Given
3 € Ng UNR, Alsx; denotes the restriction of A to the concept
and role names in 3. If ¥ consists of a single concept or role
name p, we simply write A|, to denote Alx.. An expression
C C D, where C and D are concepts, is a concept inclusion,
and an expression r C s, where r and s are roles, is a role
inclusion. A (TBox) axiom is a concept inclusion or a role
inclusion, and a TBox is a finite set of axioms. A knowledge
base (with closed predicates) (KB) is a triple (7, X, A), where
T is aTBox, ¥ C N¢ U NR is a set of closed predicates and
A is an ABox. For a TBox, an ABox, or a KB X, we denote
by Ng(&X) and NR(X) the set of concept and role names oc-
curring in X, and by Ni (') the set of roles occurring in X
and their inverses. As ALCHOZQ is simply a fragment of
first-order logic with a special syntax, its semantics is given in
term of first-order interpretations. An interpretation is a pair
T = (AZ,.T), where A’ is a non-empty set called the domain
and -7 is the interpretation function that assigns to each a € N,
a domain element aZ € AL, to each A € Ng aset AZ C AZ,
and to each r € Ng a set 72 C AZ x AZ. The extension of
the interpretation function to the remaining concepts and roles
is defined in the standard way [Baader et al., 2003]. A concept
or a role inclusion @ C @) is satisfied by an interpretation
Tif Q¥ C QZ. We note that we make the Standard Name As-
sumption (SNA), which is common when dealing with closed
predicates and which forces us to interpret every constant as
itself, i.e., aZ = a, for all Z and all constants a. We say that
7 satisfies a TBox T (resp. ABox .A) if it satisfies all axioms
in T (resp. assertions in A). Z satisfies a KB (7, %, A) if Z
satisfies 7 and A, and {p(a@) : p€ X,d € p*} = Alx.

3 Boundedness

We begin with an example that illustrates boundedness.

Example 1. Consider the following ALCCHOZQ TBox T =
{Empl C< 5 assgndTo.Proj, Proj C> lassgndTo™ .Empl}
stating that each employee in some company can be assigned
to at most 5 projects, and that all projects must be assigned
to least one employee. Let A be an arbitrary ABox over
Empl that lists all n employees of the company, i.e., A =
{Empl(ai1),...,Empl(a,)}. Further, let T be an arbitrary
model of (T,{Empl}, A). As Empl is viewed as a closed
predicate, |Emplt| = |A| = n. Taking into account the
axioms from T, it is easy to see that the number of projects in
T can be at most 5n, i.e., |ProjI| < 5n. Therefore, the size of
the extensions of Proj is in a way bounded w.r.t. T and Empl.

Definition 1. Let 7 be a DL TBox, ¥ be a set of predicates
occurring in T, and A be an ABox over the signature of T. A
predicate p is bounded w.r.t (T, X, A) if there exists a bound
b € N s.t. in every model T of (T, %, A), [p*| < b holds.
We say that p is bounded w.r.t 7 and X if p is bounded w.r.t.
(T, %, A), for every ABox A over the signature of T.

The problem of deciding whether all predicates in a given
set are bounded w.r.t. a given TBox formulated in the DL £
and a set of closed predicates is called strong boundedness, or
BOUNDEDNESS(L), and it is defined as follows.
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BOUNDEDNESS(L)

A triple (7,%, X ), where T is a TBox
in DL £ and X, ¥ g are sets of predicates
occurring in 7.

Is each C' € X g bounded w.r.t. 7 and X?

Input:

Question:

We also define the second decision problem called weak
boundedness, or W-BOUNDEDNESS(L), that given a TBox T
formulated in the DL L, a set of predicates Y, and an ABox
A over the signature of 7, decides whether all predicates in
some given set are bounded w.r.t. (7,%, A).

W-BOUNDEDNESS(L)

Input: A pair (K,Xg), where £ = (7,3, A),
T is a TBox in DL L, X, X g are sets of
predicates occurring in 7, and A is an
ABox over the signature of 7T

Question: Is each C € X g bounded w.r.t. K?

We now focus specifically on strong boundedness for de-
scription logics that are fragments of the first-order logic (FO).
Note that, if not specified otherwise, under boundedness we un-
derstand strong boundedness. As a technical tool we introduce
finite-infinite satisfiability (fi-satisfiability), or FI-SAT(L),
which is the problem of deciding for a given TBox 7T in the
DL L, and two sets of predicates ¥z and .7, whether 7 has a
model in which all the predicates in > have finite extensions
and all the predicates in X7 have infinite extensions.

FI-SAT(L)
Input:

A triple (T, X, X;), where 7 is a TBox
inDL £, X r U X is a set of predicates
occurring in 7.

Is there a model Z of T s.t. p” is finite for
all p € X and is infinite for all p € ¥;?

Question:

We next show that we can reduce the boundedness problem
to deciding fi-satisfiability. From the Definition 1, it is easy to
observe that a concept or a role name p is not bounded w.r.t. 7
and Y if and only if there exists an ABox A over the signature
of 7 such that for every natural number n there exists a model
T of (T,%, A) with [p¥| > n. The following proposition,
formulated for FO, shows that in this case (7, X, .A) also has
a model in which the extension of p is infinite.

Proposition 1. Let T be an arbitrary FO theory and let p be
a unary or a binary predicate. If for every natural number n
there exists a model I of T in which |pt| > n, then there also
exists a model J of T in which p” is infinite.

Proof. Let p be a binary predicate. For &k > 1, let g :=
Ni # 2,V 2, # 2) A plai,a),
1<i<j<k
which is satisfied by interpretations in which there are k or
more tuples in the extension of p. Consider the FO theory
T =T U{p, : n>1}. As for every n, there is a model Z
of T in which |[p?| > n, every finite subset of 7 is satisfiable.
By compactness of FO, 7" is satisfiable as well. However, by
construction, 7" only admits models in which the extension of
p is infinite. Hence, there exists a model 7 of 7~ such that p7

!/ /
dzq, 2, ..., Tk, T

is infinite. As 7 C T, J is also a model of 7 and so there is
a model of 7 in which the extension of p is infinite. The case
where p is unary is shown analogously. O

Proposition 2. Given a TBox T and a set of predicates 3
occurring in T, a predicate p is not bounded w.rt. T and ¥ if
and only if there exists a model I of T in which all predicates
from ¥ have finite extensions and p* is infinite.

Proof. Assume that p is not bounded w.r.t. 7 and X. Then
there exists an ABox A s.t. for every b € N, there exists a
model J of (T, %,.A) in which [p7| > b. Note that, since we
are considering DLs that are fragments of FO, we can obtain
from (7, %, .A) an FO theory 7’ whose models coincide with
those of (7,3, A). Welet 7' = fo(T)UAU{p, : p € L},
where fo(7) is a theory obtained by translating 7 into FO, and
¢p, for p € 3, encodes the semantics of the closed predicates
as follows. For each concept name A € ¥, let Ay = {c:
A(c) € A}. Let py := Vo A(z) = \/ cp, ¥ = c. Forarole
name r € Y, ¢, is defined in a similar manner. It is easy to
see that 77 has exactly the same models as (7, %, A). Due
to Proposition 1, there is a model Z of 7" (and thus also of
(T,%,.A)) in which p? is infinite. As ABoxes are finite and
the extensions of the predicates in 3 are fully specified by A4,
we have that the predicates in X have finite extensions in Z.
Let J be a model of T s.t. the predicates in X have finite
extensions and p has an infinite extension in 7, and let A =
{qéé’) : @€ qf,q € X}. As J is amodel of (T, %, .A) and
|[p?| > k, forall k € N, pis not bounded w.rt. 7 and ¥. O

Corollary 1. Let T be a TBox in DL L, and X, ¥ p be sets
of predicates occurring in T. (T,3, X p) is a yes-instance of
BOUNDEDNESS(L) if and only if (T, X, {p}) is a no-instance
of FI-SAT(L), forall p € ¥p.

4 Boundedness via Integer Programming

This section investigates boundedness in ALCHOZQ. We
first show that we can reduce fi-satisfiability to solving a sys-
tem of linear inequalities with side conditions. We are thus
able to show decidability of boundedness in ALCHOZQ and
provide tight complexity bounds. The second part of the sec-
tion shows that there is a function depending on the TBox and
3 € N¢ UNR, that for every n > 0, computes an upper bound
on the size of extensions of bounded predicates in the models
of (T, %, A), for all ABoxes A of size n.

4.1 Decidability and Complexity

Let (7, X, X1) be an instance of FI-SAT(ALCHOZQ). For
ease of presentation, we assume that X7 and X7 contain only
concept names. This is not a limitation, as role names can be
eliminated from both sets in polynomial time while preserving
fi-satisfiability. This is done by introducing a fresh concept
name A,., for each role name r € ¥ UY;, and adding axioms
that ensure A, collects the domain elements in the domain and
range of 7. Finally, r is replaced by A, in X and X;.

The concepts in N = Ng U {T, L} U{{c}:c € N} are
called basic concepts and the set N& (7)) consists of the basic
concepts occurring in a TBox 7. We next fix some notation
that remains the same for the rest of the paper. For a given
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TBox T, we let n = |[Ng(7) UNg (7)), m7 be the number
of constants occurring in 7 plus 1, and let ¢ be the maximum
integer occurring in 7. We assume that TBoxes are in normal
form in which all axioms are of the following types:

ByM---MBy_1 CB,U---UB,,,
By E=np.By, B, C Vp.By,

where {B1,..., B} CNE,n >0,k >1,m >k pec Ng,
and {r, s} C Ng. We call the axioms of type By C=nr.Bs
counting axioms. We also assume that every TBox 7T is closed
under role inclusions, i.e., (i) p C p € T, foreach p € Ng(7),
()ifrCseTthenr - Cs™ €T,and(ii)ifri Cro €T
andrg C r3 € T thenry C r3 € T. Every ALCHOZQ
TBox can be transformed in polynomial time into a TBox in
normal form that is closed under role inclusions.

We are now ready to describe the procedure for deciding
fi-satisfiability in ALCHOZQ. Note that fi-satisfiability is a
generalization of mixed-satisfiability introduced in [Gogacz et
al., 2020al, which is the problem of deciding, for a given TBox
T and a set of predicates Y., whether there exists a model of
T in which all predicates from X have finite extensions. In-
spired by the techniques in [Calvanese, 1996; Lutz et al., 2005;
Pratt-Hartmann, 2005],[Gogacz et al., 2020a] presents a deci-
sion procedure for mixed-satisfiability in ALCHOZF, a DL
closely related to ALCHOZQ that only supports functional-
ity. This procedure relies on encoding mixed-satisfiability as
a system of linear integer inequalities with side conditions,
and a similar encoding was used in [Gogacz er al., 2020b]
for deciding satisfiability of ALCHOZF KBs with closed
predicates. We next adapt the procedure in [Gogacz et al.,
2020a] to support our generalized setting.

We use files to describe different types of domain elements
in models of 7. Intuitively, a tile specifies basic concepts
that an element participates in and the relevant part of its
neighborhood. A domain element d in a model of 7T is said
to be an instance of a tile 7 if it fits the description given by
7. We then define a system of integer linear inequalities with
side conditions whose solutions assign a multiplicity to each
tile in a way that ensures that we can build a desired model
of T by instantiating tiles according to their multiplicities. In
order to properly support counting, we employ a technique
from [Pratt-Hartmann, 2005] that colors the models of 7 using
[log(m7c3+1)] fresh concept names. For each of these fresh
concept names A, we add an axiom A C A € T. We next
formally define the notion of tiles.

Definition 2. Given an ALCHOZQ TBox T, atype T for T
is any set with the following properties: (i) T C N&(T), (ii)
TeTand L ¢T,and (iii) [T N {{a} :a € N(T)}| < 1.
Definition 3. Given an ALCHOZQ TBox T, a tile for T is
a tuple (T, p), where T is a type for T and p is a set of triples
(R, T',k) s.t. R C NA(T), T' is a type for T, k > 0 and the
following conditions hold:

1. If(R, T k) € pthen (R, T, k) € p, forall0 < k' < k

2. For every (R,T',k) € p, there exists some A C=

nr.B € T suchthat A€ T, Be€T andr € R
3IfBiM--+-MBy1 E ByU---UB,, € T and

{Bi,...,By_1} CT, then{By,...,Bu}NT #0

r L s,

4. IfAC=nr.BeTand A€ T, then |[{(R,T',k) € p:
r€ Rand B € T'}| = n.

5. Forall (R, T', k) € p, the following hold:

(a) fFACNYr.BeT,AcTandr € R, then Be T’

(b)) fF ACVr.B e T, A€ T and r~ € R, then
BeT

(c) IfrCseTandr € R, thens € R

(d) If (T, R, T") is invertible, then T # T', and there is
no other (R, T',l") € ps.t. (T, R',T") is invertible,

where, for types T, T" and R C N5 (T), (T, R, T") is invert-
ible if there exists {A CT=ns.B,C C=mp.D} C T, s.t.
{A,D} CT,{B,C} CT', and {s,p~} CR.

Let Tiles(7) denote the set of all tiles for 7. A tile (7, p)
describes a domain element d in some model of T that par-
ticipates in the basic concepts in 7. Moreover, for each
(R,T",1) € p there is a domain element d’ whose basic con-
cepts are given by T” s.t. (d,d’) is in the extension of every
role r € R. We say that d’ is an R-successor of d.

Example 2. Consider the following TBox T = {BMNC C
A AC=1r.B,AC=1r{b},ACVr.C,s C r}. Let

T= ({T, A}v {({7‘, S}v {TvAv B,C, {b}}v 1)})

Then, 7 is a tile for T and it describes a certain kind of domain
elements that may appear in models of T. In a model I of
T, a domain element d € AT that is an instance of T has the
following properties:

1. dis of the type {T, A}, i.e., d € AT and d ¢ D, for all
D e N5(T)\ {4},

2. (d,d") € rI N st where d € AT is of the type
{T,A,B,C,{b}}, ie, d = b d € AN BT NCE
and d ¢ D%, forall D € N (T)\ {A, B,C}.

We briefly explain the intuitions behind the conditions in
Def. 3. Recall that, for atile 7 = (T, p), each (R, T, k) € p
represents a distinct R-successors of the domain element d
that is an instance of 7. By definition, p is a set, which means
no duplicates are allowed. However, a situation could arise in
which we need two encode two distinct R-successors of d that
have the same type and are connected to the d via the same
roles. To overcome this issue, we consider triples (R, T", k),
where k is an integer that tells us that (R, 7", k) encodes the
kth R-successor of d of type T”. This is reflected in the first
condition. It is also worth mentioning that tiles only encode
the relevant part of the neighborhood of a domain element, i.e.,
those neighbors that serve as witnesses for counting axioms in
TBox 7 of the knowledge base. This is reflected in condition 2.
The intuition behind the remianing conditions is rather straight
forward. Condition 3 ensures the satisfaction of axioms of
the type By M-+ M By_1 C By U---U B, € T, condition
4 guarantees that d has n witnesses for every axiom A C=
nr.B € T, conditions 5a-5c ensure that d and its neighbors
respect axioms of the type A C Vr.B and r C s, and condition
5d is related to the coloring of models and intuitively, it ensures
that a domain element is not used as a witness for counting
axiom more times than it is allowed.
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We now introduce enriched systems of linear integer in-
equalities that are tuples (V,E, Vg, Vi, I), where V is a set of
variables, £ is a set of inequalities of the form ay -x1+- - -+ay,-
Tnt+c<bi-y1+ - +bm Ym,St a1,...,0n,b1,...,bmp
are positive integers, c is a possibly negative integer, and
Tlyee s Ty Ylseo s Ym €V, Ve CV,Vy C 2V, and I is
the set of implications of the form y; + --- + y,,, > a =
x1 + -+ + z, > b, where a, b are non-negative integers. Re-
call that we aim to characterize fi-satisfiability via enriched
systems s.t. the solutions to the systems specify how many
times we need to instantiate each tile in order to build a de-
sired model. As some tiles might need to be instantiated
infinitely many times, we extend the set of natural numbers
with a new value N greater than any natural number and we
let: Ng-Ng =Rg+Rg =N +0=0+R =Ng+n =
n+ RNy =Nyg-n=n-Ry =Ny, forall n € N\ {0}, and
0-Ng=Np-0=0. Welet N* = NU {Xg}. Furthermore,
we say that infinite sets have cardinality Ry. A solution of
(V,E,Vp, Vi, I)is afunction S : V — N* s.t. all inequalities
and implications are satisfied, for every z € Vg, S(z) # R,
and for every X € Vi, there exists x € X s.t. S(z) = No.

Proposition 3. Let T be an ALCHOZLQ TBox, and
Yr, 21 € Ng(T). We can obtain an enriched system
S(1,5p,5;) that is exponential in the size of T s.t. V =
Tiles(T), and S(1 5. x,) has a solution S if and only if there
exists a model I of T in which AT is finite for all A € Y
and infinite for all A € ¥1. Moreover, for all concept names
A€ NG(T), |AT| = Yo (zpyeties(r), S((T, p)) holds.
AeT

Theorem 1. FI-SAT(ALCHOZQ) is NEXPTIME-complete.
BOUNDEDNESS(ALCHOZLQ) is CONEXPTIME-complete.

4.2 Size of Bounded Extensions

Let 7 be an ALCHOZQ TBox and 3 C N¢(7) U Ng(T).
We next show that there exists a function frs : N — N
s.t. fr x(n) is an upper bound on the size of extensions of
predicates bounded w.r.t. 7 and X in the models of (7, %, A),
for any ABox A over the signature of 7 of size n. Note
that we only consider the case where bounded predicates and
predicates in X are concept names, as roles can be eliminated
using a trick similar to the one in Section 4.1.

To compute f7 5, we once again rely on integer program-
ming. To this end, we introduce enriched linear programs. An
enriched integer linear program (enriched ILP), is a pair J =
(a1-21+ -+ ap -x,,S), where S = (V, &, Vp, V, I) is an
enriched system of integer linear inequalities, z1,...,z, € V
and ay,...,a, are integers. An optimal solution to J is a
solution S of S that maximizes a1 - 1 + - - - + ay, - L, and the
value aj - S(x1) + - -+ + ay, - S(z,) is the optimal value of 7.

We next show that for a concrete ABox A over the signature
of 7 and a bounded concept name B, we can compute an
enriched ILP whose optimal value acts as an upper bound on
the size of the extension of B in the models of (7, %, A).

Proposition 4. Let T be an ALCHOZQ TBox, . C Ng(T),
B be a concept name bounded w.rt. T and ¥, and A be
an ABox over the signature of T. Then, there exists an ILP
j?T,E,A) = (a1 o1 + - + ax - x,S) that has a finite

optimal value b?‘,z,A’ and |B%| < b%EVA,for every model T
of (T, X, A). Moreover, let S = (V,E,Vp,Vy, 1) and let ¢ be
the maximum among the absolute values of integers occurring
inS. We have |V |,|E|,|I| < 3(2"7 - mp)\TIem 42 V| =
|Vi| =0, and ¢ < max{1,cr,|A|}

Optimal solutions to enriched integer linear programs can
be computed using ordinary integer programming techniques.
Moreover, known integer programming results that show there
is an upper bound on the optimal value of an ordinary integer
program can also be transfered to enriched linear programs.
Proposition 5. Let J = (a; - 21 + -+ + ayn - 25, S) be an
enriched ILP, where S = (V, &, Vg, Vi, 1), and assume that J
has a finite optimal value b. Then b < 4(|ay| + 1) - -+ (Jan| +
1) - (¢ + D)IVIUERHIVEIHIVIHID  ywhere ¢ is the maximum
among the absolute values of integers occurring in S.

Theorem 2. Let T be an ALCHOZIQ TBox, ¥ C N¢(T),
and n > 0. For every concept name B bounded w.r.t T, and
Y., every ABox A over the signature of T of size n and every
model T of (T, X, A):

ITler @IT]-eqr+4)

+1) - e+ 1)1 :
where e = (2"7 - m7) and ¢ = max{l, cr,n}.

Theorem 2 shows that fr x(n) = O(nkQ‘T‘k), where k is
a constant, i.e., f is doubly-exponential in the size of T, but
only polynomial in the size of the ABox. Note that the bound
computed by fr 5 is optimal in the sense that there exists a
simple TBox that creates a binary tree of exponential depth,
whose every node belongs to a bounded predicate. Such a
TBox is later used in the proof of Theorem 4.

Weak boundedness. Given an ALCHOZQ KB K, it is not
too hard to adapt the construction for fi-satisfiability to obtain
an enriched system Sx that is exponential in the size of C and
whose solutions correspond to the models of K. To decide
whether a concept name B is bounded w.r.t. I, we add a
function that maximizes the extension of B on top of Sx.. This
results in an enriched ILP that has a finite optimal value if and
only if B is bounded w.r.t. K

Theorem 3. W-BOUNDEDNESS(ALCHOZIQ) is
CONEXPTIME-complete. Furthermore, for a given
KB K, we can compute an integer bound b that is doubly-
exponential in the size of K s.t. for all models T of K, |p*| < b
holds, for all predicates p bounded w.r.t. K.

|Bf| <4-(2°

5 Relaxed Safety for Rule-base Queries

We discuss here how our results presented above can be ap-
plied in the context of ontology-based access to data.

Of key importance in OBDA is the problem of answering
ontology-mediated queries (OMQs) over ABoxes, which is
defined in terms of logical entailment in a DL KB. Most often
an OMQ is a pair Q@ = (7, Q) of a TBox T and a conjunctive
query (CQ) Q. Such an OMQ can be evaluated over an ABox
A by computing the so-called certain answer to () over the
KB K = (7,.A). OMQs can be seen as database queries, but
they are posed over relational structures with at most binary
relations, and they are written in an expressive ontology-based
query language.

1970
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Many authors have studied OMQs for various DLs, yet
for ALCHOZQ this problem is not well-understood. In par-
ticular, for OMQs with CQs we know decidability (without
an upper bound) due to [Rudolph and Glimm, 2010] and a
CO2NEXPTIME lower bound due to [Glimm ez al., 2011].
When CQs are replaced by the more expressive Datalog
queries, we immediately run into undecidability, even for
much less expressive DLs (see, e.g., [Levy and Rousset, 1998;
Rosati, 2007]). One can regain decidability by applying the
DL-safety restriction on Datalog queries, which requires query
variables to be guarded by predicates that do not occur in the
TBox [Motik er al., 2005; Rosati, 2005]. Unfortunately, this
restricts reasoning about anonymous objects significantly. Our
next goal is to show that our results can be used to relax DL-
safety to support reasoning about anonymous objects, while
retaining decidability. In a nutshell, the new safety condition
requires all query variables to be guarded by a predicate that
is bounded by the input TBox and some closed predicates. We
will make this more formal next.

We assume countably infinite set Np and Ny of Datalog
predicates and variables, respectively. We assume Np to be
disjoint from N¢ and Ngr. Each p € Np has a non-negative
integer arity. Each ¢t € Ny U N, is a term. An atom is an
expression of the form ¢(t4,...,t,), where t1,...,t, are
terms and one of the following holds: (i) ¢ € Np and ¢ is
n-ary, (i) ¢ € Ng and n = 1, or (iii) ¢ € Ng and n = 2.
An atom ¢(t) is ground if it contains no variables. A rule is
an expression of the form qo(fy) < q1(£1), ..., Gm(ftm) such
that (i) each qj(t_;-), 0 < j <m,isan atom, (ii) ¢o € Np, and
(iii) for each variable X that occurs in t_EJ, thereis1 <k <m
s.t. X occurs in £y, A program is a finite set of rules.

To define the semantics, we extend interpretations to also
assign meaning to the symbols in Np. Le. in an interpretation
T, the function -Z assigns some n-ary relation pZ C (AZ)?
to each n-ary predicate symbol p € Np. An assignment
for an interpretation Z is any function 7 : Ny UN; — A%
such that 7(c) = ¢ for all ¢ € N,. For a rule p of the form
qo(t0) < q1(f1), ..., qm(t), and an assignment 7 for Z, we
write Z, 7 |= pin case (f1) € ¢F,...,7(ty) € ¢Z, implies
W(t_E)) € gf. An interpretation Z is a model of a program P if
Z, 7 = p holds for every rule p € P and every assignment 7.

An OMQis atuple Q = (T,%, P, q), where T is a TBox,
¥ € Ng U NR, P is a finite set of rules, and ¢ € Np is the
output predicate. The (output tuple) entailment problem is to
decide, given an ABox .4, an OMQ Q as above and tuple of
t of individuals, whether ¢ € ¢* holds for every Z that is a
model of K = (7,%,.A) and P. If it is true, £ is said to be in
the answer to Q over A.

To ensure decidability of OMQs just introduced, we define
a new safety condition that exploits predicate boundedness.

Definition 4 (Safe OMQs). A rule p is called safe for an OMQ
Q = (T,X%, P,q) if every variable of p occurs in the body of
p in an atom p(t) such that p € Np or p is bounded by T and
3. We say Q is safe if every p € P is safe for Q.

Example 3. Consider an OMQ Q = (T',{Empl}, {p}, pair),
where T is some company ontology that includes the TBox T

from Example 1, and p is the following rule:
pair(X,Y) « Empl(X), Empl(Y), Proj(Z)
assgndTo(X, Z), assgnd To(Y, Z)

Intuitively, this query computes pairs of employees working on
a common project. Observe that Q is safe, but is not DL-safe
in the sense of [Motik et al., 2005; Rosati, 2005].

We can now characterize the complexity of query answering
in the proposed language.

Theorem 4. The entailment problem for safe OMQs is
CO2NEXPTIME-complete. The problem is CONP-complete
in data complexity, i.e., when the size of the input TBox is
assumed to be bounded by a constant.

Proof (sketch). Assume an OMQ Q = (7, X%, P, q), an ABox
A, and a tuple £ of individuals. The upper bound can be shown
by a non-deterministic procedure to check that ¢ does not
belong to the answer to Q over A. Exploiting Theorem 2, the
procedure guesses a structure that extends the input ABox with
up to a double exponential number of fresh objects belonging
to bounded predicates. It then checks that the structure (i) is a
model of the program P, (ii) it is consistent with the TBox T,
and (iii) it falsifies the atom (). If the size of TBoxes is fixed
by a constant, this structure has polynomial size. The lower
bound is shown by encoding a suitable version of the tiling
problem. The lower bound for data complexity comes from
instance checking in expressive DLs [Schaerf, 1993]. O

We remark that Theorem 4 also implies (as a special case)
that the data complexity of satisfiability of ALCHOZQ KBs
with closed predicates is NP-complete.

6 Conclusion

In this paper we have presented a method to reasOAon about
the amount of anonymous objects in the models of KBs writ-
ten in an expressive DL with closed predicates. This provides
a new tool to aid the design of ontologies, also opening the
way for sophisticated yet decidable reasoning tasks for data
management. One such application is answering rule-based
queries over ontologies expressed in the DL ALCHOZQ with
closed predicates, which was discussed in Section 5. Another
application, which will be discussed in detail in a future pa-
per, is in verification of temporal properties of evolving graph
databases: we believe that using the key idea of Section 5
we can identify new settings with decidable verification tasks,
e.g., by developing methods to identify state bounded systems
in the sense of [Bagheri Hariri et al., 2013]. Implementing
our method to check boundedness is another challenging task
for future work; we cannot explicitly build inequality systems
and reuse existing integer programming solvers, because this
would require (best-case) exponential time. A promising way
to efficiently recognize predicate boundedness is to consider
small systems of inequalities that provide a sound (but incom-
plete) approximation of the full systems defined here.
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