
On the Relation Between Approximation Fixpoint Theory and Justification Theory

Simon Marynissen1,2 , Bart Bogaerts2 and Marc Denecker1
1KU Leuven

2Vrije Universiteit Brussel
simon.marynissen@kuleuven.be, bart.bogaerts@vub.be, marc.denecker@kuleuven.be

Abstract
Approximation Fixpoint Theory (AFT) and Justi-
fication Theory (JT) are two frameworks to unify
logical formalisms. AFT studies semantics in terms
of fixpoints of lattice operators, and JT in terms
of so-called justifications, which are explanations
of why certain facts do or do not hold in a model.
While the approaches differ, the frameworks were
designed with similar goals in mind, namely to
study the different semantics that arise in (mainly)
non-monotonic logics. The first contribution of our
current paper is to provide a formal link between
the two frameworks. To be precise, we show that
every justification frame induces an approximator
and that this mapping from JT to AFT preserves all
major semantics. The second contribution exploits
this correspondence to extend JT with a novel class
of semantics, namely ultimate semantics: we for-
mally show that ultimate semantics can be obtained
in JT by a syntactic transformation on the justifi-
cation frame, essentially performing some sort of
resolution on the rules.

1 Introduction
In this framework, we are concerned with two theories de-
veloped with similar intentions, namely to unify semantics of
(mostly non-monotonic) logics, namely Approximation Fix-
point Theory (AFT) and Justification Theory (JT).

1.1 Approximation Fixpoint Theory
In the 1980s and 90s, the area of non-monotonic reasoning
(NMR) saw fierce debates about formal semantics. In sev-
eral subareas, researchers sought to formalise common-sense
intuitions about knowledge of introspective agents. In these
areas, appeals to similar intuitions were made, resulting in
the development of similar mathematical concepts. Despite
the obvious similarity, the precise relation between these con-
cepts remained elusive. AFT was founded in the early 2000s
by Denecker, Marek and Truszczyński [2000] as a way of
unifying semantics that emerged in these different subareas.
The main contribution of AFT was to demonstrate that, by
moving to an algebraic setting, the common principles behind
these concepts can be isolated and studied in a general way.

This breakthrough allowed results that were achieved in the
context of one of these languages to be easily transferred to
another. In the early stages, AFT was applied to default logic,
auto-epistemic logic, and logic programming [Denecker et
al., 2000; Denecker et al., 2003]. In recent years also appli-
cations in various other domains have emerged [Strass, 2013;
Bi et al., 2014; Charalambidis et al., 2018; Bogaerts and
Cruz-Filipe, 2018].

The foundations of AFT lie in Tarski’s fixpoint theory
of monotone operators on a complete lattice [Tarski, 1955].
AFT demonstrates that by moving from the original lattice L
to the bilattice L2, Tarski’s theory can be generalised into a
fixpoint theory for arbitrary (i.e., also non-monotone) opera-
tors. Crucially, all that is required to apply AFT to a formal-
ism and obtain several semantics is to define an appropriate
approximating operator L2 → L2 on the bilattice; the alge-
braic theory of AFT then takes care of the rest. For instance,
to characterise the major logic programming semantics us-
ing AFT, it suffices to define Fitting’s four-valued immedi-
ate consequence operator [Fitting, 2002]. The (partial) sta-
ble fixpoints of that operator (as defined by AFT) are exactly
the partial stable models of the original program; the well-
founded fixpoint of the operator is the well-founded model of
the program, etc.

1.2 Justification Theory
Building on an old semantical framework for (abductive)
logic programming [Denecker and De Schreye, 1993], De-
necker et al. [2015] defined an abstract theory of justifications
suitable for describing the semantics of a range of logics in
knowledge representation, computational and mathematical
logic, including logic programs, argumentation frameworks
and nested least and greatest fixpoint definitions. Justifica-
tions provide a refined way of describing the semantics of
a logic: they not only define whether an interpretation is a
model (under a suitable semantics) of a theory, but also why.

Justifications — albeit not always in the exact formal form
as described by Denecker et al. [2015] — have appeared in
different ways in different areas. The stable semantics for
logic programs was defined in terms of justifications [Fages,
1990; Schulz and Toni, 2013]. Moreover, an algebra for com-
bining justifications (for logic programs) was defined by Ca-
balar et al. [2014]; and justifications are underlying prove-
nance systems in databases [Damásio et al., 2013].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1973



Next to these theoretic benefits, justifications are also used
in implementations of answer set solvers (they form the ba-
sis of the so-called source-pointer approach in the unfounded
set algorithm [Gebser et al., 2009], and turned out to be key
in analyzing conflicts in the context of lazy grounding [Bo-
gaerts and Weinzierl, 2018]), as well as to improve parity
game solvers [Lapauw et al., 2020].

1.3 Correspondence
The two described frameworks were designed with similar
intentions in mind, namely to unify different (mainly non-
monotonic) logics. One major difference between them is
that JT is defined logically while AFT is defined purely alge-
braically. This makes justification frameworks less abstract
and easier to grasp, but also in a certain sense less general.
On the other hand, Denecker et al. [2015] defined a notion of
nesting, which seems promising to integrate the semantics of
nested least and nested greatest fixpoint definitions.

Despite the differences, certain correspondences between
the theories show up: several definitions in justification
frameworks seem to have an algebraical counterpart in AFT.
This is evident from the fact that many results on justifi-
cations are formulated in terms of fixpoints of a so-called
derivation operator that happens, for the case of logic pro-
gramming, to coincide with (Fitting’s three-valued version of)
the immediate consequence operator for logic programs. Of
course, now the question naturally arises whether this corre-
spondence can be made formal, i.e., whether it can formally
be shown that semantics induced by JT will always coincide
with their equally-named counterpart in AFT. If the answer
is positive, this will allow us to translate results between the
two theories. Formalising this correspondence is the key con-
tribution of the current paper.

1.4 Contributions
Our contributions can be summarised as follows:

• In Section 3, we provide some novel results for JT.
While the main purpose of these results is to support
the theorems of Section 4, they also directly advance
the state of JT. In this section, we show among others
how different semantics induced by JT relate, and we
resolve a discrepancy that exists between different def-
initions of so-called stable and supported branch eval-
uations in prior work. We formally prove that the dif-
ferent circulating definitions of these branch evaluations
indeed induce the same semantics.

• In Section 4, we turn our attention to the key contri-
bution of the paper, namely embedding JT in AFT. To
do this, we proceed as follows. First, we show that
under minor restrictions, each justification frame (intu-
itively, this is a set of rules that describe when a pos-
itive or negative fact is true), can be transformed into
an approximator. Next, we show that for each of the
most common branch evaluations (these are mathemat-
ical structures that are used to associate semantics to
a justification frame), the induced semantics by JT is
the same as the equally-named semantics on the AFT

side. Establishing this result is of particular impor-
tance for the future development of JT, since this re-
sult immediately makes a large body of theoretical re-
sults developed in the context of AFT readily available
for JT, as well as all its future application domains, in-
cluding results on stratification [Vennekens et al., 2006;
Bogaerts and Cruz-Filipe, 2021], predicate introduction
[Vennekens et al., 2007], and knowledge compilation
[Bogaerts and Van den Broeck, 2015]. On the other
hand, from the context of AFT, the embedding of JT can
serve as inspiration for developing more general alge-
braic explanation mechanisms.

• To illustrate how this connection can be exploited for
further exploiting the theory of justifications, we turn our
attention to ultimate semantics. In the context of AFT,
Denecker and his coauthors have realised that a single
operator can have multiple approximators and that the
choice of approximator influences the induced seman-
tics. They also showed that — when staying in the realm
of consistent AFT — every operator induces a most pre-
cise approximator, and called this the ultimate approxi-
mator [Denecker et al., 2004]. In Section 5, we transfer
this idea to JT. We show there that by means of a simple
transformation1 on the justification frame, we can obtain
ultimate semantics. Importantly, since this transforma-
tion is defined independent of the branch evaluation at
hand, ultimate semantics are not just induced for the se-
mantics that have a counterpart in AFT, but for all con-
ceivable current and future branch evaluations as well.

2 Preliminaries: Justification Theory
In this section, we use the formalisation of JT as done by
Marynissen et al. [2020]. Truth values are denoted t (true), f
(false) and u (unknown); we write L for {t, f ,u}. We make
use of two orders on L, the truth order f ≤t u ≤t t and the
precision order u ≤p f , t. JT starts with a set F , referred
to as a fact space, such that L ⊆ F ; the elements of F are
called facts. We assume thatF is equipped with an involution
∼ : F → F (i.e., a bijection that is its own inverse) such that
∼t = f , ∼u = u, and ∼x 6= x for all x 6= u. Moreover,
we assume that F \ L is partitioned into two disjoint sets F+

and F− such that x ∈ F+ if and only if ∼x ∈ F− for all
x ∈ F \ L. Elements of F+ are called positive and elements
of F− are called negative facts. An example of a fact space is
the set of literals over a propositional vocabulary Σ extended
with L where ∼ maps a literal to its negation. For any set
A we define ∼A to be the set of elements of the form ∼a
for a ∈ A. We distinguish two types of facts: defined and
open facts. The former are accompanied by a set of rules that
determine their truth value. The truth value of the latter is
not governed by the rule system but comes from an external
source or is fixed (as is the case for logical facts).

Definition 1. A justification frame JF is a tuple 〈F ,Fd, R〉
such that

1Essentially, this transformation performs some sort of case split-
ting.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1974



• Fd is a subset of F closed under ∼, i.e., ∼Fd = Fd;
facts in Fd are called defined;

• no logical fact is defined: L ∩ Fd = ∅;
• R ⊆ Fd × 2F\∅;
• for each x ∈ Fd there is at least one element (x,A) ∈ R.

The set Fo of open facts is equal to F \ Fd. An element
(x,A) ∈ R is called a rule with head x and body (or case)
A. The set of cases of x in JF is denoted JF(x). Rules
(x,A) ∈ R are denoted as x ← A and if A = {y1, . . . , yn},
we often write x← y1, . . . , yn.

Logic programming rules can easily be transfered to rules
in a justification frame. However, in logic programming, only
rules for positive facts are given; never for negative facts.
Hence, in order to apply JT to logic programming, a mech-
anism for deriving rules for negative literals is needed. For
this, a technique called complementation was invented [De-
necker et al., 2015]; it is a generic mechanism that allows
turning a set of rules for x into a set of rules for ∼x. To de-
fine complementation, we first define selection functions for
x. A selection function for x is a mapping s : JF(x) → F
such that s(A) ∈ A for all rules of the form x ← A. In-
tuitively, a selection function chooses an element from the
body of each rule of x. For a selection function s, the set
{s(A) | A ∈ JF(x)} is denoted by Im(s).

Definition 2. For a set of rules R, we define R∗ to be the set
of rules of the form ∼x← ∼Im(s) for x ∈ Fd that has rules
in R and s a selection function for x. The complementation
of JF is defined as 〈F ,Fd, R ∪R∗〉. A justification frame
JF is complementary if it is fixed under complementation,
i.e., R ∪R∗ = R.

Example 1. If R = {x← a, b; x← c; }, then R∗ =
{∼x← ∼a,∼c; ∼x← ∼b,∼c}.
Definition 3. A directed graph is a pair (N,E) where N is a
set of nodes and E ⊆ N ×N is the set of edges. An internal
node is a node with outgoing edges. A leaf is a non-internal
node.

Definition 4. Let JF = 〈F ,Fd, R〉 be a justification frame.
A justification J in JF is a directed graph (N,E) such that
for every internal node n ∈ N it holds that n ← {m |
(n,m) ∈ E} ∈ R;

A justification is locally complete if it has no leaves in Fd.
We write J(x) to denote the set of locally complete justifica-
tions that have an internal node x.

Example 2. Take Fd = {x,∼x, y,∼y}, Fo =
{a,∼a, b,∼b} ∪ L, and R the complementation of
{x← y, a; y ← y, b}, then

x

ay

b

is a locally complete justification in 〈F ,Fd, R〉 because a
and b are open facts.

Definition 5. Let JF be a justification frame. A JF -branch
is either an infinite sequence in Fd or a finite non-empty se-
quence in Fd followed by an element in Fo. For a justifica-
tion J in JF , a J-branch starting from x ∈ Fd is a path in J
starting from x that is either infinite or ends in a leaf of J . We
write BJ(x) to denote the set of J-branches starting from x.

Not all J-branches areJF -branches since they can end in a
defined fact. However, if J is locally complete, any J-branch
is also aJF -branch. We denote a branch b as b : x0 → x1 →
· · · and define ∼b as ∼x0 → ∼x1 → · · · . A tail of a branch
b is a branch xi → xi+1 → · · · for some i ≥ 0.

Definition 6. A branch evaluation B is a mapping that maps
any JF -branch to an element in F for all justification frames
JF . A branch evaluation B is consistent if B(∼b) = ∼B(b)
for any branch b. A justification frame JF together with a
branch evaluation B form a justification system JS , which is
presented as a quadruple 〈F ,Fd, R,B〉.

The main branch evaluations we are interested in are given
below:

Definition 7. The supported branch evaluation Bsp maps
x0 → x1 → · · · to x1. The Kripke-Kleene branch evalua-
tion BKK maps finite branches to their last element and infi-
nite branches to u. The well-founded branch evaluation Bwf

maps finite branches to their last element. It maps infinite
branches to t if they have a negative tail, to f if they have a
positive tail and to u otherwise. The stable branch evaluation
Bst maps a branch x0 → x1 → · · · to the first element that
has a different sign than x0 if it exists; otherwise b is mapped
to Bwf(b).

Definition 8. A (three-valued) interpretation of F is a func-
tion I : F → L such that I(∼x) = ∼I(x) for all x ∈ F and
I(`) = ` for all ` ∈ L.

We will assume that the interpretation of open facts is
fixed; hence any two interpretations coincide on open facts.

Definition 9. Let JS = 〈F ,Fd, R,B〉 be a justification sys-
tem, I an interpretation of F , and J a locally complete jus-
tification in JS . Let x ∈ Fd be a node in J . The value
of x ∈ Fd by J under I is defined as valB(J, x, I) =
minb∈BJ (x) I(B(b)), where min is with respect to ≤t.

The supported value of x ∈ F in JS under I is defined
as SVJS(x, I) = maxJ∈J(x) valB(J, x, I) for x ∈ Fd and
SV(x, I) = I(x) for x ∈ Fo. For any F -interpretation I,
SJS(I) is the mapping F → L : x 7→ SVJS(x, I). The
function SJS is called the support operator. If JS consists of
JF and B, then we write SBJF for SJS . If JF is clear from
context, we write SVB for SVJS .

Models under justification semantics are determined by the
supported value.

Definition 10. Let JF be justification frame and B a branch
evaluation. An F -interpretation I is a B-model of JF if for
all x ∈ F , SVBJF (x, I) = I(x), i.e., I is a fixpoint of SBJF .

A Bsp, BKK, Bst, or Bwf -model is called a supported,
Kripke-Kleene, stable, or well-founded model.

Example 3. LetF = {p,∼p, q,∼q}∪L and take R to be the
complementation of {p← p; p← ∼q; q ← q}, i.e. adding

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1975



the rules ∼p ← ∼p, q and ∼q ← ∼q. There are exactly two
locally complete justifications with p as an internal node:

p

p

∼q

Under Bwf , the left justification has a value f for p, while the
right justification has a value t for p. Since these justifica-
tions are the only locally complete ones containing p as an
internal node we have that SVBwf

(p, I) = t for all interpre-
tations I of F . This shows us that the unique Bwf -model is
the interpretation mapping p to t and q to f .

3 Tying Up Loose Ends
In this section, we prove some results about JT that will be
needed for developing our theory later on. These results re-
solve several issues that were left open in prior work, but turn
out to be crucial for studying the relationship with AFT.

3.1 Pasting Justifications
Our first result is essentially a pasting result. What it states is
that we can, for all branch evaluations of interest to the cur-
rent paper, build a single justification that explains the value
of all facts. In other words, it provides a means of gluing justi-
fications for different facts together. The first theorem has al-
ready been proven in a slightly different context by Marynis-
sen et al. [2018].

Theorem 1. Take B ∈ {Bsp,BKK,Bst,Bwf}. For every in-
terpretation I, there is a locally complete justification J such
that valB(x, J, I) = SVB(x, I) for all x ∈ Fd.

Similarly, this holds for B′sp and B′st, but only for models.

Theorem 2. Take B ∈
{
B′sp,B′st

}
. For every B-model

I, there is a locally complete justification J such that
valB(x, J, I) = SVB(x, I) for all x ∈ Fd.

3.2 Equivalence of Branch Evaluations
Our second result concerns different versions of the stable
and supported branch evaluations that circulate in prior work.
Marynissen et al. [2018; 2020] use the stable and supported
branch evaluations as we defined them in Definition 7, while
Denecker et al. [2015] use the following alternative.

Definition 11. The branch evaluation B′sp is equal to Bsp on
infinite branches and maps finite branches to their last ele-
ment. The branch evaluation B′st is equal to Bst except B′st
maps any finite branch to its last element.

Of course this begs the question in which sense these
branch evaluations are related. What we show next is that
for the purpose of defining models, they are interchangeable.

Definition 12. Two branch evaluations B1 and B2 are equiv-
alent if for all justification frames JF , the B1-models and the
B2-models of JF coincide.

Our proofs that Bsp and B′sp, and Bst and B′st are equiva-
lent, will make use of the following lemma, which intuitively
states that to show that an interpretation is a B-model, it suf-
fices to show that the supported value of each fact is at least
its value in the interpretation.
Lemma 1. Take JS = 〈F ,Fd, R,B〉 with B consistent. Ev-
ery interpretation I such that SVJS(x, I) ≥t I(x) for all
x ∈ Fd, is a B-model of JF .
Proposition 1. The two supported branch evaluations Bsp
and B′sp are equivalent.
Proposition 2. The two stable branch evaluations Bst and
B′st are equivalent.

Sketch of the proofs of Propositions 1 and 2. The difference
between the two branch evaluations at hand is that in the one
(B′), finite branches are evaluated with respect to their final
element, and the other (B) with respect to some other element
y in the branch (second or first sign switch). Take a B-model
I and take a justification J as from Theorems 1 or 2. With
some care, we can prove that the final element of a J-branch
has a larger value than first element in I under ≤t. There-
fore, I satisfies the conditions of Lemma 1, proving that I is
a B′-model. The other direction is proven similarly.

3.3 Links between Different Justification Models
Our third set of results is concerned with the relation between
different semantics induced by JT. In the context of logic
programming, it is well-known that there is a unique well-
founded model, what the relation between well-founded and
stable model is, etcetera. Several such results will follow im-
mediately by establishing the correspondence with AFT, but
some of them will be needed in our proof. They are given
explicitly, and sometimes in higher generality, in the current
section.

First of all, in logic programming, it is well-known that the
well-founded and Kripke-Kleene semantics induce a single
model. In JT, we find an analogous result for a broad class
of branch evaluations. A branch evaluation B is called para-
metric if B(b) ∈ Fo for all JF -branches and all justification
frames JF . Denecker et al. [2015] provided the following
result.
Proposition 3. If JF is a justification frame and B a para-
metric branch evaluation, then JF has a single B-model.

In this proposition, we of course make use of our earlier as-
sumption that the value of the open facts is fixed. In general,
every interpretation of the open facts induces a single model.
Corollary 1. Every justification frame has a unique BKK-
model and a unique Bwf -model.
Proposition 4. The unique BKK-model is a Bsp-model.
Proposition 5. The well-founded model of JF is a stable
model of JF .
Proposition 6. Every stable justification model is a sup-
ported justification model.

Proof sketches of Proposition 4, 5 and 6. The idea of the
proof is that the justification according to Theorem 1 also
works for the other branch evaluation.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1976



Lemma 2. Let I be a stable justification model. If
SVBwf

(x, I) = f , then I(x) = f . If SVBwf
(x, I) = t, then

I(x) = t.

Proof sketch. Take x ∈ Fd with I(x) = f . By using that
I is a Bst-model, we can prove that every justification J has
a branch b ∈ BJ(x) such that I(Bwf(b)) ≤t u. This con-
cludes that SVBwf

(x, I) 6= t.

Proposition 7. The well-founded model is the≤p-least stable
model.

Proof sketch. Lemma 2 implies that the well-founded model
is less precise than any stable model. Then Proposition 5 fin-
ishes the proof.

4 Embedding JT in AFT
We now turn our attention to the main topic of this paper,
namely formally prove the correspondence between JT and
AFT. We start with a brief recall of the basic definitions that
constitute AFT, next show how to obtain an approximator out
of a justification frame, and finally prove that indeed, all ma-
jor semantics are preserved under this correspondence.

4.1 Preliminaries: AFT
Given a complete lattice 〈L,≤〉, AFT [Denecker et al., 2000]
uses the bilattice L2 = L×L. We define projection functions
as usual: (x, y)1 = x and (x, y)2 = y. Pairs (x, y) ∈ L2

are used to approximate elements in the interval [x, y] =
{z | x ≤ z ≤ y}. We call (x, y) ∈ L2 consistent if x ≤ y,
i.e., if [x, y] is not empty. The set of consistent elements is
denoted Lc. A pair (x, x) is called exact since it approxi-
mates only the element x. The precision order ≤p on L2 is
defined as (x, y) ≤p (u, v) if x ≤ u and y ≥ v. If (u, v)
is consistent, this means that [u, v] ⊆ [x, y]. If 〈L,≤〉 is a
complete lattice, then so is

〈
L2,≤p

〉
. AFT studies fixpoints

of operators O : L → L through operators approximating O.
An operator A : L2 → L2 is an approximator of O if it is≤p-
monotone and has the property that A(x, x) = (O(x), O(x))
for all x ∈ L. Approximators are internal in Lc (i.e., map
Lc into Lc). We often restrict our attention to symmetric
approximators: approximators A such that, for all x and y,
A(x, y)1 = A(y, x)2. Denecker et al. [2004] showed that the
consistent fixpoints of interest of a symmetric approximator
are uniquely determined by an approximator’s restriction to
Lc and hence, that it usually suffices to define approximators
on Lc. Such a restriction is called a consistent approximator.
As mentioned before, AFT studies fixpoints of O using fix-
points of A. The main type of fixpoints that concern us are
given here.

• A partial supported fixpoint of A is a fixpoint of A.
• The Kripke-Kleene fixpoint of A is the ≤p-least fixpoint

of A; it approximates all fixpoints of A.
• A partial stable fixpoint of A is a pair (x, y) such that
x = lfp(A(·, y)1) and y = lfp(A(x, ·)2), where A(·, y)1
denotes the function L → L : z 7→ A(z, y)1 and analo-
gously A(x, ·)2 stands for L→ L : z 7→ A(x, z)2.

• The well-founded fixpoint of A is the ≤p-least partial
stable fixpoint of A.

4.2 The Approximator
Let JF = 〈F ,Fd, R〉 be a justification frame, fixed through-
out this section. Our first goal is to define, from a given justi-
fication frame, an approximator on a suitable lattice. Follow-
ing the correspondence with how this is done in logic pro-
gramming, we will take as lattice the set of exact interpre-
tations (interpretations that map no facts to u except for u
itself). It is easy to see that such interpretations correspond
directly to subsets of F+. In other words, we will use the lat-
tice 〈L = 2F+ ,⊆〉. Now, the set Lc is isomorphic to the set
of three-valued interpretations of F ; under this isomorphism,
a consistent pair (I, J) ∈ Lc corresponds to the three-valued
interpretation I such that for positive facts x ∈ F+, I(x) = t
if x ∈ I , I(x) = f if x 6∈ J , and I(x) = u otherwise.
Definition 13. The operator OJF : L → L of JF maps a
subset I of F+ to

OJF (I) = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : (I, I)(a) = t} .

The approximator AJF : Lc → Lc of JF is defined as fol-
lows

AJF (I)1 = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : I(a) = t}
AJF (I)2 = {x ∈ F+ | ∃x← A ∈ R : ∀a ∈ A : I(a) ≥t u}

Proposition 8. If no rule body in JF contains u, then AJF
is a consistent approximator of OJF .

So far, we are not aware of practical examples with bod-
ies containing u. From now on, we assume that every jus-
tification frame does not have u in a rule body. It turns out
that in case our justification frame behaves well with respect
to negation (if it is complementary), the approximator is the
same operator as induced by the branch evaluation Bsp.
Lemma 3. For a complementary justification frame JF , the
function AJF and the support operator SBsp

JF are equal.

4.3 Semantic Correspondence
The central result of this section is the following theorem,
which essentially states that for all major semantics, the
branch evaluation in JT corresponds to the definitions of AFT.
Theorem 3. Take a complementary justification frame JF .

• The partial supported fixpoints of AJF are exactly the
supported models of JF .

• The Kripke-Kleene fixpoint of AJF is the unique Kripke-
Kleene model of JF .

• The partial stable fixpoints of AJF are exactly the stable
models of JF .

• The well-founded fixpoint of AJF is the unique well-
founded model of JF .

These four points are proven independently; the first fol-
lows directly from our observation that AJF and SBsp

JF are in
fact the same operator.
Proposition 9. The partial supported fixpoints of AJF are
exactly the supported models of JF .

Given the correspondence between supported semantics,
the result for Kripke-Kleene semantics follows quite easily.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1977



Proposition 10. The Kripke-Kleene fixpoint of AJF is equal
to the unique BKK-model of JF .

Proof sketch. By combining Propositions 4, and 9, we get
that the unique BKK-model (denoted here IBKK

) is a fix-
point of AJF . All that is left to show is that it is the least
precise one. Assume towards contradiction that this is not
the case, i.e., that there is a fixpoint I of AJF such that
IBKK 6≤p I. From this we can find an x ∈ Fd such that either
IBKK(x) = f and I(x) = t, or IBKK(x) = f and I(x) = u.
In both cases, we have IBKK(x) = f ; hence every justifica-
tion J with x as internal node has a finite branch starting with
x mapped to an open fact y with IBKK

(y) = f . However,
since IBKK

and I agree on open facts, this also means that
SVB′

sp
(x, I) = f , contradicting that I is a B′sp-model.

The proof of the third point of Theorem 3 is split in two
parts, proven separately in the following propositions.

Proposition 11. Each stable model of JF is a partial stable
fixpoint of AJF .

Proof sketch. Take a Bst-model I = (I1, I2) of JF . To show
that I is a partial stable fixpoint, we have two lfp equations
to prove. We focus on lfp(AJF (·, I2)1) = I1. We know from
Theorem 1 that a justification J exists that justifies all facts
in I1. Now, this specific justification induces a dependency
order on the facts in I1, defined as y �J x if y is reachable in
J from x through positive facts. Using the definition of stable
branch evaluation, we can see that this order is well-founded
and subsequenty prove using well-founded induction on this
order that all facts in I1 must be in lfp(AJF (·, I2)1).

For the other direction, we first need the following lemma.

Lemma 4. Let I be a Bsp-model and x ∈ F+ with
SVBsp

(x, I) = f . It holds that SVBst
(x, I) = f .

Proposition 12. Each partial stable fixpoint of AJF is a sta-
ble model of JF .

Proof sketch. Let I = (I1, I2) be a partial stable fixpoint of
AJF . We prove that SVBst

(x, I) = I(x) for x ∈ F+. By
consistency of SBst

JF [Marynissen et al., 2018], this proves that
I is a stable model of JF . The proof consists of three parts.

1. SVBst(x, I) = I(x) = t for all x ∈ I1.

2. SVBst
(x, I) = I(x) = u for all x ∈ I2 \ I1.

3. SVBst
(x, I) = I(x) = f for all x ∈ F+ \ I2.

The first part is proven by constructing a possibly non-locally
complete justification without infinite branches, every inter-
nal node positive, and for every node y we have that I(y) = t.
The construction is possible because I1 is the least fixpoint of
AJF (·, I2)1. The second part is proven similarly. Last part is
a consequence of Lemma 4.

Example 4. Let F = {x,∼x, y,∼y, z,∼z} ∪ L and let R
be the complementation of {x← y; y ← ∼z; z ← ∼x,∼y; },
i.e., it adds the rules ∼x ← ∼y; ∼y ← z; ∼z ← x and
∼z ← y. The approximator AJF has three partial stable
fixpoints: ({x, y} , {x, y}), ({z} , {z}) and (∅, {x, y, z}).

Let us take a look at the fixpoint ({x, y} , {x, y}). Since it
is a stable fixpoint, we know that ({x, y} , {x, y}) is a least
fixpoint of AJF (·, {x, y}). This operator is monotone with
respect to ⊆; hence we can construct the fixpoint by itera-
tively applying the operator on (∅, {x, y}). This produces the
following sequence.

(∅, {x, y})→ ({y} , {x, y})→ ({x, y} , {x, y})

The first step uses the rule y ← ∼z, while the second step
uses the rule x ← y. Combining the two we get the jus-
tifiction x → y → ∼z, which has only true nodes in the
model ({x, y} , {x, y}), only positive internal nodes and ev-
ery defined leaf is negative. This illustrates the first step of the
proof of Proposition 12. By extending the found justification,
we get a locally complete justification with the same value as
the supported value.

The proof of the fourth point of Theorem 3 follows directly
from the third point and Proposition 7.

5 Ultimate Semantics for Justification Frames
When applying AFT to new domains, there is not always a
clear choice of which approximator to use; the operator on
the other hand is often more clear. Denecker et al. [2004]
studied the space of approximators and observed that con-
sistent approximators can naturally be ordered according to
their precision, where more precise approximator also yield
more precise results (e.g., if approximator A is more precise
than B, then the A-well-founded fixpoint is guaranteed to be
more precise than B’s). They also observed that the space
of approximators of O has a most precise element, called the
ultimate approximator, denoted U(O).

In the context of JT, the justification frame uniquely de-
termines the approximator at hand. Still, we show that it is
possible to obtain ultimate semantics here as well. To do so,
we will develop a method to transform a justification frame
JF into its ultimate frame U(JF). We will then show that
the approximator associated to U(JF) is indeed the ultimate
approximator of OJF . The result is a generic mechanism to
go from any semantics induced by JT (for arbitrary branch
evaluations – not just for those that have an AFT counterpart)
to an ultimate variant thereof. Our construction is as follows:
Definition 14. Let JF be a complementary justification
frame. Let X be the set rules with a positive head. Let X∗ be
the least (w.r.t. ⊆) set containing X that is closed under the
addition of rules x← A if there is a rule x← B with B ⊆ A,
or if there are rules x← {y} ∪ A, x← {∼y} ∪ A. Let Y be
the complementation of X . Then U(JF) is defined to be the
complementary justification frame 〈F ,Fd, Y 〉.
Example 5. Let Fd = {x,∼x} and Fo =
{a,∼a, b,∼b} ∪ Fo. Take R to be the complementa-
tion of {x← a, x x← b,∼x}, which adds the following
rules

∼x← ∼a,∼b ∼x← ∼a, x
∼x← b,∼x ∼x← x,∼x

A rule x ← A is minimal, if there is no rule x ← B with
B ⊂ A. For determining the supported value, you only need

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1978



to take minimal rules into account. The justification frame
U(JF) has exactly the following minimal rules:

x← a, x x← b,∼x x← a, b

∼x← ∼a,∼b ∼x← ∼a, x ∼x← ∼b,∼x
Of course, it contains many non-minimal rules, for example
x← a, b, x.

The justifications in the original system containing x as an
internal nodes are exactly the following:

x

a

x

b ∼x

∼a∼b

x

b ∼x

∼a
x

b ∼x

∼b x

b ∼x

Assume from now on we are working under Bst. The value of
the upper left justification for x is f in every interpretation.
The values of the other justifications for x are at most u in
Bst-models. If it would be t, then the value of these justifica-
tions for x is equal to the value of ∼x, which is f .

By taking the ultimate justification frame, the minimal rule
x ← a, b is added and the minimal rule ∼x ← x,∼x is re-
moved. This allows for the justification a ← x → b. If the
interpretation of a and b is t, then the value of this justifica-
tion for x is t. Therefore, ({a, b, x} , {a, b, x}) is an ultimate
stable model, while not a stable model. Note that the lower
right justification is not a justification in U(JF). If it would
be, then this is a true justification for ∼x contradicting the
consistency.

It can be seen that the construction adds rules to JF in two
cases. For the first type, if x← B is a rule in R with B ⊆ A,
then if B is sufficient to derive x, clearly so is A. The second
type of rule addition essentially performs some sort of case
splitting. It states that if a set of facts A can be used with
either y or ∼y to derive x, then the essence for deriving x is
the set A itself. In that case, the rule x ← A is added to the
ultimate frame. It turns out that this rule of case splitting is
indeed sufficient to reconstruct the ultimate semantics in JT.
This is formalised in the main theorem of this section:
Theorem 4. For any frame JF , AU(JF) = U(OJF ).

An immediate corollary is, for instance that the set of stable
models of U(JF) equals the set of ultimate stable fixpoints
of OJF , and similarly for other semantics. Recall that, in the
context of lattices with the subset order, which is what we are
concerned with here, the ultimate approximator is defined as
follows [Denecker et al., 2004]:

U(O)(I1, I2) =

 ⋂
I1⊆K⊆I2

O(K),
⋃

I1⊆K⊆I2

O(K)

 . (1)

The proof of Theorem 4 makes use of the following inter-
mediate results.

Lemma 5. Let I be an interpretation and x ∈ Fd.
If OJF (I ′)(x) = t (respectively f ) for all exact interpre-

tations I ′ with I ′ ≥p I, then AU(JF)(I)(x) = t (resp. f ).

Proof sketch. Take X = {y ∈ Fd | I(x) = u} and let I =
(I1, I2). We prove for all Y ⊆ X and all complete consistent
sets A over X \ Y that x← {t} ∪ I1 ∪ ∼(F+ \ I2) ∪ A is a
rule in U(JF). If Y = X , then we get that x ← {t} ∪ I1 ∪
∼(F+ \ I2) is a rule in U(JF) such that its body is true in I,
which completes the proof. Our claim is proved by transfinite
induction on the size of Y .

Combining this lemma with Eq. (1) of the ultimate approx-
imator immediately yields that the operator AU(JF)(I) is as
least as precise as the ultimate approximator of OJF .
Lemma 6. For all I we have U(OJF )(I) ≤p AU(JF)(I).

Since the ultimate approximator is the most precise ap-
proximator of any given operator, all that is left to prove, to
indeed obtain Theorem 4 is that AU(JF) indeed approximates
OJF . That is the content of the last lemma.
Lemma 7. AU(JF) is an approximator of OJF .

6 Conclusion
In this paper, we presented a general mechanism to translate
justification frames into approximating operators and showed
that this transformation preserves all semantics the two for-
malisms have in common. The correspondence we estab-
lished provides ample opportunity for future work and in fact
probably generates more questions than it answers.

By embedding JT in AFT, JT gets access to a rich body
of theoretical results developed for AFT, but of course said
results are only directly applicable to branch evaluations that
have a counterpart in AFT. A question that immediately arises
is whether results such as stratification results also apply to
other branch evaluations, and which assumptions on branch
evaluations would be required for that. Another question that
pops up on the JT side is whether concepts such as grounded-
ness [Bogaerts et al., 2015] can be transferred.

On the AFT side, this embedding calls for a general alge-
braic study of explanations. Indeed, for certain approxima-
tors, namely those that “come from” a justification frame, our
results give us a method for answering certain why questions
in a graph-based manner (with justifications). Lifting this no-
tion of explanation to general approximators would benefit
domains of logics that are covered by AFT but not by JT,
such as auto-epistemic logic [Moore, 1985] and default logic
[Reiter, 1980].

A last question that emerges naturally is how nesting of
justification frames, as defined by Denecker et al. [2015] fits
into this story, and whether it can give rise to notions of nested
operators on the AFT side.

Acknowledgements
Many thanks to Maurice Bruynooghe for the valuable com-
ments and suggestions on draft versions. This research
received partial funding from the FWO Flanders project
G0B2221N.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1979



References
[Bi et al., 2014] Yi Bi, Jia-Huai You, and Zhiyong Feng. A

generalization of approximation fixpoint theory and appli-
cation. In Proceedings of RR, pages 45–59, 2014.

[Bogaerts and Cruz-Filipe, 2018] Bart Bogaerts and Luı́s
Cruz-Filipe. Fixpoint semantics for active integrity con-
straints. AIJ, 255:43–70, 2018.

[Bogaerts and Cruz-Filipe, 2021] Bart Bogaerts and Luı́s
Cruz-Filipe. Stratification in approximation fixpoint the-
ory and its application to active integrity constraints. ACM
Trans. Comput. Logic, 22(1), January 2021.

[Bogaerts and Van den Broeck, 2015] Bart Bogaerts and
Guy Van den Broeck. Knowledge compilation of logic
programs using approximation fixpoint theory. TPLP,
15(4–5):464–480, 2015.

[Bogaerts and Weinzierl, 2018] Bart Bogaerts and Antonius
Weinzierl. Exploiting justifications for lazy grounding
of answer set programs. In Proceedings of IJCAI, pages
1737–1745, 2018.

[Bogaerts et al., 2015] Bart Bogaerts, Joost Vennekens, and
Marc Denecker. Grounded fixpoints and their applications
in knowledge representation. AIJ, 224:51–71, 2015.

[Cabalar et al., 2014] Pedro Cabalar, Jorge Fandinno, and
Michael Fink. Causal graph justifications of logic pro-
grams. TPLP, 14(4–5):603–618, 2014.

[Charalambidis et al., 2018] Angelos Charalambidis, Panos
Rondogiannis, and Ioanna Symeonidou. Approximation
fixpoint theory and the well-founded semantics of higher-
order logic programs. TPLP, 18(3-4):421–437, 2018.

[Damásio et al., 2013] Carlos Viegas Damásio, Anastasia
Analyti, and Grigoris Antoniou. Justifications for logic
programming. In Proceedings of LPNMR, pages 530–542,
2013.

[Denecker and De Schreye, 1993] Marc Denecker and
Danny De Schreye. Justification semantics: A unifying
framework for the semantics of logic programs. In
Proceedings of LPNMR, pages 365–379, 1993.

[Denecker et al., 2000] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Approximations, stable opera-
tors, well-founded fixpoints and applications in nonmono-
tonic reasoning. In Logic-Based Artificial Intelligence,
pages 127–144, 2000.

[Denecker et al., 2003] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Uniform semantic treatment of
default and autoepistemic logics. AIJ, 143(1):79–122,
2003.

[Denecker et al., 2004] Marc Denecker, Victor Marek, and
Mirosław Truszczyński. Ultimate approximation and its
application in nonmonotonic knowledge representation
systems. Information and Computation, 192(1):84–121,
2004.

[Denecker et al., 2015] Marc Denecker, Gerhard Brewka,
and Hannes Strass. A formal theory of justifications. In
Proceedings of LPNMR, pages 250–264, 2015.

[Fages, 1990] F. Fages. A New Fixpoint Semantis for Gen-
eral Logic Programs Compared with the Well-Founded
and the Stable Model Semantics. In ICLP, page 443. MIT
Press, 1990.

[Fitting, 2002] Melvin Fitting. Fixpoint semantics for logic
programming — A survey. Theoretical Computer Science,
278(1-2):25–51, 2002.

[Gebser et al., 2009] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. On the implemen-
tation of weight constraint rules in conflict-driven ASP
solvers. In ICLP, pages 250–264, 2009.

[Lapauw et al., 2020] Ruben Lapauw, Maurice Bruynooghe,
and Marc Denecker. Improving parity game solvers with
justifications. In Proceedings of VMCAI, pages 449–470,
2020.

[Marynissen et al., 2018] Simon Marynissen, Niko Pass-
chyn, Bart Bogaerts, and Marc Denecker. Consistency in
justification theory. In Proceedings of NMR, pages 41–52,
2018.

[Marynissen et al., 2020] Simon Marynissen, Bart Bogaerts,
and Marc Denecker. Exploiting game theory for analysing
justifications. Theory Pract. Log. Program., 20(6):880–
894, 2020.

[Moore, 1985] Robert C. Moore. Semantical considerations
on nonmonotonic logic. AIJ, 25(1):75–94, 1985.

[Reiter, 1980] Raymond Reiter. A logic for default reason-
ing. AIJ, 13(1-2):81–132, 1980.

[Schulz and Toni, 2013] Claudia Schulz and Francesca Toni.
ABA-based answer set justification. TPLP, 13(4–5-
Online-Supplement), 2013.

[Strass, 2013] Hannes Strass. Approximating operators
and semantics for abstract dialectical frameworks. AIJ,
205:39–70, 2013.

[Tarski, 1955] Alfred Tarski. A lattice-theoretical fixpoint
theorem and its applications. Pacific Journal of Mathe-
matics, 1955.

[Vennekens et al., 2006] Joost Vennekens, David Gilis, and
Marc Denecker. Splitting an operator: Algebraic modular-
ity results for logics with fixpoint semantics. ACM Trans.
Comput. Log., 7(4):765–797, 2006.

[Vennekens et al., 2007] Joost Vennekens, Maarten Mariën,
Johan Wittocx, and Marc Denecker. Predicate introduc-
tion for logics with a fixpoint semantics. Parts I and II.
Fundamenta Informaticae, 79(1-2):187–227, 2007.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

1980


	Introduction
	Approximation Fixpoint Theory
	Justification Theory
	Correspondence
	Contributions

	Preliminaries: Justification Theory
	Tying Up Loose Ends
	Pasting Justifications
	Equivalence of Branch Evaluations
	Links between Different Justification Models

	Embedding JT in AFT
	Preliminaries: AFT
	The Approximator
	Semantic Correspondence

	Ultimate Semantics for Justification Frames
	Conclusion

