Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Compressing Exact Cover Problems
with Zero-suppressed Binary Decision Diagrams

Masaaki Nishino, Norihito Yasuda, Kengo Nakamura
NTT Communication Science Laboratories, NTT Corporation

{masaaki.nishino.uh, norihito.yasuda.hn, kengo.nakamura.dx } @hco.ntt.co.jp

Abstract

Exact cover refers to the problem of finding sub-
family F of a given family of sets S whose universe
is D, where F forms a partition of D. Knuth’s Al-
gorithm DLX is a state-of-the-art method for solv-
ing exact cover problems. Since DLX’s running
time depends on the cardinality of input S, it can be
slow if S is large. Our proposal can improve DLX
by exploiting a novel data structure, DanceDD,
which extends the zero-suppressed binary decision
diagram (ZDD) by adding links to enable efficient
modifications of the data structure. With DanceDD,
we can represent S in a compressed way and per-
form search in linear time with the size of the struc-
ture by using link operations. The experimental re-
sults show that our method is an order of magnitude
faster when the problem is highly compressed.

1 Introduction

An exact cover refers to the problem of finding subfamily F
of a given family of sets S whose universe is DD, where F
forms a partition of D; thatis, | Jy . X = Dand X N X' =
() for all X # X' € F. A wide range of problems, including
puzzles like N-queens [Knuth, 2000], Sudoku [Gunther and
Moon, 2012], and graph coloring [Koivisto, 2006], can be
formulated as exact cover problems. Determining whether
a solution exists for an exact cover problem is known to be
NP-complete [Karp, 1972].

Knuth’s Algorithm DLX (DLX) [Knuth, 2000] is a method
for solving an exact cover problem. DLX performs an ex-
haustive depth-first backtracking-based search by exploiting
doubly linked list structures called dancing links. DLX is
known as the state-of-the-art method for finding all solutions
of an exact cover problem [Junttila and Kaski, 2010]. Enu-
merating solutions is beneficial if we consider exact covers
appearing in practical situations, such as designing electric
circuits [Chang and Jiang, 2016], designing 3D shapes from
small fragments [Hu er al., 2014], and timetabling [Nguyen
et al., 2018]. In such practical situations, users may want to
compare multiple exact covers.

The space complexity of DLX is linear with the cardinality
of § and a state transition in DLX requires time to be linear
with it. Unfortunately, formulating a real-world problem as

1996

an exact cover problem often causes an exponential blowup of
the cardinality of S. For example, the vehicle-routing prob-
lem finds a set of vehicle routes to reach and deliver all cus-
tomers. This problem can be formulated as an exact cover
problem. However, in such formulations, S corresponds to
the set of all possible routes, which is generally exponential
with the number of customers. In such cases, DLX would fail
to find solutions to the exact cover problems.

In this paper, we propose a new algorithm, DX, which
is an extension of DLX, by exploiting a new data structure
DanceDD to represent S in a succinct form. DanceDD is
made by adding links to a zero-suppressed binary decision
diagram (ZDD) [Minato, 1993], which can represent a fam-
ily of sets in a compressed form. Algorithm D3X can per-
form the operations required for updating search states on
a backtracking-based depth-first search in linear time to the
ZDD size, which can be much faster than DLLX when we can
represent S as a compressed ZDD !,

2 Algorithm DLX

We begin with a brief review of the exact cover problem and
DLX. Let M be the cardinality of universe D = {1,...,M}
and N be the cardinality of S. Input S of an exact cover prob-
lem can be represented as a binary N x M matrix A. Every
row vector represents a set X € S, where the i-th element of
X is 1iff 4 € X and O otherwise. With this representation, an
exact cover problem corresponds to finding a set of row vec-
tors that contains exactly one 1 for each column. The matrix

a b c d e f
1 /1 1 0 0 0 O
211 1 1 0 1 0
3/]0 0 0 1 0 1 (1)
410 01 1 0 1
5\0 01 0 1 O

represents an exact cover problem, where N = 5 and M = 6.
In this example, the sets of options 2,3 and 1, 3,5 are the
solutions. In the following, we call each X € S an option
and each j € D an item.

DLX finds all solutions of an exact cover problem by per-
forming a depth-first backtracking-based search. We show an

'Our code is available at https://github.com/nttcslab-alg/d3x

https://github.com/nttcslab-alg/d3x

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 1: Overview of DLX.

Input: Binary Matrix B
1 function Search(A, R):
if No remaining items in A then Output R and return
Select item ¢ using the MRV heuristic
O < set of options in A having 4
for X € O do
Add X to R
for j € X do
Delete column corresponding to item j
L Delete all options having j
Search(A, R)
1 for j € X do
12 Restore all options having j
13 L Restore column corresponding to item 7

R I N7 I NS

—
<

14 | Remove X from R

15 S;arch(B, 0)

overview of DLX in Alg. 1. Search(A, R) is the main proce-
dure that recursively searches for solutions of the exact cover
problem whose input is represented as binary matrix A, where
R is a set of selected options representing the current partial
solution. Search(A, R) first checks whether A has no remain-
ing items (line 2). If the condition is true, it then outputs R
as a solution and returns. Otherwise, it selects item 7 to cover
(line 3). DLX uses the minimum remaining values (MRV)
heuristic of selecting the item corresponding to a column with
the minimum number of 1s in A. The MRV heuristic is sim-
ple, but works well in practice [Knuth, 2019]. The algorithm
then selects the set of options O = {X | X € A,i € X}
(line 4). It then chooses an option X from O and adds it to
partial solution R (line 5). If option X is added in R, then no
option X’ satisfying X N X’ # () can be selected. We thus
delete such options from A (line 9). The algorithm then re-
cursively calls Search(A, R) to continue the search. After the
search has finished, it restores all options and items that are
deleted after selecting X (lines 12 and 13) and then selects
another option from O to repeat the procedure.

Example 1. Suppose that the matrix shown in (1) is given as
the input of DLX. DLX first calls Search(A, D). In this exam-
ple, the MRV heuristic would select an item from a,b,d, e, f.
Suppose that item a is selected at line 3. Then, the set of op-
tions (row vectors) having item a. is O = {{a, b}, {a,b,c,e}}.
When the algorithm selects the first option {a, b} and adds it
to R, items a and b, and options having either a and b, are
then deleted (lines 7-9). The following submatrix is obtained

by deleting them:
3
4 . 2
5

We recursively call Search(A, R) by setting the submatrix as
Aand R = {{a,b}}. In the recursive call, the MRV heuristic
selects item e and appends the fifth option {c, e} to R since it
only contains e. Thus, items c and e, and options 4 and 5, are

== 0
O KR Q,
— oo 0o
O ==

1997

deleted, which yields submatrix

d f
3 (1 1). 3)

Next, selecting the third option {d, f} covers all the items;
thus, selected options 1,5, 3 form an exact cover.

2.1 Dancing Links

Since DLX repeatedly deletes and recovers matrix elements,
we need an appropriate data structure to run them efficiently.
Dancing links is a data structure that enables efficient execu-
tion of these operations. Dancing links represents an input
matrix by exploiting sets of doubly linked lists. Let x be a
cell in a doubly linked list and let L(x) and R(x) be the pre-
vious and next cells to which the z points to. Using doubly
linked lists, we can remove and recover elements from a list
in constant time by using the following operations:

(Delete), (4)
(Restore). (5)

R(L(z)) - R(z), L(R(z)) < L(x)
R(L(z)) + z, L(R(z)) +

The former two operations remove x from the linked list and
the latter restore it.

Dancing links represents an input matrix using two types
of cells: item and node. An item cell corresponds to an item
in universe D and has four links: 1eft, right, up, and down.
left and right indicate the previous and next item cells. We
use a doubly linked list to represent the set of all item cells.
The linked list has a special item cell header whose 1eft and
right links point to the first and last item cells. We say a cell
is active if we can reach the cell from the header by follow-
ing some links. down and up indicate the first and last node
cells that correspond to item 7. A node cell corresponds to an
element of a binary matrix representing input S. It has three
links: up, down, and item. item points to the item cell to
which the node cell corresponds, and up and down denote the
previous and next node cells that have the same iten field.
An option is represented using an array of node cells where
every node cell corresponds to an item in the option.

Figure 1(a) is a graphical representation of the dancing
links structure. The rectangles in the top level represent the
item cells and the blue squares represent the node cells. The
top row denotes the set of items represented as a doubly
linked list of item cells, where the arcs represent the left
and right links. Other rows, which consist of node cells,
represent options. The up and down links of the cells are also
represented as arcs. The symbol in the rectangles represents
the item to which the cell corresponds. We can see that the
node cells in the figure correspond to the 1s of the binary ma-
trix shown in (1).

DLX can delete and recover options by updating links.
Here, we only show an example of how the structure changes
during the search procedure. Interested readers can find de-
tails of DLX in [Knuth, 2000; Knuth, 2019]. Figure 1 (b)
and (c) show the structure that appears after selecting option
X = {a, b} in Example 1. Figure 1 (b) is obtained by delet-
ing item a and options containing a. We can see that the item
cells corresponding to a are removed from the linked list of
item cells. Node cells appearing in options {a, b}, {a, b, ¢, e}

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Figure 1: Dancing links structure examples. Red bold arcs represent the updated links: (a) Dancing links structure representing the matrix in
(1), (b) after deleting options containing item a, and (c) after deleting options containing b after (b).

Figure 2: ZDD representing the matrix in (1).

are also removed from linked lists connected by up and down
links. Figure 1 (c) is obtained by further removing item b
and options having b. The active node cells represent the sub-
matrix in (2). We can perform these deletions using the link
operations in (4). Its running time is linear with the number
of cells to be removed. It is also possible to revert changes to
recover the structure in Fig. 1 (a) from the structure in Fig. 1
(c) by exploiting the link operations (5), which also can be
performed in linear time with the number of elements to be
recovered.

3 ZDDs

A ZDD represents a family of sets as a directed acyclic graph.
Figure 2 is an example of a ZDD that represents the family of
sets S = {{a,b}.{a,b,c,e}.{d, f}.{c,d, f}.{c, e} } over uni-
verse D = {a,b,c,d, e, f}. ZDDs have two types of nodes:
terminal and branch. A terminal node has no outgoing edges.
A ZDD has exactly two terminal nodes with labels T and
L. Terminal nodes are represented as rectangles in the figure.
Branch nodes are non-terminal and are represented as circles
in the figure. Every branch node has a label representing the
item to which the node corresponds and two outgoing edges:
low and high. ZDD nodes indicated by low and high edges
of a branch node n are called the low-child and high-child of
n, respectively. In the figure, a branch node’s label is repre-
sented as a symbol in a circle, and high and low edges are
represented by solid and dashed lines, respectively. A branch
node without an ancestor node is the root node; a ZDD al-
ways has one root node. Every path from the root to the T
terminal node corresponds to a subset X € S. We can re-
cover X from the corresponding path by selecting the labels
of the branch nodes whose high edges lie on the path. The

1998

ZDD in Fig. 2 has five such paths and each path corresponds
to asubset X € S.

A ZDD is ordered if labels of visited branch nodes in a
path from the root to a terminal node always follow an order
over the universe. The ZDD in Fig. 2 is an ordered ZDD
since every path from the root to a terminal node follows the
order a, b, c,d, e, f. In the following, we assume that ZDDs
are always ordered.

4 Algorithm D3X

Our proposed D3X performs a backtracking-based depth-first
search with the DanceDD structure representing input S. We
first introduce the DanceDD structure (§4.1) and then show
the search algorithm exploiting it (§4.2). We also compare
the time and space complexity of DX with DLX (§4.3).

4.1 The DanceDD Structure

Since input S of an exact cover problem is a family of sets, it
can be represented in a compressed form by using ZDD. Fig-
ure 2 is a ZDD representing the set family corresponding to
binary matrix (1). In this example, the number of ZDD branch
nodes is 8, which is less than 13, which is the number of
nonzero elements of the matrix. Although the size of the ZDD
depends on the target being represented, it is known that the
number of branch nodes of a ZDD is always not larger than
the number of 1s in the binary matrix representing S [Minato
et al., 2008].

DanceDD is made by adding links to an input ZDD. The
dancing links structure used in DLX enables the deletion and
restoration of matrix elements by modifying links. Similarly,
DanceDD can delete and restore ZDD branch nodes by mod-
ifying links. It enables running an efficient depth-first search
on a compressed representation. Similar to the dancing links
structure, DanceDD consists of two types of cells: item and
node. An item cell is identical to that used in the dancing
links structure, which has four links, left, right, up, and
down, and one non-negative integer field, len. A node cell
corresponds to a ZDD branch node and has seven links: up,
down, item, lo, hi, head, and tail. up and down indi-
cate the next and previous cells that correspond to the same
item and item indicates the corresponding item cell in the
header. 1o and hi point to the node cells corresponding to
the low- and high-child ZDD nodes. head and tail are used
to store the addresses of node cells corresponding to parent

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 2: Algorithm D3X

1 function SearchZDD(R):
if A is empty then Output R and return
Select item 4 using the MRV heuristic.
CoverZDD(3)
p + down(i)
while p # i do
for X <+ NextOption(p) do
Add X into R
for j # i such that j € X do
| CoverZDD(j)

1 SearchZDD(R)
12 for j # i such that j € X do
13 | UncoverZDD(j)

14 Remove X from R

(R SES TEC N I 8

—
=)

15 | p < down(p)

16 SearchzZDD(0)

ZDD nodes. Since a ZDD node has a variable number of
parents, we use a doubly linked list whose element has the
address of the parent node cell and flags whether the node is
a high-child or not. An element in the linked list also has two
links indicating adjacent elements. The links head and tail
of an item cell store the first and last element of the list. In
the following, we omit the detail of the doubly linked list and
use Parents(p) to represent the set of parents, where element
(g,t) € Parents(p) is a pair of parent ZDD node cell ¢ and
t is either of {LOorHI}. If t = LO, it means lo(q) = p. If
t = HI, then hi(q) = p. If lo(¢) = hi(g) = p, then both
(¢,LO) and (g, HI) are contained in Parents(p).

Figure 3(a) shows a DanceDD structure that represents the
exact cover problem shown in (1). The black rectangles in
the top row represent item cells and the other blue rectangles
represent node cells. The rectangle with label T is a special
cell called the terminal, which has no links. There are solid
and dashed links between node cells. Such links represent hi
and 1o. By comparing this structure with the original dancing
links structure in Fig. 1 (a), we can see that the item cells are
identical with those in the original structure. Note that the
cell corresponding to the L terminal node and links pointing
to L are removed from the DanceDD structure since they are
not used in D3X.

Node cells are slightly different from those of the dancing
links; we can see that the node cells in the DanceDD structure
correspond to the ZDD in Fig. 2. This can be viewed as
adding up and down links to the ZDD to connect the node
cells having the same item values and adding links indicating
parent ZDD nodes. Comparing Fig. 3 (a) with Fig. 1 (a), we
find that DanceDD reduces the number of cells.

Every node cell p stores three non-negative integer fields:
plen, 1len, and hlen. plen(p) stores the number of paths
that start from the node cell corresponding to the root ZDD
node and reach p by following the hi and lo links. Simi-
larly, 11en and hlen store the number of paths that start from
the low- and high-child nodes and end at the T-terminal cell.
Since every option corresponds to a path from the root to the
T-terminal node of a ZDD, plen(p) - hlen(p) corresponds

Algorithm 3: CoverZDD and UncoverZDD

1 function CoverZDD(i):
right(left(:)) < right(7)
left(right(i)) + left(i)
p <+ down(i), C <+ 0
while p # i do

C + CcU{p}

p < down(p)

CoverUpper(C), CoverLower(C')
9 for p € C'do

EUT N NI S

®

10 for (q,t) € Parents(p) do

11 Add (g, t) to Parents(1o(p))

12 if ¢ = LO then 1o(q) < lo(p)
13 else hi(q) + lo(p)

14 Remove (p, HI) from Parents(hi(p))
15 Remove (p, LO) from Parents(1o(p))

16 function UncoverZDD(3):
17 right(left(i)) < 4
18 left(right(i)) < @

19 p < down(i), C <+ 0

20 while p # i do

21 C+ Cu{p}

2 p + down(p)

23 for p € C (access in a reverse order) do
2 Add (p, HI) to Parents(hi(p))

25 Add (p, LO) to Parents(lo(p))

26 for (q,t) € Parent(p) do

27 Remove (g, t) from Parents(1o(p))
28 if ¢ = LO then lo(q) < p

29 else hi(q) < p

30 UncoverLower(C'), UncoverUpper(C)

to the number of options whose path includes node cell p and
has item(p). For example, let p be the node cell with label e
in Fig. 3 (a). It has three fields plen(p) = 2, hlen(p) = 1,
and 11en(p) = 0. Then, plen(p)-hlen(p) = 2, which corre-
sponds to the number of options having item e. These values
are used in the MRV heuristic and in determining whether to
hide the node.

4.2 Algorithm

Algorithm 2 shows the overview of the D3X. D3X shares
many parts with DLX, but differs from DLX in mainly three
operations: NextOption, CoverZDD, and UncoverZDD.
NextOption(p) returns an option whose corresponding path
on the ZDD contains node cell p. By calling NextOption(p)
repeatedly, we can enumerate all the options whose cor-
responding path contains p. The time complexity of
NextOption(p) is known to be linear with M [Knuth, 2011].

Algorithm 2 shows details of CoverZDD(i) and
UncoverZDD(i). CoverZDD(i) updates the DanceDD
structure assuming that all the options having item ¢ are
removed. UncoverZDD(7) reverts all the updates made by
CoverZDD(i). CoverZDD(i) first hides the item cell corre-
sponding to ¢ (lines 2 and 3). Then, it creates a set of node
cells C that consists of node cells p such that item(p) = ¢
(lines 4-7) and can be reached from item cell ¢ by repeatedly

1999

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Figure 3: (a) Proposed DanceDD structure representing the exact cover problem in (1). Node cells represent the ZDD in Fig. 2. (b) The
DanceDD structure after option {a, b} is selected and CoverZDD(a) and CoverZDD(b) have been executed in this order. (c) The DanceDD
structure obtained by executing CoverZDD(e) and CoverZDD(c) in this order on the structure of (b). Red bold arcs are the modified links.
Red bold rectangles represent node cells whose links to child or parent node cells have been removed.

following the down links. It then calls CoverUpper(C)
and CoverLower(C') to update the cells and the ancestors
and descendants that will be affected by deleting options
having item 7. We show the details of CoverUpper(C) and
CoverLower(C') in the appendix. After updating the node
cells, we make it so every p € R cannot be accessed from its
ancestors and descendants (lines 9-15).

UncoverZDD reverses all the updates made by calling
CoverZDD and recovers the structure before performing
CoverZDD. That is, given a DanceDD structure, it executes
CoverZDD(4) and UncoverZDD(3) in this order using the
same item ¢ as its argument, and the resulting ZDD struc-
ture is identical to the initial one. This is done by undoing
all the deletion operations done in CoverZDD in reverse or-
der. It first returns the item cell that corresponds to item %
to the header list using the recovery operation in (5) (lines
17 and 18). It then creates a set of node cells R that can
be reached by following down from 7. Next, it first reverses
the modifications made to every p € C' in CoverZDD (lines
23-29) and then updates the ancestor and descendant node
cells that can be reached from the node cells in C' by execut-
ing UncoverUpper(C) and UncoverLower(C') (line 30). We
show the details in the appendix.

Example 2. Figure 3 shows how the DanceDD structures
would change in the search procedure in Example 1. Fig-
ure 3(b) is the structure after executing CoverZDD(a) and
CoverZDD(b) in this order. The active node cells form a ZDD
that represents a set of options {{c,e},{c,d, f},{d, f}}
which corresponds to the submatrix in Eq.(2). Figure 3 (c) is
the structure after CoverZDD(e) and CoverZDD(c) are exe-
cuted in this order. The remaining ZDD represents the set of
options {{d, f}}, which corresponds to the submatrix in (3).

4.3 Time and Space Complexity

We compare the time and space complexity of D3X with
DLX. The number of recursive calls of SearchZDD in a
search procedure is identical with that of Search. Therefore,
the running time differs in the operations performed in state
transitions. In DLX, a state transition corresponds to the op-
erations taken in lines 7-9 and 11-13 in Alg. 1. These op-
erations run in linear time with the number of deleted (resp.
restored) node cells. In D3X, these operations correspond to
CoverZDD and UncoverZDD, and both functions run in lin-
ear time with the number of node cells needing to be updated.

2000

Therefore, these operations also can be run in linear time with
the number of active node cells of the DanceDD structure.
However, we should note that the DanceDD structure is more
complex than the dancing links structure used in DLX and re-
quires more operations per node cell. Thus, it is possible that
DLX is faster than D3X even if the DanceDD has a smaller
number of node cells.

The space complexity of DLX and D3X are both linear
with the number of node cells. Other than storing cells,
D3X needs extra space to store the order of updating cells.
However, this extra space is also linear with the number of
DanceDD cells.

5 Experiments

We compared our algorithm with DLX and DXZ [Nishino et
al., 20171, both of which are implemented by Knuth?. DXZ
is an extension of DLX that uses ZDD as a memo cache to
accelerate DLX. We also compared with sharpSAT [Thur-
ley, 2006], a state-of-the-art #SAT solver, and d4, a state-
of-the-art deterministic decomposable negation normal form
(d-DNNF) compiler [Lagniez and Marquis, 2017]. We im-
plemented D3X in C++. All experiments were run on a Linux
server with a 3.5-GHz Intel(R) Xeon(R) CPU and 1 TB RAM.

We selected two types of exact cover problems for bench-
mark instances. The first is the problem where every option
corresponds to a connected subgraph. A solution to such
a problem corresponds to a clustering of the graph [Knuth,
2019]. Another is a problem of selecting cycles of a graph
to exactly cover a specified set of nodes. This setting reflects
the exact cover formulation of the vehicle routing problem,
where a cycle represents the route of a vehicle that starts at
the depot and reaches customers. An option corresponds to a
set of customers appearing in a cycle.

To enumerate connected subgraphs of a graph, we first ap-
plied a top-down ZDD construction algorithm [Suzuki and
Minato, 201613 to obtain the ZDD that represents the set of
all connected subgraphs. We made vehicle routing problem
instances as follows: for every graph, we first select a center
node and view it as the depot and then randomly select 30%
of nodes and consider them as customers. To enumerate the

*https://www-cs-faculty.stanford.edu/~knuth/programs.html
3We used the implementation at https:/github.com/hs-nazuna/
FrontierBasedSearchWith VertexIndices

https://www-cs-faculty.stanford.edu/~knuth/programs.html
https://github.com/hs-nazuna/FrontierBasedSearchWithVertexIndices
https://github.com/hs-nazuna/FrontierBasedSearchWithVertexIndices

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Problem size Time (s)
Instance #items #options IDLX| |ZDD| DLX DXZ D®X sharpSAT d4 #sols
Partition
4 x 4 grid 16 11,490 109,232 256 1.58 1.81 0.138 - - 50276
burmal4 14 9,831 75,690 160 1.10 1.20 0.200 - - 109,665
ulysses16 16 33,650 296,770 291 16.7 18.0 1.83 - - 572,526
VisionNet 24 3,771 52,696 78 0.282 0289 0.014 90.6 - 4,150
FuNet 26 109,972 1,856,480 243 10.6 10.0 0.792 - - 288,736
Darkstrand 28 94,916 1,794,795 450 503 266 11.8 - - 5,589,130
grafo117.20 20 7,007 199,432 93 0969 0.928 0.051 - - 2,412
grafo121.20 20 44,960 1,288,496 156 24.0 27.3 0.123 192 - 14,580
grafo190.20 20 61,405 1,801,588 238 86.6 56.6 0.558 - - 52,226
grafo215.20 20 6,982 194,592 91 0919 0.802 0.076 252 - 8,728
grafo244.20 20 25,057 746,487 207 8.69 9.66 0.062 - - 2,702
grafo251.20 20 41,636 1,185,396 138 244 286 0179 - - 3912
Cycle
Deltacom 30 747,625 12,135,816 195 - - 0.019 - - 0
Interoute 28 70,856 1,134,271 346 149 83.4 0.037 5195 - 0
Ton 33 1,842 28,891 108 0.015 0.020 <lms 0.115 - 0
Missouri 17 214 1,892 31 <lms <lms <Ilms 0.174 0.042 32
UsCarrier 30 11,979 212,599 101 2.02 2.10 <lms 113 - 0
UsSignal 17 512 4,175 33 0.001 0.002 <1ms 0.024 - 0
att48 14 15,937 112,576 24 10.8 6.72 13.6 - - 35,391,177
eil51 15 30,721 232,448 17 96.5 25.6 258 - - 493,978,252
grafo7785.100 19 34,669 332,630 162 8.39 940 0.695 - - 387,235
grafo8224.100 20 131,375 1,355,220 645 406 310 14.5 - - 13,102,997
grafo8373.100 25 1,040,655 13,060,928 6896 - - 55.1 - - 0
grafo8513.100 23 165,426 1,935,745 1489 585 380 8.22 - - 1,214
grafo8564.100 20 38,641 410,024 89 14.6 16.2 1.38 1517 - 0
grafo8674.100 24 941,352 12,191,428 6571 - - 170 - - 290,216,465

Table 1: Results in graph partition and vehicle routing instances. #items: number of items. #options: number of options. |[DLX|: number of
nonzero elements in the input matrix of DLX. |ZDD]: size of input ZDD of D*X. #sols: number of solutions. >-> means timeout.

set of options, we construct the ZDD representing the set of
options by first using the top-down algorithm and then ex-
ploiting binary ZDD operations. The size of ZDDs represent-
ing graph substructures like connected subgraphs strongly de-
pends on the order of items. We used a min-fill tree decom-
position heuristic* to obtain a tree decomposition and then
performed a depth-first traverse on it to obtain a variable or-
der. We set the timeout to 600 seconds for graph partition in-
stances and 7200 seconds for graph cycle instances. We used
benchmark graphs appearing in TSPLIB [Cook and Seymour,
2003], RomeGraph [Coudert ef al., 2014] and Internet Topol-
ogy Zoo [Knight er al., 2011]. We also ran experiments on a
4 x 4-grid graph.

In Tab. 1, we show the results where either of DLX and
D3X finishes within 600 seconds. We omit results where both
finish within 1 millisecond. We should note that the running
time of D3X includes the time required for constructing the
ZDD. For other methods, we omit the pre-processing time.
Since RomeGraph has a large number of graphs, we show
the results of the first six graphs having a specific number of
nodes. We found that D3X is faster than the baseline methods
in most of cases. By comparing |DLX]| and |ZDD|, we see
that the size of the ZDD is much smaller than the number

*https://github.com/mabseher/htd

2001

of options. These results show that DX can accelerate the
search by compressing its input using DanceDD.

att48 and eil51 are exceptional since the input ZDD is
smaller, but D3X is slower than DLX. This result is caused
by the difference in subproblems appearing in the search pro-
cedure. Figure 4 compares the number of remaining items of
subproblems appearing in the recursive calls of SearchZDD
on att48 and Interoute. More than 90% of subproblems ap-
pearing in att48 have no greater than three items. In contrast,
subproblems appearing in Interoute do not show such con-
centration. This difference affects the running time of D3X
since it tends to be slower when the problem is small. Fig-
ure 5 shows the average compression ratios of subproblems
appearing in the SearchZDD procedure, where we define the
compression ratio of a problem as |ZDD|/|DLX]|, i.e., the
ratio between the number of active node cells of DanceDD
and dancing links structures. For example, the compres-
sion ratio of the initial problem appearing in Example 1 is
8/13 = 0.615. D®*X can be slower than DLX if the compres-
sion ratio is high since D3X needs constant time overhead
per node cell to update as compared with the number of oper-
ations performed in a node cell in the dancing links structure.
If an exact cover problem is easy and has many solutions, then
the search procedure tends to spend more time solving rela-

https://github.com/mabseher/htd

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

att48 Interoute

o
N

o
o

Frequency
=]

w
Frequency
o
=

- T T T T
1 5 10 14 1 10 20 26
Number of items Number of items

o
<)
o
S)

Figure 4: Relative frequencies of the number of remaining items in
subproblems appearing in the SearchZDD procedure.

att48

1.0

ratio

0.8
0.6

mp.

0.4

co

© 0.2 1
>

1 5 10 14
Number of items

Figure 5: Average compression ratios of the inputs of subproblems
appearing in the SearchZDD procedure, where the compression ra-
tio is defined as |ZDD|/|DLX]| for every subproblem.

tively small subproblems, meaning that DLX will be faster
than D3X at solving such problems.

6 Related Work

Since the DLX is simple but efficient, it has some extensions.
Knuth [Knuth, 2019] shows a few crucial extensions of ex-
act cover problems, including exact cover with colors (XCC)
problems and XCC with multiplicity problems. Another ex-
tension is made in [Chabert and Solnon, 2020] to cope with
different types of constraints. [Nishino er al., 2017] also
combines the ZDD with DLX. The algorithm extends DLX
to output ZDDs representing the set of solutions of an exact
cover problem. Our proposal differs from the previous work
in that we try to compress the input of the problem by using a
ZDD. Important future work would be to extend the proposed
method to combine with these extensions.

How small a ZDD can be depends on the target. Past
studies have revealed conditions where the decision diagrams
become succinct [Knuth, 2011]. An important target is
graph substructures [Kawahara et al., 2017]. Thus, ZDDs
and binary decision diagrams [Bryant, 1986] have been used
in graph-related problems like network analyses [Hardy et
al., 2007], probabilistic inference in a structured space[Choi
et al., 2016], and combinatorial optimization [Inoue et al.,
2014]. The problems we addressed in the experiments are
typical exact cover problems related to graphs.

7 Conclusion

We proposed a problem compression approach for solving an
exact cover problem with a huge number of options. Many
practical problems can be formulated as an exact cover prob-
lem. However, such a reduction might result in an explo-

2002

sion in the problem size. Our DanceDD structure can deal
with such size explosion by exploiting ZDDs to represent the
problem. The structure inherits the succinctness of the ZDDs
while providing low-cost delete and revert operations of the
dancing links structure. Using a more compressed representa-
tion is another prominent research direction. Zero-suppressed
sentential decision diagrams (ZSDDs) [Nishino et al., 2016]
are a recently proposed extension of ZDDs. Since ZSDDs
can be exponentially smaller than ZDDs, using them instead
of ZDDs might incur further acceleration.

Acknowledgements

This work was supported by JSPS KAKENHI Grant Number
JP20H05963.

A Details of D*X

We show four subroutines used in CoverZDD(i) and
UncoverZDD(7). Algorithm 4 shows the details of
CoverLower and UncoverLower, and Alg. 5 shows the details
of CoverUpper and UncoverUpper.

CoverLower(C) is used in CoverZDD(4). It updates the
node cells that are the descendants of those in C'. Since we
can make a ZDD that does not contain options having ¢ by re-
moving all high edges of C, we thus update node cells assum-
ing that the high edges of all the node cells in C' are removed
from the structure. We first create a list of all descendant
node cells V, where all cells follow a topological order (line
2). Then, we update plen(p) for all p € V. Since node cells
in V are not ancestors of C', we do not need to update the
hlen and 1len values. Updating all the nodes in V' can be
done in linear time with |V| via dynamic programming on a
directed acyclic graph. We also update 1en(s) fields as updat-
ing plen(p) (line 7). If plen(p) becomes zero, then the node
cell should not be accessed from other cells. Therefore, we
delete the cell by updating its up, down fields and the parents
of child node cells.

UncoverLower(C') in Alg. 4 reverts the modification made
by corresponding CoverLower(C'). In such a procedure, we
have to recover cells in reverse order. Hence, we assume
that V' is identical to the one appearing in the correspond-
ing CoverLower(C'). We store node cells to be restored into a
list H (line 21) and restore in the reverse order of H.

Algorithm 4 details the subroutines CoverUpper(C') and
UncoverUpper(C). CoverUpper(C) updates the ancestor
node cells of C'. We first created list V', which stores all the
ancestors of C' in a reverse topological order (line 2). We
then updated 11en(p) and hlen(p) for all p € V by assum-
ing that all high edges of node cells in C' were removed. We
also updated len(:) for ¢ = item(p) so as to reflect the new
hlen(p) value (line 8). List H stores all the node cells p
whose hlen(p) becomes zero after the update. We finally
remove node cell p € H by modifying links (lines 10-18).

UncoverUpper(C) first recovers node cells in list H,
which stores the deleted node cells in the corresponding
UncoverUpper(C') (lines 21-29). Then, it updates the hlen
1len fields of the ancestor node cells of C' in a reverse topo-
logical order.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Algorithm 4: CoverLower and UncoverLower

Algorithm 5: CoverUpper and UncoverUpper

1 function CoverLower(C):

2 V' < descendants of C excluding T in a topological
order

3 forp € Vdo

4 l + plen(p)

5 Update plen(p) assuming all high edges of ¢ € R

were deleted.

6 i < item(p)

7 len(i) < len(i) — (I — plen(p)) - hlen(p)

8 if plen(p) = 0 then

9 down(up(p)) < down(p)

10 up(down(p)) + up(p)

11 Remove (p, HI) from Parents(hi(p))

12 Remove (p, LO) from Parents(1o(p))

13 function UncoverLower(C'):

14 V' < descendants of C excluding T in a topological
order

15 H < empty list

16 forp € V do

17 l < plen(p)

18 Update plen(p) assuming all high edges of ¢ € C

were recovered.

19 i < item(p)

20 len(i) < len(i) + (plen(p) —) - hlen(p)

21 if | = 0 and plen(p) > 0 then Add pto H

22 for p € H (access in a reverse order) do

23 down(up(p)) < p

2 up(down(p)) < p

25 Add (p, HI) to Parents(hi(p))

26 Add (p, LO) to Parents(1o(p))

All these subfunctions run in linear time with the number
of updated node cells. Thus, the time and space complexity
of these procedures are linear with the number of active cells.

References

[Bryant, 1986] Randal E Bryant. Graph-based algorithms for
boolean function manipulation. Computers, IEEE Trans.
on, C-35(8):677-691, 1986.

[Chabert and Solnon, 2020] Maxime Chabert and Christine
Solnon. A global constraint for the exact cover problem:
Application to conceptual clustering. Journal of Artificial
Intelligence Research, 67:509-547, 2020.

[Chang and Jiang, 2016] Hua-Yu Chang and Iris Hui-Ru
Jiang. Multiple patterning layout decomposition consid-
ering complex coloring rules. In DAC, 2016.

[Choi et al., 2016] Arthur Choi, Nazgol Tavabi, and Adnan
Darwiche. Structured features in naive Bayes classifica-
tion. In AAAI, pages 3233-3240, 2016.

[Cook and Seymour, 2003] William Cook and Paul Sey-
mour. Tour merging via branch-decomposition. INFORMS
J. on Computing, 15(3):233-248, 2003.

[Coudert et al., 2014] David Coudert, Dorian Mazauric, and
Nicolas Nisse. Experimental evaluation of a branch and

1 function CoverUpper(C):

2 V' < ancestors of C' in a reverse topological order

3 H < an empty list

4 for p € V do

5 l + hlen(p)

6 Update hlen(p) and 1len(p) assuming all high
edges of ¢ € C' were removed

7 i+ item(p)

8 len(i) < len(i) — plen(p) - (I — hlen(p))

9 if > 0 and hlen(p) = 0 then Addpto H

10 for p € H (access in a reverse order) do

u down(up(p)) < down(p)

12 up(down(p)) < up(p)

13 for (q,t) € Parents(p) do

14 Add (g, t) to Parents(1o(p))

15 if ¢ = LO then 1lo(q) < 1lo(p)

16 else hi(q) < lo(p)

17 Remove (p, HI) from Parents(hi(p))

18 Remove (p, LO) from Parents(1o(p))

19 function UncoverUpper(C):

20 H < node list made in the corresponding

CoverUpper(C') procedure

21 for p € H (access in a normal order) do

2 down(up(p)) < p

23 up(down(p)) < p

2 for (q,t) € Parents(p) do

25 Remove (g, t) from Parents(1o(p))

26 if ¢ = LO then lo(gq) < p

27 elsehi(q) < p

28 Add (p, HI) to Parents(hi(p))

29 Add (p, LO) to Parents(1o(p))

30 V' < ancestors of C' in a reverse topological order

31 for p € V do

3 l < hlen(p)

33 Update hlen(p) and 11len(p) assuming all high
edges of ¢ € R were recovered

34 14— item(p)

35 len(i) « len(i) + plen(p) - (hlen(p) — 1)

bound algorithm for computing pathwidth. In SEA, pages
46-58, 2014.

[Gunther and Moon, 2012] Jake Gunther and Todd Moon.
Entropy minimization for solving sudoku. Signal Process-
ing, IEEE Trans. on, 60(1):508-513, 2012.

[Hardy et al., 2007] Gary Hardy, Corinne Lucet, and Niko-
laos Limnios. K-terminal network reliability measures
with binary decision diagrams. Reliability, IEEE Trans.
on, 56(3):506-515, 2007.

[Hu et al., 2014] Ruizhen Hu, Honghua Li, Hao Zhang, and
Daniel Cohen-Or. Approximate pyramidal shape decom-
position. ACM Trans. Graph., 33(6):213:1-213:12, 2014.

[Inoue et al., 2014] Takeru Inoue, Kyoya Takano, Toshio
Watanabe, Jun Kawahara, Ryo Yoshinaka, Akihiro Kishi-
moto, Kazuhiko Tsuda, Shin-ichi Minato, and Yasuhiro
Hayashi. Distribution loss minimization with guaranteed

2003

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

error bound. Smart Grid, IEEE Trans. on, 5(1):102-111,
2014.

[Junttila and Kaski, 2010] Tommi Junttila and Petteri Kaski.
Exact cover via satisfiability: An empirical study. In CP,
pages 297-304, 2010.

[Karp, 1972] Richard M Karp. Reducibility among combi-
natorial problems. In Complexity of computer computa-
tions, pages 85-103. Springer, 1972.

[Kawahara et al., 2017] Jun Kawahara, Takeru Inoue, Hi-
roaki Iwashita, and Shin-ichi Minato. Frontier-based
search for enumerating all constrained subgraphs with
compressed representation. IEICE Trans. on Fundamen-
tals of Electronics, Communications and Computer Sci-
ences, E100.A:1773-1784, 09 2017.

[Knight et al., 2011] Simon Knight, Hung X Nguyen, Nick-
olas Falkner, Rhys Bowden, and Matthew Roughan. The
internet topology zoo. IEEE Journal on Selected Areas in
Communications, 29(9):1765-1775, 2011.

[Knuth, 2000] Donald E Knuth. Dancing links. In Millenial
Perspectives in Computer Science, pages 187-214, 2000.

[Knuth, 2011] Donald E Knuth. The Art of Computer Pro-
gramming, Volume 4A: Combinatorial Algorithms, Part 1.
Addison-Wesley, 2011.

[Knuth, 2019] Donald E Knuth. The Art of Computer Pro-
gramming, Volume 4 Fascicle 5: Mathematical Prelim-
inaries Redux; Introduction to Backtracking; Dancing
Links. Addison-Wesley, 2019.

[Koivisto, 2006] Mikko Koivisto. An O(2") algorithm
for graph coloring and other partitioning problems via
inclusion—exclusion. In FOCS, pages 583-590, 2006.

[Lagniez and Marquis, 2017] Jean-Marie Lagniez and Pierre
Marquis. An improved decision-dnnf compiler. In IJCAI-
17, pages 667-673, 2017.

[Minato et al., 2008] Shin-ichi Minato, Takeaki Uno, and
Hiroki Arimura. LCM over ZBDDs: Fast generation of
very large-scale frequent itemsets using a compact graph-
based representation. In PAKDD, pages 234-246, 2008.

[Minato, 1993] Shinichi Minato. Zero-suppressed BDDs for
set manipulation in combinatorial problems. In DAC,
pages 272-277, 1993.

[Nguyen et al., 2018] Vivian Nguyen, Bill Moran, Ana No-
vak, Vicky Mak-Hau, Terry Caelli, Brendan Hill, and
David Kirszenblat. Dancing links for optimal timetabling.
Military Operations Research, 23(2):61-78, 2018.

[Nishino et al., 2016] Masaaki Nishino, Norihito Yasuda,
Shin-ichi Minato, and Masaaki Nagata. Zero-suppressed
sentential decision diagrams. In AAAI, pages 1058-1066,
2016.

[Nishino et al., 2017] Masaaki Nishino, Norihito Yasuda,
Shin-ichi Minato, and Masaaki Nagata. Dancing with de-
cision diagrams: A combined approach to exact cover. In
AAAI, pages 868-874, 2017.

[Suzuki and Minato, 2016] Hirofumi Suzuki and Shin-ichi
Minato. Adding the vertex indices for enumerating and

2004

indexing the graphs via zdd (in japanese). Special Interest
Group on Fundamental Problems in Artificial Intelligence,
101:41-46, 2016.

[Thurley, 2006] Marc Thurley. sharpSAT — counting models
with advanced component caching and implicit BCP. In
SAT, pages 424429, 2006.

	Introduction
	Algorithm DLX
	Dancing Links

	ZDDs
	Algorithm D3X
	The DanceDD Structure
	Algorithm
	Time and Space Complexity

	Experiments
	Related Work
	Conclusion
	Details of D3X

