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Abstract
Knowledge Graph (KG) alignment is to discover
the mappings (i.e., equivalent entities, relations,
and others) between two KGs. The existing meth-
ods can be divided into the embedding-based mod-
els and the conventional reasoning and lexical
matching based systems. The former compute the
similarity of entities via their cross-KG embed-
dings, but they usually rely on an ideal supervised
learning setting for good performance and lack ap-
propriate reasoning to avoid logically wrong map-
pings; while the latter address the reasoning issue
but are poor at utilizing the KG graph structures
and the entity contexts. In this study, we aim at
combining the above two solutions and thus pro-
pose an iterative framework named PRASE that
is based on probabilistic reasoning and semantic
embedding. It learns the KG embeddings via en-
tity mappings from a probabilistic reasoning sys-
tem named PARIS, and feeds the resultant entity
mappings and embeddings back into PARIS for
augmentation. The PRASE framework is compat-
ible with different embedding-based models, and
our experiments on multiple datasets have demon-
strated its state-of-the-art performance.

1 Introduction
A knowledge graph (KG) organizes entities, attributes, rela-
tions, and other information in a structured format [Hogan et
al., 2020]. One single KG is often incomplete while different
KGs can complement each other to form a larger and more
comprehensive KG via alignment, i.e., discovering equiva-
lent entities, relations, and others across two KGs. Due to
wide KG applications, KG alignment, especially entity align-
ment, has attracted massive attention.

KG embeddings have become a powerful tool to ex-
ploit KGs by encoding entities, relations, and others into a
low-dimensional vector space [Wang et al., 2017]. Many
embedding-based models have been proposed for entity
alignment [Sun et al., 2020], and usually comply with the
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following paradigm. They first embed the to-be-aligned KGs
into one vector space and then discover the mappings by cal-
culating the vector distance or similarity.

Although the embedding-based models have achieved en-
couraging results, they are still limited in some aspects es-
pecially in industrial deployment. These models usually re-
quire a number of known mappings (i.e., alignment seeds) for
training. However, seed annotation requires massive manual
work, which may not be available in practice. An industrial
evaluation study has shown the number and the sampling dis-
tribution of alignment seeds can dramatically influence the
alignment performance [Zhang et al., 2020]. The embedding-
based models emphasize establishing expressive embeddings
to capture entity features and then independently predict each
mapping, ignoring the holistic analysis and logical consis-
tency, which often leads to some false mappings.

In contrast, conventional KG alignment systems exploit
various more traditional techniques such as logical reason-
ing and lexical matching. For example, the classic system
LogMap [Jiménez-Ruiz and Grau, 2011] iteratively discovers
mappings by lexical and graph matching, and repairs map-
pings by logical reasoning. PARIS [Suchanek et al., 2012] is
another representative system that utilizes probabilistic rea-
soning and lexical matching. Specifically, after getting initial
mappings by matching with attributes such as names, PARIS
expands the entity and relation mappings in each iteration by
inferring the entity and relation equivalence with probabilistic
reasoning. As no training is needed, these systems never rely
on any alignment seeds, and are quite scalable and efficient.
It is worth noting that PARIS and LogMap often outperform
those embedding-based models according to the recent stud-
ies [Sun et al., 2020; Zhang et al., 2020]. On the other hand,
these conventional systems use traditional lexical and graph
matching techniques that are weak at exploiting and utilizing
the graph structure and other contextual information.

In light of the complementarity between the embedding-
based models and conventional systems, we propose to con-
struct a unified framework that absorbs the advantages of
both. The main challenge is to find the effective ways to
make two completely different models work together. In this
work, an unsupervised iterative framework named PRASE
is proposed, which is composed of a Probabilistic Reason-
ing (PR) module and a Semantic Embedding (SE) module.
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Specifically, the PR module initializes the mappings and in-
fers logically consistent mappings with the entity embeddings
from the SE module, while the SE module emphasizes learn-
ing high-quality cross-KG embeddings that encode the graph
structures and the entity contexts. Note that the SE module
is compatible with all kinds of embedding-based alignment
models; while the PR module is currently developed based
on the conventional system PARIS, but it can be extended to
other reasoning-based systems such as LogMap.

The contributions of this paper are threefold. First, an un-
supervised KG alignment framework termed PRASE is pro-
posed, which integrates probabilistic reasoning and semantic
embedding using an iterative algorithm. To the best of our
knowledge, this is the first to combine traditional reasoning
techniques and state-of-the-art embedding techniques for KG
alignment. Second, the PRASE framework has been imple-
mented with PARIS and multiple different embedding-based
models. Third, the PRASE framework has been evaluated
on five widely used datasets and one industry dataset. The
results show the state-of-the-art performance of PRASE. On
average, the F1-score of PRASE is 28.6% higher than the
best embedding-based model and 5.96% higher than the best
conventional system. Different settings of PRASE, such as
the feedback from the SE module to the PR module and the
iteration number, have also been studied.

2 Preliminaries
This section introduces the relevant background and the re-
lated work. The problem formulation is first given, and then
the conventional system PARIS and the embedding-based
models are briefly introduced.

2.1 Problem Formulation
LetE,R,A, and V be the sets of entities, relations, attributes,
and attribute values, respectively. A KG can be formulated as
G = (E,R,A, V, T R, TA), where TR denotes the relation
triples and TA represents the attribute triples. Specifically,
TR and TA are formalized as

T R = {(h, r, t)|h, t ∈ E, r ∈ R},
TA = {(e, a, v)|e ∈ E, a ∈ A, v ∈ V }.

Given two KGs G and G′, the problem of Entity Align-
ment is to discover the set of equivalent entity pairs (map-
pings) across G and G′, denoted as

Y = {(e, e′)|e ≡ e′, e ∈ E, e′ ∈ E′},
where the equivalence ≡ indicates that two entities refer to
the same real-world object.

2.2 PARIS
Since the attribute triples are processed in a very similar way
as the relation triples in PARIS, for convenience, we define
E+ = E ∪ V , R+ = R ∪ A, and T+ = TR ∪ TA. In
order to derive mappings, PARIS measures the functionality
and inverse functionality of each relation, i.e.,

F(r) :=
|{h|(h, r, t) ∈ T+}|
|{(h, t)|(h, r, t) ∈ T+}| , r ∈ R

+,

F−1(r) :=
|{t|(h, r, t) ∈ T+}|
|{(h, t)|(h, r, t) ∈ T+}| , r ∈ R

+,

(1)

where | · | denotes the set cardinality. The relation functional-
ity and inverse functionality are used to determine the unique-
ness of the head entity and tail entity, respectively. Take the
relation founder as an example, if the relation functionality is
equal to one (i.e., F(founder) = 1), it means that, given an or-
ganization, its founder can be uniquely determined. Note that
the functionality and the inverse functionality of the relations
are invariant for a given KG and can be computed in advance.

PARIS alternately computes the entity mappings and the
subsumption relationships between relations. In computing
the entity mappings, the probability of equivalence between
two entities h and h′, denoted by P(h ≡ h′), is estimated as1

1−
∏

(h,r,t)∈T+,(h′,r′,t′)∈T ′+

(
1− P(r′ ⊆ r)F−1(r)P(t ≡ t′)

)
×
(
1− P(r ⊆ r′)F−1(r′)P(t ≡ t′)

)
,

(2)

where P(r ⊆ r′) represents the probability that r is a sub-
relation of r′. P(r ⊆ r′) is computed as∑

h,t

(
1−

∏
(h′,r′,t′)∈T ′+ (1− P(h ≡ h′)P(t ≡ t′))

)
∑

h,t

(
1−

∏
h′,t′∈E′+ (1− P(h ≡ h′)P(t ≡ t′))

) , (3)

where (h, r, t) ∈ T+. Similarly, P(r′ ⊆ r) can also be com-
puted. Note that the estimation of P(h ≡ h′) relies on the
subsumption relationships between relations, i.e., P(r ⊆ r′)
and P(r′ ⊆ r), and vice versa. Therefore, PARIS adopts an
iterative strategy for optimization. In the initialization phase,
P(r ⊆ r′) is set to a small value, e.g., 0.1; P(v ≡ v′) (v ∈
V ⊆ E+ and v′ ∈ V ′ ⊆ E′+) is set to 1 if v and v′ are
identical literals, and to 0 otherwise. Although this initial-
ization method is simple, it has been shown quite effective.
Other advanced methods, e.g., using the edit distance be-
tween text literals to score the equivalence of attribute val-
ues, can also be adopted. In each iteration, the equivalence
probabilities of entities are computed based on Eq. (2), and
then the probabilities for the subsumption relationships be-
tween relations are computed based on Eq. (3). The system
self-iterates multiple times until convergence. Finally, the
PARIS system outputs the entity mappings, denoted by ỸP,
along with their probabilities (equivalence degrees), denoted
by Po(e ≡ e′) with (e, e′) ∈ ỸP and superscript o indicating
output. Please see [Suchanek et al., 2012] for more details.

2.3 Embedding-based KG Alignment
Embedding-based KG alignment models usually work in the
following two steps. First, the embeddings of KG compo-
nents are learned based on some translational models (e.g.,
TransE [Bordes et al., 2013]), graph neural networks [Kipf
and Welling, 2017] or other KG embedding algorithms [Guo
et al., 2019]. Entities of different KGs are embedded in
the same vector space through strategies including parameter
sharing, parameter swapping, embedding transformation, and
embedding calibration. Then, entity mappings are predicted
based on the similarity measure of the entity embeddings.

1Since PARIS augments the to-be-aligned KGs with the inverse
triples, the formula actually accounts for both head and tail entities.
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Take the typical embedding-based model MTransE [Chen
et al., 2017] as an example. First, MTransE adopts TransE to
learn embeddings by minimizing the following loss:∑

(h,r,t)∈T R

||h+ r− t||+
∑

(h′,r′,t′)∈T ′R

||h′ + r′ − t′||,

where || · || denotes the Euclidean norm operation; h, r, and t
denote the m-dimensional embeddings of h, r, and t, respec-
tively. To ensure the entities are embedded in the same vector
space, an embedding transformation strategy is adopted. Let
S = {(e, e′)|e ∈ E, e′ ∈ E′} be the alignment seeds, it
minimizes the loss given by

∑
(e,e′)∈S ||Me− e′||, where e

and e′ denote the entity embeddings, and M ∈ Rm×m is
a transformation matrix. After learning M , entity embed-
dings of G are transformed into the entity vector space of
G′, i.e., e := Me. Finally, entity mappings, denoted by ỸE,
and their corresponding similarity scores in [0, 1], denoted by
S(e ≡ e′) with (e, e′) ∈ ỸE, can be obtained by performing
nearest neighbor search in the embedding space.

There are some other embedding-based models. For exam-
ple, GCN-Align embeds the KGs using graph convolutional
networks [Wang et al., 2018]. BootEA adopts a bootstrapping
strategy with an alignment editing method to reduce error ac-
cumulation, so as to overcome the lack of training data [Sun
et al., 2018]. MultiKE embeds the entities with their names,
relations, and attributes considered via multi-view learn-
ing [Zhang et al., 2019]. Please see [Sun et al., 2020;
Zhang et al., 2020] and for more comprehensive reviews.

3 Framework
In this section, the overview of the PRASE framework is
given at first, and then its probabilistic reasoning module and
semantic embedding module are introduced with details.

3.1 PRASE Overview
Figure 1 shows the workflow of the PRASE framework that
includes the Probabilistic Reasoning (PR) module and the Se-
mantic Embedding (SE) module. First, the PARIS-based PR
module is performed on the input KGs to discover entity map-
pings ỸP with their probabilities Po(e ≡ e′). Then, the highly
confident entity mappings are selected as the alignment seeds
S , and the SE module is trained subsequently based on these
seeds. After training, the SE module predicts mappings on
the entities that have not been aligned by the PR module (de-
noted by ŨP). The resultant entity mappings ỸE with the sim-
ilarity scores S(e ≡ e′) and the entity embeddings (denoted
by ẼE = {e|e ∈ E} ∪ {e′|e′ ∈ E′}) are then fed back to
the PR module. The above process can be iterated K times,
and the PR module finally outputs the entity mappings. The
iterative algorithm is also shown in Algorithm 1.

3.2 Probabilistic Reasoning Module
The PR module is constructed based on the PARIS system
with the augmentation from KG embeddings. Let k be the
iteration index of PRASE. In the initial iteration (k = 0), the
PR module first computes relation functionality and inverse
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Figure 1: Overview of the PRASE framework.

functionality according to Eq. (1), and then alternatively com-
putes mappings following Eqs. (2) and (3). In the subsequent
iterations (k = 1, · · · ,K), the SE and the PR modules are
alternately performed. In the kth iteration (k > 0), the PR
module is initialized based on its previous output and the out-
put of the SE module. Specifically, the probabilities of sub-
relationships are set to the values of the (k − 1)th iteration,
i.e., Pi

k(r ⊆ r′) = Po
k−1(r ⊆ r′) with superscripts i and o

indicating the meanings of input and output, respectively, and
the probabilities of entity mappings are initialized as

Pi
k(e ≡ e′) =


α1Po

k−1(e ≡ e′) if (e, e′) ∈ ỸP
k−1;

α2Sk(e ≡ e′) else if (e, e′) ∈ ỸE
k

and Sk(e ≡ e′) > δ1;
0 otherwise,

(4)

where Pi and Po represent the input and the output mapping
probabilities of the PR module, respectively; α1, α2 ∈ (0, 1]
are two hyperparameters; δ1 ∈ [0, 1) is a threshold value;
subscripts k and k−1 indicate the variables in the kth and the
(k − 1)th iterations, respectively. This customized initializa-
tion method for PARIS directly exploits the output of the SE
module, through which the PR module could absorb the bene-
fits captured by KG embeddings and further expand the map-
pings by reasoning. Note that the PR module is robust and can
correct those unreliable entity mappings from the SE module,
since it is based on probabilistic reasoning.

In addition to directly utilizing the output from the SE
module, we also seek to fully exploit the semantic and struc-
tural information contained in the embeddings during the
self-iterations of the PR module. The probability of the equiv-
alence between two entities is updated according to a modi-
fied estimation, which is given by

P(e ≡ e′) :=(1− β) · sim(e, e′) + β
(
1−∏

(e,r,t)∈T+,(e′,r′,t′)∈T ′+

(
1− P(r′ ⊆ r)F−1(r)P(t ≡ t′)

)
×
(
1− P(r ⊆ r′)F−1(r′)P(t ≡ t′)

) )
,

(5)

where e and e′ denote the embeddings of entities e and e′,
respectively; sim(·, ·) is a similarity function; β ∈ (0, 1) is
a trade-off hyperparameter balancing the embedding similar-
ity and the probability estimated by Eq. (2). Eq. (5) replaces
Eq. (2) in the original PARIS. It complements the PR mod-
ule with the deep structural information learned from the SE
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Algorithm 1 PARIS-based PRASE Implementation
Input: two KGs G and G′
Parameter: iteration number K, hyperparameters α1, α2,
and β, thresholds δ1, δ2, and δf, similarity function sim(·, ·)

1: Initialize the PR module using Eq. (1);
2: Perform the PR module using Eqs. (2) and (3);
3: Generate ỸP

0 and ŨP
0 ;

4: while k = 1, . . . ,K do
5: Generate Sk based on ỸP

k−1 and δ2;
6: Train the SE module on Sk;
7: Test the SE module on ŨP

k−1;
8: Generate ỸE

k and ẼE
k ;

9: Initialize the PR module using Eq. (4);
10: Perform the PR module using Eqs. (5) and (3);
11: Generate ỸP

k and ŨP
k ;

12: end while
13: Generate Ỹf based on ỸP

K and δf;
Output: Ỹf

Dataset KGs #Ents.
Relation Attribute

#Rels. #Triples #Attrs. #Triples

EN-FR-100K
EN 100,000 379 649,902 364 503,922

FR 100,000 287 561,391 468 431,379

EN-DE-100K
EN 100,000 323 622,588 326 560,247

DE 100,000 170 629,395 189 793,710

D-W-100K
DB 100,000 318 616,457 328 467,103

WD 100,000 239 588,203 760 878,219

D-Y-100K
DB 100,000 230 576,547 277 547,026

YG 100,000 31 865,265 36 855,161

D-W-15K
DB 15,000 167 73,983 175 66,813

WD 15,000 121 83,365 457 175,686

MED-BBK-9K
MED 9,162 32 158,357 19 11,467

BBK 9,162 20 50,307 21 44,987

Table 1: Dataset statistics.

model, and it can help the PR module estimate the probabil-
ity of entity mappings more accurately. The function sim(·, ·)
measures the similarity between two embeddings, of which
the range should be [0, 1]. A simple choice of sim(·, ·) is co-
sine similarity, i.e., sim(e, e′) = (e · e′) / (||e|| · ||e′||).

After several self-iterations, the PR module converges and
outputs a new round of alignment results ỸP

k as well as the
unaligned candidates ŨP

k . Specifically, ŨP
k = {e|e ∈ E, ∀e′ ∈

E′, (e, e′) /∈ ỸP
k}∪{e′|e′ ∈ E′, ∀e ∈ E, (e, e′) /∈ ỸP

k} is a set
of unaligned entities, which is later used as the test data for
the SE module to compute the similarity score Sk+1(e ≡ e′).
In the last iteration (k = K), the final output entity map-
pings of the PRASE framework are given by the PR module,
denoted as Ỹf = {(e, e′)|(e, e′) ∈ ỸP

K , P
o
K(e ≡ e′) > δf},

where δf ∈ [0, 1) is a threshold value.

3.3 Semantic Embedding Module
In the kth iteration, ỸP

k−1 is refined to generate reliable
alignment seeds Sk for training the SE module. A feasible
method to obtain Sk is to set a threshold δ2 ∈ [0, 1), and

Sk = {(e, e′)|(e, e′) ∈ ỸP
k−1, P

o
k−1(e ≡ e′) > δ2}. Al-

though in most cases, there are still some incorrect entity
mappings in Sk, the abundant correct mappings in Sk can
still provide useful information. As mentioned before, the SE
module outputs (i) entity mappings via a nearest neighbour
search among ŨP

k−1, and (ii) entity embeddings ẼE
k . Since

almost all embedding-based models can output entity map-
pings and embeddings, PRASE can choose almost any exist-
ing embedding-based model as the SE module. Algorithm 1
shows the whole process of the PRASE framework.

4 Evaluation
This section presents the evaluation of PRASE, and the code
is available at https://github.com/qizhyuan/PRASE-Python.

4.1 Datasets
In the experiments, the following datasets are used, and the
statistics of these datasets are presented in Table 1.
OpenEA Datasets: The OpenEA datasets2 are constructed
based on DBpedia, YAGO, and Wikidata [Sun et al., 2020].
We use all their large-scale datasets of the version “V2” that
has more complex KG structures. They include two cross-
lingual datasets (i.e., EN-FR-100K-V2 and EN-DE-100K-
V2) and two cross-KG datasets (i.e., D-W-100K-V2 and D-
Y-100K-V2). We also use a small dataset D-W-15K-V2, a
relatively difficult dataset as reported by [Sun et al., 2020].
In the following, the annotation “-V2” is omitted.
Industry Dataset: MED-BBK-9K is an industry datasetpro-
posed by [Zhang et al., 2020], which is built from an author-
itative medical KG and a KG extracted from Baidu Baike, a
Chinese online encyclopedia.

4.2 Experimental Setting
The original implementation of PARIS is in Java.3 We re-
implemented PARIS in Python and updated it as the PR mod-
ule such that it can easily work with the embedding-based
models that are also implemented in Python. We adopt twelve
competitive KG alignment methods as the baselines. They
can be categorized into (i) embedding-based models that in-
clude MTransE [Chen et al., 2017], IPTransE [Zhu et al.,
2017], GCNAlign [Wang et al., 2018], BootEA [Sun et al.,
2018], RSN4EA [Guo et al., 2019], IMUSE [He et al., 2019],
MultiKE [Zhang et al., 2019], and RDGCN [Wu et al., 2019],
(ii) conventional systems including PARIS and LogMap, and
(iii) two simple matching models using either the edit dis-
tance (denoted by STR-Match) or the word embedding sim-
ilarity (denoted by EMB-Match) between entity names. We
adopt the implementations of the embedding-based models
from OpenEA [Sun et al., 2020] with the same dataset divi-
sion: 20%, 10%, and 70% of the entity mappings for training,
validation, and testing, respectively. Except for embedding-
based models, other models are performed in an unsuper-
vised setting. STR-Match and EMB-Match compute the sim-
ilarity between entity names with a threshold of 0.5. In
the overall result analysis, BootEA and MultiKE are used

2https://github.com/nju-websoft/OpenEA
3http://webdam.inria.fr/paris/
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Model EN-FR-100K EN-DE-100K D-W-100K D-Y-100K D-W-15K MED-BBK-9K

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

MTransE 0.090 0.090 0.090 0.115 0.115 0.115 0.148 0.148 0.148 0.100 0.100 0.100 0.271 0.271 0.271 0.002 0.002 0.002
IPTransE 0.234 0.234 0.234 0.346 0.346 0.346 0.319 0.319 0.319 0.456 0.456 0.456 0.412 0.412 0.412 0.054 0.054 0.054

GCNAlign 0.257 0.257 0.257 0.375 0.375 0.375 0.353 0.353 0.353 0.620 0.620 0.620 0.506 0.506 0.506 0.057 0.057 0.057
BootEA 0.640 0.640 0.640 0.739 0.739 0.739 0.766 0.766 0.766 0.886 0.886 0.886 0.821 0.821 0.821 0.307 0.307 0.307

RSN4EA 0.495 0.495 0.495 0.639 0.639 0.639 0.634 0.634 0.634 0.841 0.841 0.841 0.723 0.723 0.723 0.195 0.195 0.195
IMUSE 0.461 0.461 0.461 0.457 0.457 0.457 0.431 0.431 0.431 0.629 0.629 0.629 0.581 0.581 0.581 0.186 0.186 0.186
MultiKE 0.642 0.642 0.642 0.661 0.661 0.661 0.319 0.319 0.319 0.853 0.853 0.853 0.495 0.495 0.495 0.410 0.410 0.410
RDGCN 0.715 0.715 0.715 0.766 0.766 0.766 0.421 0.421 0.421 0.911 0.911 0.911 0.623 0.623 0.623 0.301 0.301 0.301

PARIS 0.981 0.877 0.926 0.988 0.912 0.948 0.931 0.788 0.854 0.997 0.970 0.983 0.950 0.850 0.897 0.779 0.367 0.499
LogMap 0.541 0.709 0.614 0.729 0.729 0.729 - - - 0.954 0.912 0.933 - - - 0.864 0.441 0.584

STR-Match 0.754 0.720 0.737 0.790 0.760 0.775 0.419 0.306 0.354 1.000 1.000 1.000 0.606 0.419 0.495 0.545 0.495 0.519
EMB-Match 0.731 0.661 0.694 0.747 0.694 0.720 0.318 0.308 0.313 0.866 0.838 0.852 0.501 0.485 0.493 0.504 0.504 0.504

PRASE-BootEA 0.977 0.932 0.954 0.983 0.948 0.965 0.927 0.855 0.890 0.998 0.989 0.993 0.948 0.900 0.923 0.687 0.469 0.557
PRASE-MultiKE 0.979 0.930 0.954 0.988 0.955 0.972 0.922 0.804 0.859 0.998 0.993 0.996 0.941 0.875 0.907 0.837 0.619 0.711

Table 2: The overall results of the PRASE models in comparison with the baselines.

Model EN-FR-100K EN-DE-100K D-W-100K D-Y-100K D-W-15K MED-BBK-9K

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PARIS 0.981 0.877 0.926 0.988 0.912 0.948 0.931 0.788 0.854 0.997 0.970 0.983 0.950 0.850 0.897 0.779 0.367 0.499

PRASE-BootEA-M 0.976 0.912 0.943 0.983 0.934 0.958 0.928 0.846 0.885 0.997 0.984 0.991 0.948 0.898 0.923 0.692 0.458 0.552
PRASE-BootEA-E 0.982 0.912 0.945 0.987 0.933 0.960 0.928 0.821 0.871 0.997 0.978 0.988 0.949 0.876 0.911 0.761 0.435 0.554
PRASE-BootEA 0.977 0.932 0.954 0.983 0.948 0.965 0.927 0.855 0.890 0.998 0.989 0.993 0.948 0.900 0.923 0.687 0.469 0.557

PRASE-MultiKE-M 0.977 0.914 0.945 0.987 0.946 0.966 0.923 0.800 0.857 0.998 0.990 0.994 0.943 0.877 0.909 0.825 0.593 0.690
PRASE-MultiKE-E 0.984 0.903 0.942 0.989 0.930 0.959 0.930 0.798 0.859 0.997 0.978 0.988 0.949 0.863 0.904 0.837 0.493 0.621
PRASE-MultiKE 0.979 0.930 0.954 0.988 0.955 0.972 0.922 0.804 0.859 0.998 0.993 0.996 0.941 0.875 0.907 0.837 0.619 0.711

Table 3: The results of PRASE with different feedback settings from the SE module to the PR module.

as the SE module and the resultant models are denoted by
PRASE-BootEA and PRASE-MultiKE; while in the ablation
study, more embedding-based models are evaluated. We set
α1 = α2 = 1, β = 0.8, δ1 = δ2 = δf = 0.1, and choose
cosine similarity as sim(·). Since a small value of K is found
to be sufficient for PRASE to demonstrate its effectiveness,
we set K = 1 in the experiments unless specified.

Our experiments are conducted on a workstation with an
Intel Xeon E5 CPU and an NVIDIA Tesla M40 GPU. The
average time cost of our PARIS implementation on the four
100K datasets is 1697 seconds4, while the average time costs
of BootEA and MultiKE are 24727 and 3198 seconds, respec-
tively. Therefore, the time cost of the PRASE framework is
acceptable even with several iterations executed. As a com-
prehensive metric, F1-score is used to evaluate different mod-
els in the following experiments with the corresponding pre-
cision (P) and recall (R) reported as supplementary metrics.
Since embedding-based models output a list of matching can-
didates for each entity, their precision, recall, and F1-score
are actually equivalent to Hits@1. The best performance is
bolded and the second best is underlined in our experiments.

4.3 Overall Results
Table 2 presents the experimental results (here, we directly
use the results from [Sun et al., 2020] for embedding-based
models and LogMap on OpenEA datasets). The results show
that the two PRASE models consistently outperform all the

4The average running time by the Java implementation is 89 s.

baselines on all the datasets except D-Y-100K in terms of re-
call and F1-score. STR-Match reaches full scores and out-
performs all other models on D-Y-100K. However, the re-
call of STR-Match is significantly lower than the proposed
models on the other five datasets. Actually, D-Y-100K is an
easy dataset on which STR-Match achieves a perfect align-
ment, while the proposed models are almost perfect. PRASE-
BootEA performs best on EN-FR-100K, D-W-100K, and D-
W-15K, while PRASE-MultiKE performs best on EN-DE-
100K and MED-BBK-9K. Besides, the F1-score of PRASE-
MultiKE reaches 0.711 on MED-BBK-9K, significantly sur-
passing PARIS by 0.212. Compared with PARIS, the pre-
cision of the proposed models is slightly decreased on EN-
FR-100K, D-W-100K, and D-W-15K, but the recall signifi-
cantly increases. It reflects that although the incorrect entity
mappings predicted by the SE module can have a negative
impact on the performance, the useful information provided
by the SE module can still help the PR module find more
potential alignments. Table 2 also shows that the unsuper-
vised PRASE models significantly outperform all the super-
vised embedding-based models with an average improvement
of 28.6% in F1-score, which further confirms the effective-
ness of the PRASE framework.

4.4 Ablation Studies
Impact of Embedding Feedback: In PRASE, the PR mod-
ule uses both the entity mappings and the embeddings as the
feedback from the SE module. To explore the role of these
two types of feedback, two additional PRASE frameworks
are evaluated: one uses only the mapping feedback (denoted
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Model EN-FR-100K EN-DE-100K D-W-100K D-Y-100K D-W-15K MED-BBK-9K

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

PARIS 0.981 0.877 0.926 0.988 0.912 0.948 0.931 0.788 0.854 0.997 0.970 0.983 0.950 0.850 0.897 0.779 0.367 0.499

PRASE-MTransE 0.970 0.908 0.938 0.980 0.933 0.956 0.914 0.821 0.865 0.995 0.984 0.989 0.944 0.886 0.914 0.668 0.381 0.485
PRASE-IPTransE 0.979 0.918 0.947 0.985 0.938 0.961 0.927 0.825 0.873 0.997 0.986 0.992 0.945 0.879 0.910 0.650 0.429 0.517

PRASE-GCNAlign 0.981 0.900 0.939 0.986 0.924 0.954 0.927 0.803 0.861 0.997 0.975 0.986 0.950 0.863 0.904 0.676 0.418 0.517
PRASE-IMUSE 0.973 0.912 0.941 0.982 0.938 0.959 0.923 0.829 0.873 0.997 0.987 0.992 0.945 0.883 0.913 0.616 0.422 0.501
PRASE-BootEA 0.977 0.932 0.954 0.983 0.948 0.965 0.927 0.855 0.890 0.998 0.989 0.993 0.948 0.900 0.923 0.687 0.469 0.557
PRASE-MultiKE 0.979 0.930 0.954 0.988 0.955 0.972 0.922 0.804 0.859 0.998 0.993 0.996 0.941 0.875 0.907 0.837 0.619 0.711

Table 4: The comparison results of the PRASE models using different embedding-based models.

Dataset
MTransE IPTransE GCNAlign IMUSE BootEA MultiKE

Hits@1
EN-FR-100K 0.281 0.439 0.328 0.382 0.629 0.445

EN-DE-100K 0.288 0.442 0.338 0.425 0.576 0.575

D-W-100K 0.283 0.328 0.318 0.345 0.522 0.117

D-Y-100K 0.574 0.806 0.745 0.811 0.858 0.906

D-W-15K 0.457 0.413 0.361 0.481 0.614 0.364

MED-BBK-9K 0.009 0.139 0.070 0.120 0.233 0.433

Table 5: The performance of different SE modules.

with suffix “-M”) and the other uses only the embedding feed-
back (denoted with suffix “-E”). Table 3 shows the compari-
son results. Generally, all three PRASE frameworks achieve
good results, and the framework using both types of feedback
performs the best on almost all datasets. Besides, the preci-
sion of the PRASE framework using only entity embeddings
is higher than or close to the baseline PARIS, while the pre-
cision of the PRASE framework using only entity mappings
is lower in most cases. Furthermore, the use of entity map-
pings can significantly improve the recall but compromise the
precision; the use of entity embeddings tends to maintain the
precision, while the recall improvement is relatively limited.
Table 3 also shows that using both types of feedback can sig-
nificantly improve the recall while maintaining the precision.
Impact of Different SE Modules: To analyze the impact
of using different SE modules, four additional PRASE mod-
els are constructed based on MTransE, IPTransE, GCNAlign,
and IMUSE. Table 4 shows their performance. It can be ob-
served that all the PRASE models achieve a higher F1-score
than PARIS on all datasets except for PRASE-MTransE on
MED-BBK-9K, which indicates that the PRASE framework
is robust and not sensitive to the selection of the SE module.
However, different SE modules may bring different degrees
of improvement. Table 5 shows the Hits@1 of the entity map-
pings predicted by different SE modules on ŨP. Their perfor-
mance is positively correlated to the corresponding PRASE
models. Specifically, BootEA and MultiKE outperform the
other SE modules, and their corresponding PRASE models
also perform better on most datasets. Besides, the Hits@1 of
MTransE is only 0.9%, which is consistent with the degraded
performance of PRASE-MTransE compared with PARIS. We
additionally perform PRASE-MTransE-E on MED-BBK-9K,
and the F1-score reaches 0.511, which shows that the entity
embeddings can still provide useful information and benefit
the PR module, even if the SE module has a poor alignment
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Figure 2: F1-score of PRASE models w.r.t. K on two datasets.

performance. Briefly, the benefit of the SE module is closely
related to the selected embedding-based model. It is recom-
mended to choose an advanced embedding-based model such
as BootEA or MultiKE. If the SE module has a poor align-
ment performance, it would be better to only use entity em-
beddings as the feedback to the PR module.
Impact of Iteration Number: To analyze the impact of
the iteration number K, we additionally perform PRASE-
BootEA and PRASE-MultiKE on D-W-15K and MED-BBK-
9K with K = 2, 3, and 4. The results are shown in Figure 2,
where the F1-score increases asK increases. Therefore, more
iterations may help to improve the PRASE model. However,
in practice, since the framework converges quickly and the
embedding learning in each iteration costs much more time,
it is suggested to set K to a small value.

5 Conclusion and Discussion
In this work, an unsupervised KG alignment framework
PRASE has been proposed, which consists of a probabilis-
tic reasoning module, a semantic embedding module, and an
iterative algorithm for the interaction of the two modules.
PRASE is compatible with most existing embedding-based
models. Extensive experiments on six datasets have veri-
fied the state-of-the-art performance of PRASE. More im-
portantly, this work has shed light on the potential of unify-
ing probabilistic reasoning and semantic embedding for KG
alignment. It is therefore necessary to call for such hybrids
for academic research and industrial applications. For future
work, we plan to expand PRASE with other reasoning-based
systems (e.g., LogMap) and enhance the interaction between
the PR and SE modules by, e.g., injecting prior knowledge
defined by the KGs’ ontologies [Chen et al., 2021]. We will
also utilize the alignment of KGs to address KG refinement
problems such as error detection [Chen et al., 2020].
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