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Abstract

One of the main aims of the methods developed for
reasoning under inconsistency, in particular para-
consistent inference, is to derive informative con-
clusions from inconsistent bases. In this paper, we
introduce an approach based on inconsistency mea-
surement for defining non-monotonic paraconsis-
tent consequence relations. The main idea consists
in adapting properties of classical reasoning under
consistency to inconsistent propositional bases by
involving inconsistency measures (IM). We first ex-
hibit interesting properties of our consequence re-
lations. We then study situations where they bring
about consequences that are always jointly consis-
tent. In particular, we introduce a property of in-
consistency measures that guarantees the consis-
tency of the set of all entailed formulas. We also
show that this property leads to several interest-
ing properties of our IM-based consequence rela-
tions. Finally, we discuss relationships between
our framework and well-known consequence re-
lations that are based on maximal consistent sub-
sets. In this setting, we establish direct connections
between the latter and properties of inconsistency
measures.

1 Introduction

The main problem that we face in inconsistency handling is
the principle of explosion. It is a law stating that any formula
can be proven from a contradiction. This principle shows that
classical inference deals with inconsistent bases as non in-
formative. A logical consequence relation is said to be para-
consistent if it does not validate the principle of explosion
(e.g. see [Middelburg, 2011; Arruda, 1980]). Inasmuch as
it avoids to treat inconsistency as triviality, paraconsistency
is appropriate for contradiction-tolerant reasoning and can be
used for deriving useful information from inconsistent bases.

Non-monotonic inference deals with the problem of deriv-
ing plausible conclusions with the possibility to retract them
in conformity with new information (e.g. see [Kraus e al.,
1990]). Many problems in artificial intelligence, such as ar-
gumentation, belief revision and planning, involve this type
of reasoning. Although paraconsistent consequence relations
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are usually monotonic, the definition of non-monotonic para-
consistent relations has received some attention in the liter-
ature according to different approaches. We can first men-
tion the relation proposed in [Rescher and Manor, 1970],
which is based on the use of maximal consistent subsets to
derive plausible conclusions. Other variants of this relation
that are both non-monotonic and non-explosive have also
been introduced in the literature (e.g. [Benferhat et al., 1993;
Benferhat et al., 1997; Konieczny er al., 2019]). Moreover,
using a three-valued semantics, the consequence relation of
Priest’s paraconsistent logic, called minimally inconsistent
logic of paradox, is non-monotonic [Priest, 1991]. Inspired
by Shoham’s idea [Shoham, 1987; Shoham, 1988] of prefer-
ential models for making inferences, [Arieli and Avron, 2000]
presented an approach that is also based on a multi-valued se-
mantics for defining non-monotonic paraconsistent relations.
It is also interesting to mention the approach of adaptive log-
ics that uses dynamic proof theories [Batens, 2013]. While
all of these approaches have interesting properties, none of
them can be considered as appropriate for reasoning about
inconsistency in all situations. This explains the interest in
continuing to investigate new approaches to pave the way for
more applications of non-monotonic paraconsistent relations.

In this work, we use the notion of inconsistency measure
(e.g. see [Hunter and Konieczny, 2010]) as a stepping stone
for defining non-monotonic paraconsistent consequence re-
lations. We show that our new approach can be seen as a
simple and natural way to adapt properties of classical rea-
soning under consistency to inconsistent propositional bases.
These properties concern the consistency of the consequence
and the inconsistency of its negation in combination with
the considered base. Additionally, our approach can greatly
benefit from the variety of inconsistency measures proposed
in the literature. Indeed, plenty of proposals for measures
and systems to define them have been made by considering
different conflict forms (e.g. see [Grant and Hunter, 2013;
Besnard, 2014; Thimm, 2016; Bona et al., 2018]).

Our contribution is manifold. First, we introduce an IM-
based framework for defining three types of consequence re-
lations. Second, because our consequence relations do not
always bring about jointly consistent consequences, we pro-
pose a property, called DISJUNCT MINIMALITY, that, if sat-
isfied by an inconsistency measure, guarantees that any con-
sequence relation based on this measure always generates
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consistent sets of formulas. Furthermore, we show that this
property allows characterizing IM-based consequence rela-
tions closed under conjunction introduction, which means
that this property is necessary in specific cases to avoid con-
flicts between the entailed formulas and provide a reason-
ing framework similar to classical logic. We also show
that the measures that satisfies DISJUNCT MINIMALITY
produce consequence relations that have desired properties
of non-monotonic relations mentioned in [Gabbay, 1984;
Kraus et al., 1990]. Finally, we discuss relationships be-
tween our consequence relations and some well-known rela-
tions that are based on the use of maximal consistent subsets
(MCS) [Rescher and Manor, 1970; Benferhat et al., 1993]. In
this context, we establish direct connections between prop-
erties of inconsistency measures and the considered MCS-
based relations. In particular, we introduce a new property of
inconsistency measures that allows characterizing skeptical
reasoning.

2 Preliminary Definitions and Notations

Given a countable set of propositional variables Prop, a
propositional formula ¢ has the form: ¢ == 1 | p | =¢ |
¢ N ¢, where | denotes false, p belongs to Prop, — is the
negation connective and A the conjunction connective. The
constant T (true) and the connectives VV, — and < are de-
fined as usual in classical propositional logic. For the set of
propositional formulas we write Form. Notationally, we use,
possibly with subscripts and/or superscripts, the letters p, ¢
and r to denote the propositional variables and the greek let-
ters ¢, ¥ and x to denote the propositional formulas. More-
over, given a formula ¢ (resp. a set of formulas 5), we use
V(@) (resp. V(S)) to denote the set of propositional variables
occurring in ¢ (resp. S). For the cardinality of a set .S we
write |S].

An interpretation w is a function from Prop to {0,1}. Tt
is inductively extended to the propositional formulas as fol-
lows: w(l) = 0, w(—¢) = 1 — w(¢) and w(p A ) =
min(w(¢p), w(e)). For the set of interpretations defined over
Prop we write Werop. A model of a formula ¢ is an inter-
pretation w that makes ¢ true, that is, w(¢) = 1. The set of
models of ¢ is denoted Mod(¢), that is, Mod(¢) := {w €
Wherop : w(¢) = 1}. A formula is said to be consistent if it
admits a model. Further, we say that a finite set of formulas
S is consistent if its corresponding formula A b€S ¢, written
/\ S, is consistent; otherwise it is inconsistent. We use Inc(S)
to refer to the set of inconsistent formulas that belong to S.

A formula ¢ is said to be a logical consequence of a finite
set of formulas S, written S = ¢, if Mod(/\ S) C Mod(¢).
For convenience, if S contains only one formula 1, we write
¥ b ¢ instead of {1y} F ¢. We use ¢ = ¢ if we have both
¢ F 1 and ¢ - ¢. Moreover, we write EQ(S, ¢) for the set of
formulas in S equivalent to ¢, that is, {1 € S : ¥ = ¢}.

Two finite sets of formulas S and S’ are said to be bijection
equivalent, written S =;, S’, if there is a bijection f : S — S’
such that ¢ = f(¢) holds for each ¢ € S. Clearly, =, is an
equivalence relation. In addition, given a set X of formulas
(resp. of sets of formulas), we use X/= (resp. X/=p) to
denote the quotient of X by = (resp. =), that is, the set of
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all equivalence classes of X w.r.t. = (resp. =p).
A beliefbase is defined as a finite set of formulas. For the
set of beliefbases we write Krorm.

Definition 1 (MIS). A minimal inconsistent subset (MIS) of a
beliefbase K is a subset M of K such that M C K, M + 1,
and for each ¢ € M, M\ {¢} ¥ L.

Definition 2 (MCS). A maximal consistent subset (MCS) of a
beliefbase K is a subset M of K such that M C K, M ¥ 1,
and foreach p € K\ M, M U {¢} F L.

We use MCS(K') and MIS(K) to denote the set of all max-
imal consistent subsets and that of all minimal inconsistent
subsets of K, respectively.

Definition 3 (Free Formula). A formula ¢ in a beliefbase K
is said to be free in K if ¢ ¢ M for every M € MIS(K).

For the set of free formulas in K we write Free(K).

A formula ¢ is said to be problematic in a beliefbase K if
¢ does not belong to Free(K).

Among the inconsistency measures considered in this
work, the measure I, introduced in [Konieczny et al., 2003],
is based on Priest’s three-valued logic [Priest, 1991]. This
logic has a semantics with an additional truth-value B rep-
resenting intuitively both true and false. The three truth-
values are ranked as follows: 0 < B < 1. A three-valued
interpretation w of a formula ¢ is a function from Prop to
{0, B, 1}. It is extended to formulas as follows: w(L) = 0;
w(=¢) =1—w(ep) ifw(g) € {0,1}, w(—¢) = B otherwise;
and w(¢ A ¢) = min(w(¢), w(v)). We use both(w) to de-
note the set {p € Prop : w(p) = B}. A three-valued model
of a formula ¢ is an interpretation w such that w(¢) # 0. For
the set of three-valued models of ¢ we write 3VM(¢).

3 Inconsistency Measures

In this paper, we focus on the use of inconsistency mea-
sures for defining consequence relations. An inconsistency
measure is a function that allows quantifying the inten-
sity of contradiction. Here, we consider a formal defini-
tion that takes into account specific rationality postulates
introduced in the literature [Hunter and Konieczny, 2010;
Besnard, 2014].

We write RY for the set of positive real numbers aug-
mented with a greatest element denoted co.

Definition 4. An inconsistency measure is a function
I : Kporm — RL that satisfies the following properties for
every K, K' € Kgorm and every ¢, € Form:

e CONSISTENCY: I(K) =0iff K ¥ L;

e MONOTONICITY: if K C K' then I(K) < I(K');

e EQUIVALENCE: if ¢ = o then I(K U {¢}) = I(K U

{¢}); and

e TAUTOLOGY: if T F ¢ then I(K U {¢}) = I(K).

CONSISTENCY states that an inconsistency measure must
enable distinguishing between consistent and inconsistent be-
liefbases. MONOTONICITY says that the amount of conflicts

cannot decrease by adding new formulas. EQUIVALENCE re-
quires that equivalent formulas bring the same intensity of
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contradiction. TAUTOLOGY decrees that tautologies do not
impact inconsistency values.

Note that there is a broad consensus in the literature on
CONSISTENCY and MONOTONICITY, which is not the case
of the two other properties. In our work, the benefit of includ-
ing EQUIVALENCE in the definition of inconsistency measure
is to avoid deriving a formula and rejecting one of its equiva-
lent formulas from the same beliefbase. Regarding TAUTOL-
OQGY, it is used to prevent any change in the obtained conse-
quences by adding tautologies.

Let us mention that the literature is rich in more or less
disputed postulates (e.g. see [Besnard, 2014; Ammoura et
al., 2017; Thimm, 2018]). Among them, we are particularly
interested in the following properties:

e DOMINANCE: if ¢ ¥ | and ¢ F ¢ then I(K U {¢}) >
(K U{y});

e FREE FORMULA: if ¢ € Free(
I(K);

e EPENALTY: if ¢€ K and ¢ ¢ Free(K)
I(K \ Eq(K,¢)) < I(K).

The definition of EPENALTY is an adaptation of the prop-
erty named PENALTY in the literature to take into account the
presence of EQUIVALENCE in the definition of inconsistency
measure.

The three foregoing properties are particularly considered
to point out their impact on the introduced IM-based conse-
quence relations.

Let us now recall specific inconsistency measures from the
literature:

o In(K) = 1if K F L, and Ip(K) =
K ¥ 1 [Hunter and Konieczny, 2008];

K) then I(K \ {9}) =

then

0 if

o I(K) = [MIS(K)/=p| [Hunter and Konieczny, 2008];
o [4(K)=|MCS(K)/=|+a(K)—1,where a(K) =1
if Inc(K) # 0, and o(K) = 0 if Inc(K) = @ [Grant

and Hunter, 2011];
e [p(K) = |(K\Free(K))/=| [Grant and Hunter, 20111,
o Ins(K) =min{|H|:HC U Mod(¢) and V¢ € K,
Jw € H,w(p) =
2016];
o Io(K) = min{both(w) : w € 3V (

1} -1 w1th mzn{} = 00 [Thimm,

)} if Inc(K) =

0, and I¢(K) = oo if InC(K) () [Konieczny et al.,
2003];
o TBSE(K) = min{mas d(Mod(9), w) s w EWpop)

[Grant and Hunter, 2017].

where d corresponds to the Dalal distance between interpre-
tations defined as follows: for all w, w’ € Wpyop, d(w,w’) =
{p € Prop : w(p) # w'(p)}|. It is extended to sets of inter-
pretations as follows: d(S,w) := min{d(vw’,w) : w' € S}
if S # 0, d(S,w) := oo otherwise.

Note that some of the measures above are adapted to satisfy
EQUIVALENCE. For instance, the original versions of I, and
Ip count the number of minimal inconsistent subsets and the
number of problematic formulas, respectively.

4 IM-based Consequence Relations

In the following, we present three types of consequence re-
lations that involve inconsistency measurement. They are in-
spired by specific properties satisfied by the classical conse-
quence relation under consistency.

Definition 5 (IM-based Consequence Relations). Let I be
an inconsistency measure. The consequence relations -}, 2
and 13 are defined as follows: for each K € K gorm and each
¢ € Form,

o K+ giff I(KU{~¢}) > I(K);

e K2 ¢iff (KU{¢}) = I(K) and I(K U {—¢}) >
I(K);

o K] ¢iff I(KU{=¢}) > I(KU{e}).

In order to motivate our approach, consider a consistent
beliefbase K. For every formula ¢, we have K + ¢ if and
only if K U {—¢} F L, which means that the negation of
the consequence brings contradiction in a conflict-free be-
liefbase. Using the notion of inconsistency measure, this is
extended to inconsistent beliefbases in a natural way by the
relation }—}, which says that a formula is a consequence if
its negation brings new conflicts in the beliefbase. However,
note that -1 does not take into account the conflicts that may
arise from the entailed formula. This explains the proposal of
2 and 3. The consequence relation 2 considers the addi-
tional property that the entailed formula must not bring any
new conflict in the beliefbase. To some extent, it is similar to
the fact that K’ U {¢} ¥ L results from K + ¢ whenever K
is consistent (the consequence keeps the beliefbase conflict-
free). As regards the consequence relation -3, it is defined
by requiring that each entailed formula must bring less con-
flicts than its negation. Clearly, it is weaker than the relation
2. That is, for every beliefbase K and every formula ¢, if
K % ¢ then K 3 ¢; the converse is not necessarily true.
Moreover, the relation -} is weaker than both -2 and 3.

Notationally, for the set {¢ € Form : K . ¢} we write
Cn(K,1,i).

Example 1. Consider the beliefbase K = {p Aq,~pAq,q A
=g, -, A r,r A q} and the inconsistency measure In;. We
have Ini(K) = 4. The formula q is free in K U {q}, and it
Jollows Iy (K) = Ini(K U{q}) = 4. However, the MiSes
of KU {~q} are {p A q,~p A q}. {a A —a}. {p A\ g, g},
{r ANq,—q}, {-p A q,—q}, {-r,r} and {—r,r A q}; hence,
In(K U {=q}) = 7 holds. Therefore, we obtain K +} g,
K I—IM qand K l— , q- Additionally, I(K U {p}) = 5 and
I(KU{-p})=5 yteld K I—l p K Jv‘%M pand K }‘IM .
Moreover, K l—lM r, K J"QM rand K |—3M r ensue from
I(KU{r})=5and I(K U {-r}) =6.

Note that the three consequence relations coincide in the
case of the inconsistency measure Ip. In fact, a formula ¢
is a logical consequence of a beliefbase K w.r.t. any conse-
quence relation based on Ip if and only if K ¥ 1 and K + ¢.
In other words, the consequence relation in this case is the
most restrictive paraconsistent relation that preserve classical
reasoning under consistency. (The relation that decrees that
nothing is entailed from inconsistent beliefbases.)
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We show below that our IM-based consequence relations
preserve classical reasoning under consistency. This explains
why our approach can be seen as an extension of the proper-
ties related to entailment under consistency mentioned previ-
ously. Note that we only need the postulate CONSISTENCY
to show the following proposition.

Proposition 1. Let I be an inconsistency measure. Then, for
every K € Kgomm such that K ¥ | and every ¢ € Form, we
have K V% ¢ iff K - ¢ for each i € {1,2,3}.

Proof. We only consider the case of -}, the others being sim-
ilar. Using CONSISTENCY and K ¥ 1, I(K) = 0 holds.
Then, K +} ¢ iff I(K U {=¢}) > 0. Hence, in view of,
again, CONSISTENCY, we obtain K +} ¢ iff KU {-¢} F L.
We finally have K U {—¢} F Liff K F ¢.

The following proposition provides some common proper-
ties of the IM-based consequence relations.

Proposition 2. The following properties are satisfied for ev-
ery inconsistency measure I, every i € {1,2,3} and every
beliefbase K € Krorm:

1. there exists a formula ¢ s.t. K ¥4 ¢;

2. F§ is non-monotonic;

3. forevery ¢ € K, K ¥} —¢;

4. forevery ¢,1 € Formwith ¢ =, K % ¢ iff K 4 4;

5. forevery ¢,1,x € Formwith ¢ =, K U {¢} F x iff
KU{¢}Frx

Property 1 says that there is no beliefbase where the IM-
based consequence relations explodes into triviality; it ensues
that these relations are paraconsistent for any inconsistency
measure. Property 2 shows that all IM-based relations are
non-monotonic (a consequence relation - is monotonic if
K V'« implies K U {¢} +' 1, for any formula ¢). Prop-
erty 3 states that it is not possible to entail the negation of a
formula that belongs to the beliefbase. Properties 4 and 5 say
that no difference is made between equivalent formulas.

Note that non-monotonicity can be easily seen from the
fact that we have {p} % p (see Proposition 1) without having
{p, —p} F% p (Property 3).

Now, we show that -2 and 2 prevent contradiction be-
tween consequences.

Proposition 3. Let I be an inconsistency measure. Then, for
every K € Kgorm and every ¢ € Form, K % ¢ or K ¥ —¢
fori € {2,3}.

The foregoing proposition is not satisfied by +}. Consider,
for instance, the beliefbase K = {p A q,—p A ¢q}. Then,
we obtain Iy (K) = 1, Iny(K U {p}) = 2 and Iy (K U
{-p}) = 2. Consequently, Ip;(K U {p}) > Ip(K) and
Ing (K U{-p}) > I (K) yield K -} pand K by —p.

To illustrate the presence of relationships between IM
properties and IM-based consequence relations, we point out
in the proposition below the impact of Dominance.

Proposition 4. Let I be an inconsistency measure that sat-
isfies Dominance. Then, the following properties are sat-
isfied for every i € {1,2,3}, every K € Kgomm, and every
¢, € Forms.t. ¥ 1L and ¢ - 1):

1. if K V% ¢ then K % ), and
2. KU {¢}¥Fi —p.

5 Consistent Consequence Relation

In the general case, our consequence relations do not bring
about jointly consistent formulas. We discuss in this section
an IM property, called DISTUNCT MINIMALITY, that guaran-
tees the consistency of the associated consequence relations.
It deals with disjunction and is satisfied by several inconsis-
tency measures. We also show that this property allows char-
acterizing IM-based consequence relations closed under con-
junction introduction. This shows that DISTUNCT MINIMAL-
ITY is necessary in specific cases to avoid conflicts between
entailed formulas and provide a reasoning framework similar
to classical logic.

Let us recall the compactness theorem that states that a set
of formulas is satisfiable if and only if all of its finite subsets
are satisfiable. This mainly allows us to deal with the sat-
isfiability of a set that corresponds to all consequences of a
beliefbase.

We define the property DISTUNCT MINIMALITY as fol-
lows: for every K € Kgorm and every ¢, 1 € Form,

I(KU{¢Vy}) = min(I(KU{¢}), I(KU{y}))

It can be seen as the complement of the following prop-
erty introduced in [Besnard, 2014]: I(K U {¢ V ¢}) <
max(I(K U{¢}), I(K U {1})).

The proposition below is a consequence of the fact that
each (three-valued) interpretation satisfies ¢ V v if and only
if it satisfies ¢ or 1.

Proposition 5. The inconsistency measures Ic, Igs and
1587, satisfy DISTUNCT MINIMALITY.

For the sake of illustration, let us show that I, does not
satisfy DISJUNCT MINIMALITY. Consider the belief base
K ={pV -p,pAgq—-pAq} Then, In;(K) = 1 holds.
However, we have I({p,p A ¢,—pAq}) =2and I({-p,p A
¢ pAq}) =2
Theorem 1. Let I be an inconsistency measure that satisfies
DISJUNCT MINIMALITY. Then, the consequence relations
F}, F% and F? coincide.

Proof. We only need to show that }—}QJ, since we already
have HF?CH3CH]. Let K be a beliefbase and ¢ a formula
st. K F} ¢, Thus, I(K) < I(K U {—¢}) holds. Us-
ing TAUTOLOGY, we have I(K) = I(K U {¢ V —¢}).
Then, using DISJUNCT MINIMALITY, we obtain I (K U {¢V
—¢}) > min(I(K U {¢}),I(K U {—¢})). Consequently,
I(K) > I(KU{¢}) holds, which yields I (K) = I(KU{¢})
(MONOTONICITY). Therefore, we have K 5 ¢. O

For convenience, since -1, -2 and -3 coincide whenever I
satisfies DISTUNCT MINIMALITY, we write b in this case to
refer to the three relations.

Proposition 6. Let I be an inconsistency measure that satis-
fies DISJUNCT MINIMALITY. Then, for every beliefbase K,
and every formulas ¢ and ¢, if K b5 ¢ and K ‘1 1 then
KFpoN.
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Proof. Assume that K 7 ¢ and K by 4. Then, I(K) <
I(KU{~¢})and I(K) < I(KU{-%}) ensue. We also have
I(K ULV ~}) > min(I(K U{=0}), I(K U{~1:})). As
aresult, [(K) < I(K U {=¢ V —t}) holds. Thus, we obtain
KFr oA O

The following theorem states that requiring DISJUNCT
MINIMALITY on the inconsistency measures used for defin-
ing consequence relations always leads to jointly consistent
consequences.

Theorem 2. Let I be an inconsistency measure that satisfies
DISJUNCT MINIMALITY. Then, Cn(K, I,1) is consistent for
every i € {1,2,3} and every K € Krorm.

Proof. We need to show that every finite subset of
Cn(K,I,1) is consistent. We proceed by contradiction. As-
sume that there exists an inconsistent finite subset S of
Cn(K,1,i). Using Proposition 6, K ; A S holds. Then,
we have I(K) < I(K U{= A S}). Furthermore, TAUTOL-
OGY yields I(K) = I(K U {- A S}), and we obtain a con-
tradiction. U

A set of formulas S is said to be closed under conjunction
introduction if for every ¢, € S, ¢ N € S.

Theorem 3. Let I be an inconsistency measure. If
Cn(K,I,1) is closed under conjunction introduction for ev-
ery K € Kgorm, then I satisfies DISTUNCT MINIMALITY.

Proof. Let K be a beliefbase, and ¢ and ¢ two formulas.
Suppose for the sake of contradiction that I(K U{¢ V ¢}) <
min(I(K U {¢}), (K U{y})). Then, we have I(K U {¢ V
0}) < I(KU{6}) and I(KU{v}) < T(KU{9}). Using
MONOTONICITY, [(KU{¢pV}) < I(KU{p V1, ¢}) and
I(KU{¢pVvy}) < I(KU{¢pV1),1}) ensue. Hence, we obtain
KU{¢oVvy} }—% —¢and K U {¢ V 1} F} ). This leads to
KU{¢V i} i —¢ A -1since Cn(K, I,1) is closed under
conjunction introduction. It results that [(K U {¢ V ¢}) <
I(K U{¢ V }), and we obtain a contradiction. Therefore,
I(KU{pVy}) > min(I(KU{¢}), I(KU{y})) holds. O

The theorem below shows that the measures that sat-
isfy DISJUNCT MINIMALITY result in consequence relations
that have desired properties of non-monotonic relations men-
tioned in [Gabbay, 1984; Kraus er al., 1990].

Theorem 4. Let I be an inconsistency measure that satisfies
DISJUNCT MINIMALITY. Then, the following properties are
satisfied for every K € Kgorm and every ¢, € Form:

1 if Kt ¢and K U{¢} ;o then K b1 (Cut);

2. if K by ¢ and K by 4 then K U {¢} b1 v (Cautious
Monotonicity);

3. ifK ¥ —¢and K b 4 then K U {¢} b1 1 (Rational
Monotonicity).

Consider now the property DISJTUNCTION DOMINANCE
that we define as follows: for every K € Kgom and every
¢, € Form,

IKU{oV}) <min(I(KU{s}), [(KU{y})).
Proposition 7. An inconsistency measure I satisfies DIS-
JUNCTION DOMINANCE iff it satisfies DOMINANCE.
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Proof. Let us first consider the if part. In the case of ¢ ¥ |
and ¢ ¥ L, this property is a direct consequence of the fact
that ¢ - ¢ V4 and ¢ - ¢ V 9 for every ¢, € Form. In the
remaining case, it is a direct consequence of Equivalence.
Consider now the only if part. Let K € Kgoym and ¢, €
Form s.t. ¢ ¥ 1 and ¢ - 9. Using Equivalence, we have
I(KU{y}) = I(KU{pV1}). It follows from DISTUNCTION
DOMINANCE that I(K U {¢}) < min(I(K U{¢}),I(K U
{¥})). Thus, I(K U {¢}) > I(K U {y}) holds. O

In the following theorem, we show that DOMINANCE al-
lows charactering IM-based consequence relations closed un-
der conjunction elimination. A set of formula .S is said to be
closed under conjunction elimination if for every ¢ N € S,
o€ Sandy € S.

Theorem 5. Let I be an inconsistency measure. If
Cn(K,1,1) is closed under conjunction elimination for ev-
ery K € Krorm, then I satisfies DOMINANCE.

The proof is obtained by showing that the considered mea-
sure satisfies DISJTUNCTION DOMINANCE and using Propo-
sition 7.

One might think that interesting properties can be captured
by considering the dual property of DISTUNCT MINIMALITY
defined as follows: for every K € Kgorm and every ¢, v €
Form, I(K U {¢ Av}) < max(I(K U{e}), I(K U {t})).
However, there is no inconsistency measure that satisfies this
property. Indeed, using CONSISTENCY, I({p A =p}) > 0
holds for every inconsistency measure I. Then, using the
same property, we obtain I({p}) = 0 and I({-p}) = 0;
hence, it results that I({p A =p}) > max(I({p}), I({-p})).

6 MCS-based Consequence Relations

In this section, we focus on relationships between our
consequence relations and three well-known relations that
are based on the use of maximal consistent subsets
(MCS) [Rescher and Manor, 1970; Benferhat et al., 1993].
We first show that two of the considered MCS-based rela-
tions (namely credulous and argumentative relations) can be
characterized using the inconsistency measure I;. Then, we
establish direct connections between properties of inconsis-
tency measures and these two relations. We finally introduce
a new IM property that allows characterizing the remaining
MCS-based relation (skeptical relation).

Let us first define the considered MCS-based consequence
relations:

e Credulous Inference: K .. ¢ iff there exists K’ in

MCS(K) s.t. K' F ¢.

o Argumentative Inference: K t-4.4 ¢ iff K ., ¢ and for

every K’ in MCS(K), K' ¥ —¢.

e Skeptical Inference: K tg ¢ iff for every K’ in

MCS(K), K' I+ ¢.

Clearly, for every beliefbase K, we have {¢ € Form :
K to ¢} € {¢ € Form : K gy ¢} C {¢ € Form :
K b ¢}. Moreover, b is the unique relation that always
generates jointly consistent consequences.

The proposition below shows that the inconsistency mea-
sure I, allows us to capture the credulous and argumentative
consequence relations.
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Proposition 8. Let K be a beliefbase and ¢ a formula. Then,
the following properties are satisfied:

L4 Lqu(K, _'d)) = @, K F}M ¢ lffK Fcr’ (b;

o if EQ(K,~¢) = 0 and Eq(K,¢) = 0, K +7, ¢ iff
KbFurg ¢

The condition Eq(—¢, K) = 0 is required because our
relations cannot entail the negation of a formula equivalent
to an element of the beliefbase. Regarding the condition
Eq(¢, K) = 0, it comes from the fact that adding a formula
that already belongs to the beliefbase does not change the
amount of contradiction, even if the added formula is rejected
by one of the consistent subsets of the beliefbase. To illustrate
this point, consider the beliefbase K = {p V ¢, —p, 7q}. We
have K 7, pV g since In;(K) = 1 and I (K U {-p A
—¢}) = 2. However, we have K F,., p V ¢ because of
{=p,~q} F=(p V9.

Note that the same properties can be obtained if we use
the inconsistency measure I 4 instead of I,;. A natural ques-
tion to ask is whether there are relationships between com-
mon properties of 4 and I, and the credulous and argu-
mentative inferences. Certain relationships are stated in the
theorem below.

Theorem 6. Let I be an inconsistency measure, K a belief
base and ¢ a formula. The following properties hold:

1. if I satisfies FREE FORMULA and Kt} ¢, then
K e (b;

2. if I satisfies EPENALTY, EQ(—¢, K) = 0 and K +., ¢,
then K 1 ¢;

3. if I satisfies FREE FORMULA and EPENALTY,
Eq(¢,K) =0, and K 3 ¢, then K tgrq ¢;

4. if 1 satisfies FREE FORMULA and EPENALTY,
Eq(-¢,K) =0, and K tgry ¢, then K 1% ¢.

Proof. Property 1. We proceed by contradiction. Assume
that K ¥, ¢. Then, for every K’ € MCS(K), K’ ¥ ¢ holds
(K" U {—¢} ¥ L). Thus, we have ~¢ € Free(K U {—¢}).
The property FREE FORMULA yields I (K U{—¢}) = I(K),
which means that X J"} ¢. Hence, we have a contradiction.
Property 2. For the sake of contradiction, suppose that
K¥Flo, so I(K U {~¢}) = I(K) holds. Using
Eq(—¢, K) = () and EPENALTY, we obtain —¢ € Free(K U
{—¢}). Consequently, for every K’ € MCS(K), K' ¥ ¢
holds. Therefore, K ¥, ¢, and we have a contradiction.
Property 3. Suppose by way of contradiction that K ¥, ¢.
Then, (i) for every K’ € MCS(K), K’ ¥ ¢ holds; or
(i%) there exists K’ € MCS(K) s.t. K' - —¢ (K'U{¢} F L).
We only consider the case of (%), the proof in the case of ()
being similar to that of Property 1. Using the property (i7), ¢
is not free in K U {¢}. As a result, we have (K U {¢}) >
I(K) because of EPENALTY and Eq(¢, K) = 0. Thus, we
obtain a contradiction.

Property 4. Assume that K 4.4 ¢. Then —¢ is a prob-
lematic formula in K U {—¢} and ¢ is free in K U {¢}.
Using FREE FORMULA, EPENALTY and Eq(—¢, K) = 0,
I(K)=I1(K U{¢}) and I(K) < I(K U {—¢}) hold. Con-
sequently, we have K 2 ¢. O
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Now, we aim at finding a property on inconsistency mea-
sures that allows us to capture skeptical inference. Before
that, we describe a simple characterization of this MCS-based
inference.

Proposition 9. For every belief base K and every formula ¢,
Kby ¢ iff MCS(K) C MCS(K U {—¢}).

We call MCS DEPENDANCE the following property
on inconsistency measures that allows us to characterize
skeptical relation:

for every K € Kporm and every ¢ € Form, we have
I(K) < I(KU{¢}) iff MCS(K) Cc MCS(K U {¢}),
or MCS(K) = MCS(K U {¢}) and Inc(K) = 0.

In the following proposition, we show that this property is

stronger than FREE FORMULA.

Proposition 10. If an inconsistency measure satisfies MCS
DEPENDANCE, then it satisfies FREE FORMULA.

Proof. Let K be a beliefbase and ¢ a free formula in K.
Clearly, for every K’ € MCS(K), we have ¢ € K’'. Thus,
MCS(K \ {¢}) € MCS(K). Consequently, using MCS
DEPENDANCE, we have [(K) = I(K \ {¢}). O

Let us now establish a direct relationship between MCS
DEPENDANCE and skeptical inference.

Proposition 11. Let I be an inconsistency, K a belief base
and ¢ a formula s.t. Eq(—¢, K) = (. Then, we have the
property K Fo, ¢ iff K &} ¢, if and only if I satisfies MCS
DEPENDANCE.

Proposition 12. Let I be an inconsistency measure that sat-
isfies MCS DEPENDANCE. Then, the consequence relations
H, 2 and 13 coincide.

Since F¢ is a relation that leads to jointly consistent con-
sequences, the property MCS DEPENDANCE is an additional
property with DISTUNCT MINIMALITY that allows obtaining
consistent consequence relations. Note that none of the mea-
sures described in this work satisfy MCS DEPENDANCE.

7 Conclusion and Perspectives

We have introduced an IM-based framework for defining dif-
ferent types of non-monotonic paraconsistent consequence
relations. We have also proposed properties of inconsistency
measures that allow defining consistent consequence rela-
tions. Finally, we have described direct relationships between
properties of inconsistency measures and well-known MCS-
based consequence relations.

There are several perspectives for future work. Among
them, we first mention the study of the impact on the pro-
posed consequence relations of other properties of inconsis-
tency measures from the literature. It is also interesting to ex-
amine the possible connections between our framework and
that based on MCS selection [Konieczny e al., 2019]. More
generally, it is worthwhile to investigate other approaches for
defining consequence relations through inconsistency mea-
surement
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