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Abstract

Recently, deep learning models have been widely
explored in recommender systems. Though having
achieved remarkable success, the design of task-
aware recommendation models usually requires
manual feature engineering and architecture engi-
neering from domain experts. To relieve those ef-
forts, we explore the potential of neural architecture
search (NAS) and introduce AMEIR for Automatic
behavior Modeling, interaction Exploration and
multi-layer perceptron (MLP) Investigation in the
Recommender system. Specifically, AMEIR di-
vides the complete recommendation models into
three stages of behavior modeling, interaction ex-
ploration, MLP aggregation, and introduces a novel
search space containing three tailored subspaces
that cover most of the existing methods and thus
allow for searching better models. To find the ideal
architecture efficiently and effectively, AMEIR re-
alizes the one-shot random search in recommen-
dation progressively on the three stages and as-
sembles the search results as the final outcome.
The experiment over various scenarios reveals that
AMEIR outperforms competitive baselines of elab-
orate manual design and leading algorithmic com-
plex NAS methods with lower model complexity
and comparable time cost, indicating efficacy, effi-
ciency, and robustness of the proposed method.

1 Introduction

Recommender system has become an essential service on on-
line E-commerce business and content platforms to deliver
items that best fit users’ interests from the substantial number
of candidates. Recently, advancements of deep learning (DL)
have innovated the recommending strategies in real-world ap-
plications [Covington et al., 2016; Zhou et al., 2018] to en-
able accurate and personalized recommendation.

DL-based recommender systems have to process both se-
quential and non-sequential input features, and thereby fol-
low a characterized architecture compared to the general DL
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tasks. A canonical DL-based recommendation model usu-
ally includes three parts: (1) Behavior modeling [Hidasi and
Karatzoglou, 2018; Zhou et al., 2018] probes into captur-
ing user’s diverse and dynamic interest from historical be-
haviors; (2) Interaction exploration [Cheng e al., 2016;
Guo et al., 2017] finds useful interactions among different
fields to provide memorization and intuitive conjunction evi-
dence for the recommendation. (3) Multi-layer perceptron
(MLP) investigation [Covington ef al., 2016] aggregates the
inputs with the results from the previous parts, and then fuses
the features with hidden layers in the MLP.

Industry demands efficiently designing the three parts in
the DL-based recommendation model to improve the accu-
racy and personalization for given recommender tasks in busi-
ness. Nevertheless, it is hard to find a unified model meeting
the requirements in all the scenarios. For the models of be-
havior modeling, recurrent neural network (RNN) [Hidasi
and Karatzoglou, 2018] is hard to preserve long-term be-
havioral dependencies even though employing gated mem-
ory cells. Convolutional neural network (CNN) [Yuan et al.,
2019] is capable of learning local feature combinations yet
it relies on a wide kernel or deep layers to distinguish long-
term interests. The attention mechanism [Zhou et al., 2018]
directly aggregates the entire behavior sequence, but it can
not capture the evolution of the user’s preference [Zhou et
al., 2019]. Self-attention [Vaswani et al., 2017] is better for
modeling long-term behaviors [Feng et al., 2019; Sun et al.,
2019], but it is hard to be deployed in real-time applications
that require fast inference with limited resources. Regarding
the methods for interaction exploration and MLP investi-
gation, vanilla MLP [Covington er al., 2016] implicitly gen-
eralizes high-order information in the network. To help mem-
orize useful features from raw inputs, the existing literature
extracts implicit and explicit low-order [Cheng et al., 2016;
Guo ef al., 2017] and high-order [Lian et al., 2018] interac-
tions and combine them with a pre-defined MLP. However,
these methods either require hand-crafted cross features or
simply enumerate interactions of bounded degree, and thus
introducing noise in the model [Liu ef al., 2020]. Moreover,
the MLP specified manually or by grid search is usually sub-
optimal. Hence, adopting and coordinating the task-aware
architectures for those three parts are the main challenge for
building efficient and accurate recommender systems.

Recently, the neural architecture search (NAS) paradigm
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[Zoph and Le, 2017; Real et al., 2019] is proposed to
automatically design deep learning models by searching
task-specific and data-oriented optimal architecture from the
search space, thereby mitigating a lot of human efforts.
Some latest attempts [Luo er al., 2019; Liu er al., 2020;
Song er al., 2020] incorporate NAS with the recommenda-
tion. Nevertheless, they all neglect behavior modeling and
only consider interaction exploration and MLP investiga-
tion in the restricted search spaces. Different from these
methods, we introduce AMEIR, namely Automatic behav-
ior Modeling, interaction Exploration and MLP Investigation
in the Recommender system, to automatically find the com-
plete recommendation models for adapting various recom-
mender tasks and mitigating manual efforts. Specifically,
AMEIR divides the backbone recommendation models based
on the three stages of behavior modeling, interaction ex-
ploration, MLP aggregation, and introduces a novel search
space containing three tailored subspaces that are designed to
cover most of the representative recommender systems and
thus allow for searching better architectures. Facing the in-
dustrial demands of agile development and architecture iter-
ation, AMEIR realizes the efficient while competitive one-
shot random search [Li and Talwalkar, 2019], and proposes
a three-step searching pipeline to progressively find the ideal
architectures for the corresponding three stages. The search
results will be assembled as the final outcome. The experi-
mental results over various recommendation scenarios show
that our automatic paradigm consistently achieves state-of-
the-art performance despite the influence of multiple runs,
and could outperform both the strongest baselines with elab-
orate manual design and leading NAS methods with compa-
rable search cost, indicating efficacy, efficiency, and robust-
ness of the proposed method. Further analysis reveals that the
overall time cost of AMEIR is similar to the baseline meth-
ods without architecture search and the searched models al-
ways possess lower model complexity, which demonstrates
that AMEIR is efficient in both search and inference phases.

2 AMEIR

In Sec.2, we will introduce the three-stage search space, and
the tailored three-step one-shot searching pipeline in AMEIR.
Finally, we will discuss the relationship between AMEIR and
representative recommender systems.

2.1 Backbone Model in AMEIR’s Search Space

The recommendation models in AMEIR’s search space share
the same three-stage backbone, as illustrated in Fig.1.

Stage 0: Feature Representation and Embedding. In the
common recommender systems, the input features are col-
lected in multi-field categorical form, and segregated into
sequential features and non-sequential features: (1) The se-
quential features describe the user’s behaviors, which can be
represented by a sequence of behavior elements. Each behav-
ior element contains the item profile and the historical context
profile. (2) The non-sequential features depict the attribute
information of the current recommendation, including user
profile, instant context profile, and the optional target profile
for click-through rate (CTR) prediction task.
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Conforming to [Covington et al., 2016; Zhou er al., 2018],
AMEIR transforms the data instances into high-dimensional
sparse vectors via one-hot or multi-hot encoding. Each data

instance can be formally represented by x = [x% x| =
b oyb b _
[X(117Xga---7X’(11"aX17X27~-'7XN]' X = [X%,XS,...,X%«] de-

notes the encoded sequential behavior elements of length T’
with each behavior element x{ grouped in N, categorical
fields of the same dimension, and x* = [x},x5, ..., x%] rep-
resents [N encoded vectors of non-sequential feature fields.
AMEIR compresses the sparse features into low dimensional
dense vectors via embedding technique. Suppose there are
F' unique features. AMEIR creates the embedding matrix
E € RF*K where each embedding vector has dimension
K. The embedded data instance can then be represented by
e=[e?e] = e} e}, .., ek el el ... el

Stage 1: Behavior Modeling on Sequential Features. To
extract the sequential representation from user’s behavior,
AMEIR introduces a block-wise behavior modeling net-
work to model sequential patterns based on grouped behav-
ioral embedding HY = [e%, €%, ..., €%]. The behavior model-
ing network is constructed by stacking a fixed number of L,
residual building blocks, where the [-th block receives the
hidden state H ; from the previous block as input and gen-
erates a new hidden state Hj' of the same dimension. Each
block consists of three consecutive operations of normaliza-
tion, layer, and activation, which are selected from the corre-
sponding operation sets in the search subspace of building
blocks. The hidden state of layer [ is formulated as:

[ = Act} (Layerj (Normj (Hj_,))) + Hjy, (1)
where Act]’, Layer; and Norm; are the selected activa-
tion, layer and normalization operations for layer . As the
fully connected networks can only handle fixed-length inputs,
AMEIR compresses the final hidden states into fixed dimen-
sions via sequence-level sum pooling: hy , = Z?:l hy
where hj ; denotes the i-th element in Hf . Moreover,
to extract the latest interest of the user, the last hidden state
h7 7 is also included in the result. Besides, when the target
item is involved, AMEIR adopts an attention layer to extract

a target-aware representation: hl,, = ZiT:1 a;hfy ;, witha;
computed by the local activation unit [Zhou et al., 2018]. The
concatenation h® = [h? ;. h7 7 h{,]is served as the se-
quential feature extracted from Stage 1. In practice, this stage
remains the procedure to execute looking up embedding only
once, which is orthogonal to the industrial large-scale sparse-
features lookup optimizations.

Stage 2: Interaction Exploration on Non-sequential Fea-
tures. Learning effective feature interactions is crucial for
recommender systems. Different from the widely-used meth-
ods that manually extract useful interactions or exhaustively
enumerate interactions of bounded degrees [Cheng et al.,
2016; Guo et al., 2017; Lian et al., 2018], AMEIR ex-
plores a small number of M beneficial interactions p® =
[P}, p5, ..., Y] from the search subspace of interactions.
The search subspace contains all low-order and high-order
interactions among the non-sequential features, where each
interaction has the same dimension as the input embeddings.
Stage 3: Aggregation MLP Investigation with Short-
cut Connection. Given the inputs of sequential feature,
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Figure 1: The three-stage search space and the three-step one-shot searching pipeline of AMEIR. AMEIR searches for building blocks, feature
interactions, and aggregation MLP (three layers as an example) from corresponding search subspaces in Steps 1-3.

non- sequentlal features, and explored interactions h§ =
[he, e’ p’], AMEIR aggregates these features by takmg ad-
Vantage of both generalization from MLP and memorization
from a shortcut connection. As MLP affects both recommen-
dation quality and efficiency, AMEIR searches for the MLP
settings in Stage 3. Assume the aggregation MLP has L. lay-
ers. AMEIR chooses the dimension and activation function
for each layer from the search subspace of MLP. The for-
ward pass of each hidden layer [ can be depicted as:

= Actj(Wihi_, +bj), 2

where hf, W7, bf and Act] are the output, weight, bias and
activation function of the [-th layer. Meanwhile, inspired by
the bypaths in [Cheng et al., 2016; Guo et al., 2017; Lian
et al., 2018], AMEIR introduces a Squeeze-and-Excitation
(SE) [Hu et al., 2018] shortcut connection to introduce at-
tentive recalibration on the feature embeddings and explored
interactions Q*¢ = [eb, p®] = [e!, ...,e%, pY, ..., p4,]- The
attention units a*¢ = [a{®, a3, ..., a37, y| are computed by
a* = U(WgeReLU(W{erevse)), where v*¢ is applied
for linear projection, and 5¢ are weight matrices in
the fully-connected layers. The output of SE connection is
given by the weighted average h*° = Zf\i'fN ai°q;®, where
q;° is the i-th element in Q°°. AMEIR concatenates the re-
sults from aggregation MLP and SE connection as the output
representation h® = [hg , h*¢].

Loss Function. For the CTR prediction task, AMEIR mini-
mizes the binary log loss for optimization:

ﬁ Y [ylogo(w™h®)+(1—y)log(1—a(whe))],
(xy)es

where o(w'he) is the predicted CTR score, and S is the
training set with x as input and y € {0, 1} as label. For the
item retrieval, we adopt the sampled cross entropy loss:

Z [log o(e] Whe)+
(x,i)ES

L=-—

1
L=——
S|
JEL;
where o(e] Wh¢) is the relevance score between target item
1 and final representation; S is the training set of input feature
x and target item 4; Z,” is the item set of negative samples.
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> log(1—o(ej Wh))],

2.2 Search Subspaces of Three Stages

For each stage in the backbone, AMEIR introduces a corre-
sponding search subspace to cover the representative recom-
mendation models. We will describe each of the three sub-
spaces below and show a detailed comparison in Sec.2.4.
Search Subspace of Building Blocks. In order to cover
the existing behavior modeling methods, AMEIR proposes
a search subspace of building blocks in the behavior mod-
eling network, including three operation sets for normaliza-
tion, layer, and activation. Specifically, AMEIR collects the
normalization set of {Layer normalization [Ba et al., 2016],
None} and activation set of {ReLU, GeLU [Vaswani et al.,
2017], Swish [Ramachandran et al., 2017], Identity } that are
commonly used in the previous methods. Regarding the layer
operations, AMEIR introduces four categories of candidate
layers, namely convolutional layers, recurrent layers, pool-
ing layers, and attention layers to identify sequential pat-
terns in the user history. The convolutional layers are all
one-dimension, including standard convolution with kernel
size {1, 3} and dilated convolution with kernel size {3, 5,
7}. The pooling layers consist of average and max poolings
with kernel size 3. Both convolutional and pooling layers
are of stride 1 and SAME padding. Bi-directional GRU (Bi-
GRU) is employed as the recurrent layer as it is faster than
Bi-LSTM without loss of precision. Two-head and four-head
bi-directional self attentions [Vaswani er al., 2017] are also
introduced for better behavior modeling. Additionally, when
the target item appears in the input, the layer operation set
will associate an attention layer that attends to each sequence
position from target [Zhou er al., 2018]. Besides, zero op-
eration is also included to implicitly allow a dynamic depth
of behavior modeling network. It is worth emphasizing that
the operation sets are proposed to cover the existing methods.
When a new operation is developed, it can be easily added to
the operation set to find better recommendation models.
Search Subspace of Interactions. The existing literature
adopts Hadamard product [Lian ef al., 2018], inner prod-
uct [Guo et al., 2017; Qu et al., 2018], bilinear func-
tion [Huang et al., 2019] and cross product [Cheng erf al.,
2016] in the feature interactions. Hadamard product cal-
culates the element-wise product among the feature embed-
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dings, which can be exploited by both MLP and shortcut con-
nection. The inner product can be seen as a simple form
of Hadamard product compressed by sum pooling. Bilin-
ear function introduces extra parameters on Hadamard prod-
uct to learn fine-grained representations, but it can not han-
dle high-order interactions and does not exhibit superiority
over Hadamard product when combining with MLP [Huang
et al., 2019]. Although the cross product can yield a more
flexible form of interactions, it can only be used in the short-
cuts [Luo et al., 2019] because the parameters will exponen-
tially explode in the order of interactions and can not be well
trained due to the low frequency of occurrence. Therefore,
AMEIR chooses Hadamard product as the interaction func-
tion due to its expressive power and flexibility. The search
subspace of interactions includes all low-order and high-
order Hadamard interactions. An interaction of order r can be
expressed as e ©e? ©..©e} . where ® denotes Hadamard

product and e? ,e? ,...,e} are selected from e”.
Search Subspace of MLP. The search subspace of MLP
includes dimensions and activation functions of hidden lay-
ers. Assume K is the dimension of h§. The dimensions
of hidden layers are chosen from {0.1,0.2,...,1.0} of K§
while ensuring monotonically non-increasing following the
practice. The activation functions are selected from {ReLU,

Swish, Identity, Dice [Zhou er al., 2018]}.

2.3 Three-step One-shot Searching Pipeline

One-shot NAS in AMEIR. Recent approaches [Pham et al.,
2018] introduce efficient one-shot weight-sharing paradigm
in NAS to boost search efficiency, where all child models
share the weights of common operations in a large one-shot
model that subsumes every possible architecture in the search
space. Though diverse complex search algorithms have been
coupled with one-shot NAS, the latest study [Li and Tal-
walkar, 2019] reveals that the efficient one-shot random
search is surprisingly better than the complex gradient-based
methods of DARTS [Liu et al., 2019], SNAS [Xie et al.,
2019] and RL-based methods of ENAS [Pham et al., 2018].
To facilitate the industrial demands of agile development and
architecture iteration, AMEIR realizes the one-shot random
search in the recommendation model: (1) The child models
are randomly sampled from the search spaces (actually sub-
spaces) to train the shared weights of the one-shot model and
validate its performance on a small subset of validation in-
stances to ensure adequate training while avoiding overfitting.
(2) A subset of child models is randomly selected and evalu-
ated on the same validation subset using the inherited weights
from the one-shot model. (3) The child models with the best
performance will be derived and retrained for the final rec-
ommendation outcome. Moreover, to reduce the magnitude
of the search space and find the better recommendation mod-
els, AMEIR modularizes the search process into three steps
matching the three stages in the backbone model by progres-
sively searching for the architectures in the three search sub-
spaces. Meanwhile, AMEIR ensures the fairness of one-shot
model training to alleviate the representation shift caused by
weight sharing. Details of the three steps are shown below.

Step 1: Behavior Modeling Search. In Step 1, AMEIR
searches for the behavior modeling networks from the search
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subspace of building blocks, as shown in Fig.1. The nor-
malization, layer, and activation operations are randomly se-
lected from the operation sets to build the recommendation
model. To decouple behavior modeling from other stages,
a pre-defined MLP is exploited to combine h® and e’. The
training and evaluation are the same as previously described.
Step 2: Interaction Exploration. In Step 2, AMEIR com-
bines one-shot NAS and sequential model-based optimiza-
tion (SMBO) algorithm [Liu et al., 2018] to explore inter-
actions on non-sequential features. The interaction set p®
is initialized with non-sequential features e, and then pro-
gressively updated by several cycles of evolution to increase
the interaction order, as illustrated in Fig.1: (a) The candi-
date interactions in p® intersect with all non-sequential fields
from e® via Hadamard product to mutate for higher-order in-
teractions. The expanded interaction set is denoted by p”.
(b) The intersections in pbl are trained by one-shot NAS
and evaluated on the validation set. (c) Top-k interactions
with the highest validation fitness are retained as the new
p?, while other interactions are filtered out to avoid exhaus-
tively visiting all possible solutions. After the evolution,
AMEIR selects top-M features in p® as the resulting inter-
action set. In order to train and evaluate interactions in the
one-shot model, AMFEIR utilizes another pre-defined MLP
to aggregate interactions in pbl with non-sequential embed-
dings in e®, while the behavior modeling here is left out
for efficiency. As the linear projection of feature concate-
nation is equivalent to feature-wise addition of projected re-
sults, i.e., Wh' = [Wl,W27 ...,WN][hl,hg, ey hN]T =
Zf\;l W,h], the one-shot NAS in Step 2 is efficiently re-
alized by adding the projections of one uniformly-sampled
interaction and all embeddings in e’ as the output of the first
hidden layer, without accessing to all interactions in p. To
further speed up the search process, the weights of the one-
shot model are inherited in consecutive evolution cycles.
Step 3: MLP Investigation. In Step 3, AMEIR investigates
the dimensions and activations in the aggregation MLP based
on the found behavior modeling network and interactions. To
find the hidden sizes of MLP, AMEIR pre-allocates a weight
matrix with the maximum dimension W¢ € RX0*%o for
each layer. Suppose hj, and hg, are chosen to be the hid-
den sizes of previous and current layers. AMEIR slices out
sub-matrix W€[: hj, : oy to assemble the MLP in Eqn. (2).
Other details are similar to Steps 1 and 2.

Derivation. After the three-step random search, AMEIR as-
sembles the search results as the final outcome and retrains
the derived model for evaluation. It is worth emphasizing
that the derived model is initialized with the one-shot model
weights because the training protocols of model architectures
and datasets are the same for both one-shot model and child
models, which is in contrast to the most existing methods that
adopt proxy task for one-shot model training [Liu er al., 2019;
Xie et al., 2019]. The inherited weights accelerate the retrain-
ing process and compensate for the search cost.

2.4 Related Work to AMEIR

Behavior Modeling. The existing methods introduce
RNN [Hidasi and Karatzoglou, 2018], CNN [Yuan et al.,
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Category | Model | AUC | QPs
DNN [Covington et al., 2016] 0.6304 64K

DNN-based Wide&Deep [Cheng et al., 2016] 0.6313 55K
DeepFM [Guo et al., 20171 0.6320 58K

DIN [Zhou et al., 2018] 0.6341 53K

Attention-based DIEN [Zhou et al., 2019] 0.6344 44K
DSIN [Feng et al., 2019] 0.6352 43K

AMEIR-A 0.6357 £+ 0.0001 | 47K

AMEIR AMEIR-B 0.6359 £+ 0.0003 | 43K
AMEIR-C 0.6383 + 0.0004 | 46K

Table 1: Comparison with representative methods on Alimama.

Model | Beauty | Steam

| HR@5 | NDCG@5 | HR@5 | NDCG@5
BPR [Rendle et al., 2009] 0301 | 0227 | 0527 | 0369
GRU4REC™ [Hidasi and Karatzoglou, 2018] 0.300 0.215 0.626 0.468
NARM [Li ef al., 2017] 0243 | 0166 | 0658 | 0501
NextItNet [Yuan e al., 2019] 033 | 0243 | 0679 | 0517
BERT4REC [Sun et al., 2019] 0337 | 0252 | 0676 | 0513
0341 | 0257 | 0681 | 0517

AMEIR-A ‘ +0.004 ‘ +£0.003 ‘ £0.003 ‘ +0.002

Table 2: Comparison with representative methods on Beauty/Steam.

2019], or Transformer-based [Sun et al., 2019] behavior mod-
eling networks to capture sequential relations and evolved in-
terests from user behaviors. Then, the sequential features are
extracted from the sequence-level hidden states by either tak-
ing the last hidden state [Kang and McAuley, 2018] or aggre-
gating the sequence by a pooling layer [Cheng et al., 2016;
Covington et al., 2016]. Some recent works [Zhou et al.,
2018] further employ an attention mechanism between the se-
quential representations and target item to retrieve the user’s
main proposal. These methods can all be found in AMEIR’s
search space. Specifically, the search subspace of building
blocks contains all layer, activation, and normalization oper-
ations in those behavior modeling networks. Moreover, the
last hidden state, pooling-based aggregation, and attention-
based aggregation are all used for sequence compression.
Interaction Exploration. In parallel with behavior model-
ing, some works resort to explore feature interactions in the
DL-based recommendation models. LR [Cheng et al., 2016],
FM [Guo et al., 2017], xDeepFM [Lian et al., 2018] are ex-
ploited to import explicit low-order or high-order interactions
through shortcut connections, i.e., concatenating interactions
to the last hidden layer of MLP, and then apply linear projec-
tion with learnable variables or all-one vectors to generate the
prediction scores jointly with the hidden layers. Other than
the shortcut connection, FibiNet [Huang et al., 2019] take in-
teractions as the input of MLP, while PNN [Qu et al., 2018]
further combines interactions with raw embeddings to induce
more features in the network. It is not hard to find that all
these methods can be derived from AMEIR’s search space.
Concretely, all low-order and high-order interactions can be
extracted from the search subspace of interactions. Mean-
while, raw input embeddings and explored interactions are
used by both shortcut connection and MLP, covering the ex-
isting interaction-combining strategies. Besides, the attentive
SE connection could implicitly characterize attention-based,
regression-based, and FM-based shortcut connections.

MLP Investigation. The existing literature [Covington et
al., 2016; Zhou et al., 2018] mainly uses sub-optimal hand-
crafted MLPs to aggregate features, where activation func-
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Model | Criteo | Avazu

| AUC | Log Loss | AUC | Log Loss
DNN [Covington et al., 2016] 0.7983 0.4549 0.7746 0.3831
Wide & Deep [Cheng et al., 2016] 0.7992 0.4538 0.7749 0.3839
DeepFM [Guo et al., 20171 0.801 0.4496 0.7753 0.3825
IPNN [Qu et al., 2018] 0.7975 0.4578 0.7787 0.3806
xDeepFM [Lian et al., 2018] 0.8019 0.4497 0.7759 0.3818
FibiNet [Huang et al., 2019] 0.8021 0.4487 0.7789 0.3798

AutoCross [Luo et al., 2019]
AutoFIS [Liu ez al., 2020]
AutoCTR [Song et al., 2020]
AMEIR-I
AMEIR-B
AMEIR-C

0.8022 £ 0.0001 | 0.4494 4 0.0001 | 0.7776 = 0.0002 | 0.3810 % 0.0001
0.8015 £ 0.0004 | 0.4504 £ 0.0005 | 0.7789 £ 0.0003 | 0.3801 = 0.0002
0.8027 £ 0.0003 | 0.4489 £ 0.0003 | 0.7791 = 0.0002 | 0.3800 = 0.0001

0.8024 £ 0.0002 | 0.4491 & 0.0004 | 0.7791 £ 0.0003 | 0.3799 & 0.0003

0.8030 £ 0.0002 | 0.4486 =+ 0.0004 | 0.7798 £ 0.0004 | 0.3794 & 0.0002
0.8034 + 0.0002 | 0.4482 + 0.0003 | 0.7802 + 0.0004 | 0.3792 + 0.0002

Table 3: Comparison with representative methods on Criteo/Avazu.

tions and hidden sizes are designed manually or by grid
search. Different from these methods, AMEIR tries to find
the appropriate MLP through one-shot NAS in a discrete yet
flexible search subspace that covers common MLP settings.

Based on the above analysis, it can be inferred that
AMEIR’s search space covers most of the representative rec-
ommendation models. Therefore, AMEIR can perform as
good as these methods in various scenarios, and further de-
rive better models when conducting exhaustive search.

3 Experiments

In Sec.3, we will investigate AMEIR on various scenarios,
perform additional ablation study and efficiency analysis.

3.1 Industrial Results for AMEIR

To verify all three steps of AMEIR in the industrial scenario,
we refer to the Alimama CTR dataset [Feng er al., 2019] that
comprises both sequential and non-sequential features for a
comprehensive comparison. We use similar preprocessing
settings as [Feng et al., 2019], where the embedding size is
set to 4 and the maximum sequence length is set to 50. The
Adam optimizer with an initial learning rate le-5 and batch
size 1024 is employed for both AMEIR and baseline meth-
ods. For the training of the one-shot model, a single cosine
schedule is introduced for learning rate decay. In Steps 1
and 3, AMEIR selects the top-5 models from the randomly
sampled 2000 architectures for further evaluation, while in
Step 2, AMEIR conducts 4 cycles of evolution, retains top-50
interactions at each cycle, and finally reserves M = 5 inter-
actions as p®. L, and L. are set to 3 and 2 in the backbone
model, and the pre-defined MLP is set to [200, 80] during
Steps 1 and 2. By conforming to [Li and Talwalkar, 2019;
Liu et al., 2019], we run AMEIR for 4 times and report the
mean metrics across 4 runs as the final results.

Tab. 1 depicts the results on Alimama dataset. AMEIR-
A (only uses behavior modeling result from Step 1) presents
competitive performance with the promising empirical ar-
chitectures DIEN and DSIN. Furthermore, a significant im-
provement (note that an improvement of AUC around 0.0005-
0.001 is already regarded as practically significant in the in-
dustrial scenarios [Feng et al., 2019]) can be observed when
combining AMEIR-A with searched interactions (AMEIR-B)
and MLP (AMEIR-C). An interesting point on the Alimama
dataset is that compared to sequential modeling and interac-
tion exploration, the MLP search significantly contributes to
the final results, which indicates that all three stages/steps in
AMEIR are necessary for high-quality recommendations.
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Model | AUC | Search Cost (GPU days)
Random 0.6321 + 0.0011 2.9
RL [Zoph and Le, 2017] 0.6323 £ 0.0006 32
EA [Real et al., 2019] 0.6338 = 0.0004 3
ENAS (One-shot + RL) [Pham et al., 2018] 0.6339 £ 0.0007 0.15
DARTS (One-shot + Gradient) [Liu ef al., 2019] 0.6350 = 0.0008 02
SNAS (One-shot + Gradient) [Xie et al., 2019] 0.6343 + 0.0003 0.3

One-shot Random Search [Li and Talwalkar, 2019] | 0.6365 + 0.0006 0.3
AMEIR (Three-stage One-shot Random Search) 0.6383 + 0.0004 0.5

Table 4: Comparison with NAS methods on Alimama.

Model | Criteo | Avazu

Interaction | MLP | AUC | LogLoss | AUC | LogLoss

None Manual | 0.7983 0.4549 0.7746 0.3831

MLP Manual | 0.8021 0.4492 0.7789 0.3801

M Manual | 0.8024 0.4491 0.7791 0.3799
MLP + FM | Manual | 0.8027 0.4488 0.7795 0.3795
MLP + SE | Manual | 0.8030 0.4486 0.7798 0.3794
MLP + SE | Searched | 0.8034 | 0.4482 | 0.7802 | 0.3792

Table 5: Comparison of backbone models on Criteo/Avazu.

3.2 Applicable for Various Scenarios

To show AMEIR is applicable for various recommenda-
tion tasks, we evaluate AMEIR on two additional scenarios,
namely sequential scenario, and non-sequential scenario: (1)
The sequential scenario only presents sequential user behav-
iors to examine Step 1 behavior modeling. The training is
based on the item retrieval task. The sequential datasets in-
clude Amazon Beauty and Steam [Kang and McAuley, 2018].
(2) The non-sequential scenario is introduced to verify the
Step 2 interaction exploration and Step 3 MLP investiga-
tion, where only non-sequential features are provided for
the recommendation. The non-sequential datasets include
benchmarking CTR datasets Criteo [Guo et al., 2017] and
Avazu [Qu et al., 2018].

Evaluation on Sequential Scenario. Tab. 2 summarizes the
results on Beauty and Steam datasets. The hand-crafted meth-
ods, including the strongest baselines BERT4Rec and NextIt-
Net, can not dominate both datasets, which empirically jus-
tifies that the best architecture is usually task-aware. In con-
trast, AMEIR consistently achieves better accuracy compared
to the baselines with well-designed architectures, indicating
the strength of AMEIR and the capability of searching better
models from the search subspace of building blocks.
Evaluation on Non-sequential Scenario. Tab. 3 presents
the results on non-sequential datasets. It can be observed
that AMEIR-I (DeepFM backbone with interactions explored
by AMEIR) consistently surpasses competitive hand-crafted
baselines xDeepFM and FibiNet as well as AutoML-based
baselines AutoCross and AutoFIS on different tasks over
multiple runs, validating the efficacy of interaction explo-
ration in Step 2. Moreover, our method gains remarkable
improvement over AMEIR-I and exceeds AutoCTR when
combining explored interactions with the SE connection
(AMEIR-B) and MLP investigation (AMEIR-C). The result
verifies the design of both the backbone and search subspaces.

3.3 Ablation Study

Ablation Study on NAS Methods. To study the importance
of the proposed search method, we evaluate the performance
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of different NAS algorithms on the same search space of the
Alimama dataset. As shown in Tab. 4, the one-shot ran-
dom search achieves better performance than both brute-force
methods of random, RL, EA, and the algorithmic complex
methods of ENAS, DARTS, SNAS with lower search cost.
Moreover, AMEIR with the three-stage one-shot searching
pipeline brings about a remarkable improvement on the one-
shot random search under a similar time budget, demonstrat-
ing the effectiveness and efficiency of the proposed method.
Ablation Study on Backbone Model. To further analyze
the impact of the backbone model, we isolate different com-
ponents in Stages 2 and 3, and report the mean metrics on
the non-sequential datasets. As shown in Tab. 5, the interac-
tions (searched) applied to MLP and FM bring orthogonal im-
provement on vanilla DNN. The result reveals that both com-
bining strategies contribute to the result. Additionally, SE
interaction (AMEIR-B) and MLP search (AMEIR-C) could
further boost the performance of recommendation, suggest-
ing the superiority of the backbone design in AMEIR.

3.4 Efficiency in Search and Inference Phases

Search Efficiency. The search cost of AMEIR on the Beauty,
Steam, Avazu, Criteo, Alimama datasets are 0.2, 0.2, 0.25,
0.25, 0.5 GPU-days respectively on a single Tesla V100 GPU,
which are all similar to training the individual models of base-
line methods. As AMEIR uses the trained one-shot weights
to initialize the derived model, the fine-tuning time could
generally be ignored. Therefore, the overall time cost of
AMEIR is roughly the same as the methods that do not em-
ploy NAS. The result proves the efficiency of AMEIR in the
search phase, and it is evident that AMEIR can help facilitate
the design of recommender systems in real-world scenarios.
Inference Efficiency. We record the queries/samples-per-
second (QPS) of AMEIR and the compared models to ex-
amine the inference speed on the Alimama dataset in Tab. 4.
Apart from the improvement in accuracy, AMEIR is also
competitive in efficiency compared with the commonly-used
attention-based models. Besides, the searched MLPs are al-
ways much smaller than the hand-crafted ones, such that the
numbers of parameters of the searched models are less than
half of the baselines. The results indicate that instead of in-
creasing the capacity, AMEIR coordinates the three parts in
the recommendation model to find the ideal architecture.

4 Conclusion

In this paper, we introduce AMEIR for automatic behavior
modeling, interaction exploration, and MLP investigation in
the recommender systems. Owing to the design of novel
search space and search pipeline, AMEIR outperforms the
competitive baselines in various scenarios with lower model
complexity and comparable time cost, demonstrating effi-
ciency, effectiveness, and robustness of the proposed method.
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