
Deep Reinforcement Learning for Navigation in AAA Video Games

Eloi Alonso∗ , Maxim Peter∗ , David Goumard and Joshua Romoff
Ubisoft La Forge

eloi.alonso@unige.ch, {maxim.peter, david.goumard, joshua.romoff}@ubisoft.com

Abstract

In video games, non-player characters (NPCs) are
used to enhance the players’ experience in a vari-
ety of ways, e.g., as enemies, allies, or innocent
bystanders. A crucial component of NPCs is navi-
gation, which allows them to move from one point
to another on the map. The most popular approach
for NPC navigation in the video game industry is to
use a navigation mesh (NavMesh), which is a graph
representation of the map, with nodes and edges
indicating traversable areas. Unfortunately, com-
plex navigation abilities that extend the character’s
capacity for movement, e.g., grappling hooks, jet-
packs, teleportation, or double-jumps, increase the
complexity of the NavMesh, making it intractable
in many practical scenarios. Game designers are
thus constrained to only add abilities that can be
handled by a NavMesh. As an alternative to the
NavMesh, we propose to use Deep Reinforcement
Learning (Deep RL) to learn how to navigate 3D
maps in video games using any navigation abil-
ity. We test our approach on complex 3D environ-
ments that are notably an order of magnitude larger
than maps typically used in the Deep RL literature.
One of these environments is from a recently re-
leased AAA video game called Hyper Scape1. We
find that our approach performs surprisingly well,
achieving at least 90% success rate in a variety of
scenarios using complex navigation abilities.

1 Introduction
Realistic navigation for non-player characters (NPCs) is an
important component in most video games to enhance the
players’ experience. The traditional pipeline for NPC navi-
gation is as follows:

1. A graph representation of the world is pre-generated
from the game geometry.

∗Equal contributions, alphabetical order.
1Hyper Scape was used for experimentation purposes only.

Our agent was not shipped in the game. Video in Hyper Scape:
youtu.be/DKdQFajLfzk

2. At runtime, a pathfinding algorithm like A* [Hart et al.,
1968] is applied on this graph to find the shortest path
between any pair of locations in the game.

3. A controller tailored to the character is used to follow
this path.

The navigation mesh (NavMesh) [Snook, 2000] is the most
used representation of the world geometry [McAnlis, 2008].
This graph, whose nodes represent the traversable surfaces of
the 3D environment as convex polygons, is a compact rep-
resentation of the world, independent of character abilities.
Adding character constraints or abilities is traditionally done
through other means, such as tweaking the pathfinding algo-
rithm or extending the NavMesh with additional links (more
details can be found in Section 2.1). However, these ap-
proaches impose limitations on the kind of abilities that NPCs
can use to navigate, which detract from its realism.

In this paper, we set out to replace classical graph-based
navigation with a system that can learn how to navigate be-
tween any two points on a map using all of the navigation
options available to the character. Replacing the NavMesh
with a learning system in modern AAA video games is chal-
lenging for several reasons. First, as the game worlds are
increasingly more realistic, they have become both larger and
more complex. Second, the maps can be dynamic, as objects
and other characters can move in the world. Finally, to re-
place the existing NavMesh, solutions need to run on a tight
budget at runtime and ideally be relatively cheap to train.

To tackle these issues, we opt for a model-free Reinforce-
ment Learning (RL) approach [Sutton and Barto, 2018] to
the navigation problem, where an agent learns a policy that
maximizes a reward signal through interacting with an envi-
ronment. Specifically, we train an agent with Deep RL to
navigate to locations in the game world using Soft Actor-
Critic (SAC) [Haarnoja et al., 2018a] as our learning algo-
rithm. We also build off of recent work that augments the
agent’s state with memory to effectively solve navigation
tasks in complex 3D environments [Mirowski et al., 2016;
Kapturowski et al., 2018; Wijmans et al., 2019].

We begin by providing the relevant background and related
work on navigation in Section 2, followed by a detailed de-
scription of our system in Section 3. Then, in Section 4, we
demonstrate the performance of our Deep RL system and ex-
amine several ablations on two maps created using the Unity

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2133

https://youtu.be/DKdQFajLfzk

Figure 1: The NavMesh is automatically generated from the map
geometry. Each blue convex polygon is a node of the NavMesh and
represents a traversable region of the map. NavMesh edges associate
adjacent polygons. Here, the NavMesh is not a connected graph
since building floors and rooftops are not connected to anything.

game engine [Juliani et al., 2018]. We also train our agent on
several map sizes in the engine of a recently released AAA
video game to validate its potential as an alternative to the
NavMesh. Notably, in contrast to previous RL-based ap-
proaches to navigation, we successfully train using contin-
uous actions on 3D maps an order of magnitude bigger than
simulators used in the research community [Wydmuch et al.,
2018; Manolis Savva et al., 2019].

2 Background and Related Work
2.1 Navigation in AAA Games
Waypoint Graph. Prior to the NavMesh, the most popu-
lar approach to game navigation was to use a waypoint graph
[Lidén and others, 2002], which consists of a set of points
of interest connected to each other. Unfortunately, this ap-
proach has several main drawbacks: its manual construction
can be cumbersome and prone to human errors, it cannot han-
dle dynamic objects, it is expensive to build since it needs to
check all n(n− 1) combinations of paths, and the paths tend
to not look realistic since all agents follow the same set of
constrained paths [Tozour and Austin, 2002].
NavMesh. The NavMesh solves most of the aforemen-
tioned problems with waypoint graphs and is thus currently
the main navigation tool used in video games [McAnlis,
2008]. Specifically, the NavMesh divides the game map into
a set of convex regions, which can each be trivially navi-
gated within. It can be generated from either the raw ge-
ometry of the world using voxel-based approaches, or using
pre-processed inputs like planar layers [Van Toll et al., 2016;
Oliva and Pelechano, 2011]. It is thus a compact representa-
tion of the world’s traversable terrains, independent of any
character ability. Once the polygons have been placed, a
graph is created by using the polygons as nodes and by con-
necting adjacent polygons with edges. With the built graph,
search algorithms such as A* and Dijkstra’s algorithm can be
leveraged to find the shortest path between two nodes. Then,
the path is smoothed to look more realistic [Brand, 2009].
Using Navigation Abilities With a NavMesh. As alluded
to in the introduction, it is increasingly common in modern
games to offer additional navigation options to the players

Figure 2: NavMesh links (either single or wide) are added to en-
able navigation between disconnected components of the graph. We
added the minimum number of links such that the agent can reach
any point on the map, e.g., a link that connects the rooftop to its top
floor is added since the rooftops are accessible via double jumps.

that enable the full use of the 3D space. For example, by
using grappling hooks, jump-pads, jetpacks, teleportation, or
other navigation abilities, a player can very quickly navigate
a map. These abilities add versatility to the players’ gameplay
but come at the cost of an increase in the number of feasible
paths, making the NavMesh increasingly expensive to search
through and labor intensive to create [Van Waveren, 2001;
Van Toll et al., 2011]. Specifically, in order to allow NPCs
to use navigation abilities, the prevalent solution is to add an
edge, called link, connecting the nodes at both ends of the use
of the ability. An animation is then played on the character as
it goes through the link to give the illusion of using the ability.

A visual illustration of the NavMesh-based approach can
be found in Figures 1 and 2. We used Unity [Juliani et al.,
2018] to build a minimal map, called Toy Map. We then used
Unity’s built-in generation tool to create a NavMesh from the
map geometry (Figure 1). We added a small set of complex
navigation abilities (jumps, jump pads, and double jumps),
and added links so that the NavMesh can take these actions
into account (see Figure 2).

The search for all possible links that could be added to the
graph can sometimes be done automatically. In the case of a
jump, for example, possible jump trajectories are simulated
and links are added between nodes that can be reached [Ax-
elrod, 2008; Roumimper, 2017; Budde, 2013]. However, as
this automatic search relies on connecting all the nodes that
can be at the start and end of a movement trajectory, only the
simplest trajectories can be used so that the search is tractable
and the number of edges added is reasonable.

In practice, having navigation abilities makes the number
of links and the graph connectivity increase dramatically and
results in extremely long computation time [Axelrod, 2008]
with many redundant links [Budde, 2013]. In such cases,
adding a limited number of links manually is the favored op-
tion. However, not adding enough links can result in unrealis-
tic behaviour, e.g., many NPCs aggregating in navigation bot-
tlenecks around the map to use the specifically hand-designed
way-points. As adding more links improves the realism of
AI behaviors but increases the labor and runtime costs of the
NavMesh, a compromise has to be made.

Another fundamental issue with links is that they do not

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2134

correspond to a topological reality. For example, if a link to
allow NPCs to climb a ladder is added, it is hard to interrupt
the character once it starts climbing. Once on the link, the
character is no longer moving in a traversable area, as the link
does not correspond to a topological reality. Interrupting the
character, e.g., by making it fall off the ladder, would require
additional work to make it remain on the NavMesh.

Thus, existing solutions to support navigation abilities are
far from perfect. Supporting navigation abilities comes at ex-
pensive labor and runtime costs, and fundamental flaws limit
the realism of the obtained behaviors. In the case of our toy
map, we manually placed a small number of additional links2

to bridge disconnected parts that should be accessible by us-
ing the jump, the double jump or the jump pads (Figure 2).
While we are definitely not experts, adding links on such a
small map still took us a few hours. Even if imperfect, this
minimal example helps to illustrate the main limitations of
the NavMesh and motivates our use of Deep RL.

2.2 Navigation in Robotics and RL
SLAM. The classical approach to navigation in robotics
is called simultaneous localization and mapping (SLAM)
[Leonard and Durrant-Whyte, 1991], which builds a high-
level map (usually a top-down view) of the world from expe-
rience and locates the agent within this map. The high-level
map is generated using data from sensors, such as LIDARs or
RGB cameras. Once the map has been built, classical path-
finding algorithms can be used to plan and extract the shortest
paths between any two points. Recently, several works have
extended the SLAM framework to learn the high-level map-
ping using differentiable neural networks [Zhang et al., 2017;
Beeching et al., 2020] with some approaches even having
success in video games [Bhatti et al., 2016]. Similar to
the NavMesh, SLAM-based approaches struggle to integrate
navigation abilities in the mapping. Moreover, in the case of
video games, we already have exact localization and mapping
and thus do not need to use an estimate.

Model-Based RL. Alternatively, in model-based RL, a
model of the transition dynamics, i.e., a mapping from the
current state and action of the agent to its next state, can be
used for planning [Sutton, 1991]. The model of the transition
dynamics can either be estimated from interacting with the
environment [Kaiser et al., 2019], or in some cases be given
to the agent beforehand [Silver et al., 2016]. In the case of
video games, a model of the world can be used if we can ma-
nipulate the underlying game engine, in the sense that actions
can be undone and different actions can be tried.

Like SLAM and NavMesh-based approaches, model-based
RL approaches could theoretically handle complex naviga-
tion actions and potentially be used to plan shortest paths.
However, there are two notable drawbacks to using model-
based approaches for planning. Firstly, like SLAM and
NavMesh-based approaches, they are expensive to run at in-
ference/mapping time as they need to compute many forward
passes of the model to determine the best path using the com-
plex navigation abilities. Secondly, when the model is esti-
mated from data, they tend to suffer from compounding error

2The exact number of additional links is 54.

due to model imperfections, which makes planning challeng-
ing [Feinberg et al., 2018].

Model-Free RL. Model-free RL does not use a model to
plan but learns which actions to take in the environment
through pure trial and error [Sutton and Barto, 2018]. Previ-
ous works have used model-free RL for navigation [Mirowski
et al., 2016; Wijmans et al., 2019] but have been mostly
limited to relatively small 2D environments with simple ac-
tion spaces. Recent works have circumvented the lack of
planning in model-free RL by using a hierarchical archi-
tecture, where intermediate goals are given to a controller
by a high level planner [Eysenbach et al., 2019]. As nav-
igation in a visually complex environment is usually mod-
eled as a partially observable markov decision process, the
importance of using memory has been previously acknowl-
edged [Mirowski et al., 2016]. While unstructured mem-
ory such as LSTMs [Hochreiter and Schmidhuber, 1997] can
be used, architectures involving spatially structured memory
have also been explored [Parisotto and Salakhutdinov, 2017;
Beeching et al., 2020]. The use of auxiliary tasks to acceler-
ate the learning of challenging goal-based RL problems has
also been studied [Mirowski et al., 2016; Andrychowicz et
al., 2017].

3 Approach
The following section describes our approach to solve point-
to-point navigation on a fixed 3D map using navigation abili-
ties available to the agent.

States. The state is composed of local perception in the
form of a 3D occupancy map and a 2D depth map, as well
as scalar information about physical attributes of the agent
and its goal (velocity, relative goal position, absolute goal po-
sition, and previous action). The 3D occupancy map, referred
to as BoxCasts, can be generated and cached offline. This
makes it efficient to compute at runtime which is critical when
running inside a video game engine. 2D depth maps have
been used in several recent works [Manolis Savva et al., 2019;
Wijmans et al., 2019]. They can be extracted from a render-
ing camera, or in our case by casting RayCasts. The abso-
lute positions of the agent and its goal pass through their own
network to extract an absolute position embedding similar to
[Wijmans et al., 2019].

Actions. The actions are continuous values ∈ [−1, 1], and
correspond to jump, forward, strafe, rotate. The jump is
treated as a continuous action on the algorithmic side and bi-
narized in the environment, i.e., jump if > 0.

Rewards. To avoid complications associated with long
term credit assignment when using a sparse reward, we den-
sify the reward signal to be:

max

(
min

i∈[|0,t−1|]
(Di(agent, goal))−Dt(agent, goal), 0

)
− α+ 1Dt(agent,goal)≤ε, (1)

where Dt is the Euclidean distance between the positions of
its arguments at time t, α is a penalty given at each step and
ε is the distance below which the agent is considered to have

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2135

Figure 3: Architecture of our system. The 3D occupancy map, 2D depth map, and absolute goal and agent positions, pass through independent
feature extraction layers (3D convolutions, 2D convolutions, and linear layers respectively). The output of each feature extractor is then
combined with other state variables, such as relative goal position, speed, acceleration, and previous action. The combined output is fed
through several linear layers, followed by an LSTM, and shared by both the policy and critic heads (trained using the critic loss).

reached its goal. We note that the first term rewards the agent
for getting closer to its goal than it has ever been so far in
this episode. While this reward is non-markovian, since it
depends on all previous states visited in the episode, we use
an LSTM [Hochreiter and Schmidhuber, 1997] to capture a
compressed history of the trajectory.

Training Procedure. As running a game engine is costly,
we use Soft Actor-Critic (SAC) [Haarnoja et al., 2018a], a
sample efficient off-policy RL algorithm. As described in
[Haarnoja et al., 2018b], we modify SAC so that the entropy
coefficient is learned and there is no state value network. The
critic and policy networks share layers that are tasked with ex-
tracting an embedding from local perception as well as previ-
ous steps by using Convolutional Neural Networks [LeCun et
al., 1989] and an LSTM [Hochreiter and Schmidhuber, 1997].
Furthermore, we use a burn-in to initialize the hidden states
when sampling from the replay buffer [Kapturowski et al.,
2018; Paine et al., 2019].

During training, we spawn the agent and its goal in a cylin-
der with a variable radius. An episode is considered over
when the agent has reached its goal or when the number of
steps is over a certain budget. To allow the agent to have
informative trajectories at all stages during training, we use
a training curriculum [Bengio et al., 2009] and increase the
radius of the spawning cylinder until the full map is covered.
Specifically, when the agent achieves a success rate of> 80%
over the last 200 episodes we increase the spawning radius of
the goal. All the networks are trained using the Adam opti-
mizer [Kingma and Ba, 2014]. More details on our hyper-
parameters can be found in the supplementary material, and
Figure 3 describes our architecture.

4 Experiments
To highlight the capabilities of our Deep RL system, we train
an agent as described in Section 3 on both a Toy Map (see
supplemental) and a Big Map (see Figure 4), which we built
using the Unity game engine [Juliani et al., 2018]. Both of
these environments have many jump pads scattered across the
map and allow for the agent to perform double jumps. In or-
der to determine the factors that lead to its success, we run
state-based and algorithmic ablations. For the state-based ab-
lation, we evaluate our agent without BoxCasts, without Ray-
Casts, without BoxCasts and RayCasts, and without absolute
positions. For the algorithmic ablation, we test removing the
training curriculum, the LSTM, and using Hindsight Experi-
ence Replay (HER) [Andrychowicz et al., 2017].
Ablation Results. The results for both ablation studies can
be found in Figure 5 and in the supplemental. Concerning
the state ablation, we find that, on both the Toy Map and the
Big Map, the Base agent is significantly faster (in terms of
samples) at reaching the target success rate on the final cur-
riculum level than without BoxCasts, without RayCasts, and
without BoxCasts and RayCasts (see supplemental for more
details). Furthermore, we find that removing the absolute po-
sition from the agent’s state does not negatively impact per-
formance. In fact, the agent performs slightly better on aver-
age (over 5 seeds) which we find to be statistically significant
(p < 0.05) on the Big Map but not on the Toy Map.

Moreover, we find that by removing both BoxCasts and
RayCasts, the agent fails to reach the final curriculum level in
the training period (see Figure 5) on both the Toy Map and the
Big Map. As this agent is training without local perception, it
is perhaps unsurprising that it is less sample efficient. How-

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2136

Figure 4: Overview of the Big Map in Unity. The map is 300m ×
300m× 100m, with many buildings and jump pads.

ever, we do note that since the performance of the agent is
still increasing (albeit slowly, see supplemental), given more
training samples it may attain the target success rate (100%
on the Toy Map and 90% on the Big Map) on the final cur-
riculum level. To verify this, we ran that configuration for
100M steps on the Big Map and confirmed that it could not
reach the target success rate of 90% (see supplemental), but
plateaus at ∼ 80% success rate on the final curriculum level.

In terms of the algorithmic ablation, none of the algorith-
mic changes make a significant difference on the Toy Map
(see supplemental). On the other hand, on the Big Map we
find that removing the LSTM significantly hurts sample effi-
ciency. We hypothesize that the discrepancy between the Toy
Map and Big Map with regards to the LSTM can be explained
by the simplicity of the Toy map, with the local perception be-
ing sufficient to accurately represent the space. We also find
that removing the training curriculum improves performance
significantly on the Big Map, whereas it does not have a sig-
nificant impact on the Toy Map. Upon further inspection, we
found that we increased the curriculum radius by 5 meters
at every iteration on the Big Map and by 10 meters on the
Toy Map. A hyperparameter search would need to be done
in order to find the optimal setting. However, we note that
the strong performance without a curriculum on the Big Map
indicates that the dense reward signal that we use is sufficient
for the agent to learn efficiently without the need for a cur-
riculum. Finally, we find that performance does not increase
significantly with the use of HER on the Toy Map but it does
(insignificantly) on the Big Map. Since HER has been shown
to be effective in sparse reward regimes, the minimal gains
could be attributed to the dense reward signal.

Deep RL vs. NavMesh. To provide a comparison to the
NavMesh, we made a video3 that shows how the two sys-
tems behave on the Toy Map. We note that without additional
links (which are manually intensive to create), the NavMesh
based solution would not be able to navigate to the rooftops.
Thus, whereas our Deep RL approach achieves a 100% suc-
cess rate on this map, the NavMesh based approach without
additional links would have a significantly lower success rate.
As explained in Section 2.1, such a comparison is imperfect
as the NavMesh-based navigation could be made better by
spending more time adding links and animating characters on
link traversals. Nevertheless, we believe that this visual com-

3Video comparison with a NavMesh: youtu.be/WFIf9Wwlq8M

parison provides interesting insights to understand how our
approach relates to classical solutions for navigation.

Results in Hyper Scape. To validate that our system can
scale beyond toy maps to the needs of AAA video game pro-
ductions, we integrated our solution in the engine of a re-
cently released game called Hyper Scape. A video of our
results in the game is available4, in which we can see the
agent navigate around the map by moving sticks on a vir-
tual controller. Apparent in the video is that the agent jumps
frequently as it navigates. Upon further inspection we dis-
covered that jumping is slightly faster than walking. We
found that this can be alleviated by adding a sprinting ac-
tion (common in games). Nevertheless, the agent is able
to navigate successfully on complex maps with a size of
400m× 400m× 90m, reaching a 90% success rate. We also
trained the agent on the full map (1000m × 1000m × 90m)
on which it reached 74% success rate. Success rates and per-
formance benchmarks are provided in the supplemental.

5 Discussion
The results of our ablation study indicate that local perception
(through both RayCasts and BoxCasts) drastically improves
the sample efficiency of the Deep RL system. We also found
that the LSTM was crucial for optimal sample efficiency on
large maps. To further improve sample efficiency, auxiliary
tasks [Jaderberg et al., 2016] could be used to train the repre-
sentation layers more efficiently.

All of the experiments conducted in this paper were con-
cerned with the sample efficiency of the Deep RL agent on
a single map. We emphasize that sample efficiency is indeed
important when faced with a slow simulator, which is the case
with AAA games. This can be alleviated by implementing
the game engine into a binary that can be run much faster
than real-time, however, this may not be feasible due to engi-
neering complications. Sample efficient solutions, however,
often come at the cost of increased inference time. Our re-
sults in the AAA game suggest that Reinforcement Learning
is a viable alternative to NavMesh-based navigation.

Finally, while not addressed in this paper, generalization is
an interesting direction of future work. Typically the agent is
tasked with navigation within a game with dynamic compo-
nents, e.g., players or objects. As for the NavMesh, it is usu-
ally prebuilt to optimize for runtime efficiency and thus can-
not easily handle dynamic components [McAnlis, 2008]. In-
stead, NavMeshes are either updated dynamically at runtime
[Marden, 2008] or navigate around non-static objects by us-
ing heuristics [Brand, 2009]. Thus, a generalizable Deep RL
agent may be key to adapt to dynamic components that may
not have appeared during training. Generalization could also
enable the reusability of the trained system on novel maps.
This can have drastic cost saving impacts when the number
of maps becomes large, e.g. when procedurally generated,
where retraining the agent is not feasible.

In this paper, we showed that Deep RL can be an alternative
to the NavMesh for navigation in complicated 3D maps, such
as the ones found in AAA video games. In comparison with

4Hyper Scape video: youtu.be/DKdQFajLfzk

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2137

https://youtu.be/WFIf9Wwlq8M
https://youtu.be/DKdQFajLfzk

Figure 5: Results from the state ablation and algorithmic ablation on the Toy Map (left and center left) and the Big Map (center right and
right). Each curve represents the mean over 5 seeds with 95% confidence intervals in the shaded regions.

previous works exploring Deep RL for navigation, our Big
Map and AAA Game map are an order of magnitude bigger
[Manolis Savva et al., 2019; Wydmuch et al., 2018]. Unlike
the NavMesh, the Deep RL system is able to handle navi-
gation actions without manually specifying individual links.
We believe that our work can be used as a stepping stone for
future Deep RL applications inside modern video games.

Acknowledgments
We would like to thank Julien L’Heureux, Claudine Combe,
Nicolas Landron, Bérenger Bailly, Mike Yurick, Philippe
Marcotte and Adrien Logut for many engineering contribu-
tions and thorough feedback during the development of this
project. We also wish to thank Pierre Falticska, Olivier Po-
marez, Paul Barde and Julien Roy for insightful discussions
and their feedback on an earlier draft of this paper. Finally, we
thank Olivier Delalleau, Batu Aytemiz and Sahand Rezaei-
Shoshtari for contributions to an early iteration of this project.

References
[Andrychowicz et al., 2017] Marcin Andrychowicz, Filip

Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Pe-
ter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter
Abbeel, and Wojciech Zaremba. Hindsight experience re-
play. In Advances in neural information processing sys-
tems, 2017.

[Axelrod, 2008] Ramon Axelrod. Navigating graph genera-
tion in highly dynamic worlds, volume 4 of AI Game Pro-
gramming Wisdom, chapter 2.6, pages 125–141. Charles
River Media, 2008.

[Beeching et al., 2020] Edward Beeching, Christian Wolf,
Jilles Dibangoye, and Olivier Simonin. Egomap: Projec-
tive mapping and structured egocentric memory for deep
RL. arXiv preprint arXiv:2002.02286, 2020.

[Bengio et al., 2009] Yoshua Bengio, Jérôme Louradour,
Ronan Collobert, and Jason Weston. Curriculum learn-
ing. In Proceedings of the 26th annual international con-
ference on machine learning, pages 41–48, 2009.

[Bhatti et al., 2016] Shehroze Bhatti, Alban Desmaison, On-
drej Miksik, Nantas Nardelli, N. Siddharth, and Philip HS
Torr. Playing Doom with slam-augmented deep reinforce-
ment learning. arXiv preprint arXiv:1612.00380, 2016.

[Brand, 2009] S Brand. Efficient obstacle avoidance using
autonomously generated navigation meshes. Master’s the-
sis, Delft University of Technology, 2009.

[Budde, 2013] Sara Budde. Automatic generation of jump
links in arbitrary 3d environments. Master’s thesis, Hum-
boldt University of Berlin, 2013.

[Eysenbach et al., 2019] Ben Eysenbach, Russ R. Salakhut-
dinov, and Sergey Levine. Search on the replay buffer:
Bridging planning and reinforcement learning. In Ad-
vances in Neural Information Processing Systems, 2019.

[Feinberg et al., 2018] Vladimir Feinberg, Alvin Wan, Ion
Stoica, Michael I. Jordan, Joseph E. Gonzalez, and
Sergey Levine. Model-based value estimation for effi-
cient model-free reinforcement learning. arXiv preprint
arXiv:1803.00101, 2018.

[Haarnoja et al., 2018a] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning
with a stochastic actor. arXiv preprint arXiv:1801.01290,
2018.

[Haarnoja et al., 2018b] Tuomas Haarnoja, Aurick Zhou,
Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter
Abbeel, et al. Soft actor-critic algorithms and applications.
arXiv preprint arXiv:1812.05905, 2018.

[Hart et al., 1968] Peter E. Hart, Nils J. Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination
of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, SSC-4(2):100–107, 1968.

[Hochreiter and Schmidhuber, 1997] Sepp Hochreiter and
Jürgen Schmidhuber. Long short-term memory. Neural
computation, 9(8):1735–1780, 1997.

[Jaderberg et al., 2016] Max Jaderberg, Volodymyr Mnih,
Wojciech Marian Czarnecki, Tom Schaul, Joel Z. Leibo,
David Silver, and Koray Kavukcuoglu. Reinforcement
learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397, 2016.

[Juliani et al., 2018] Arthur Juliani, Vincent-Pierre Berges,
Esh Vckay, Yuan Gao, Hunter Henry, Marwan Mattar, and
Danny Lange. Unity: A general platform for intelligent
agents. arXiv preprint arXiv:1809.02627, 2018.

[Kaiser et al., 2019] Lukasz Kaiser, Mohammad
Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2138

Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea
Finn, Piotr Kozakowski, Sergey Levine, Ryan Sepassi,
George Tucker, and Henryk Michalewski. Model-
based reinforcement learning for Atari. arXiv preprint
arXiv:1903.00374, 2019.

[Kapturowski et al., 2018] Steven Kapturowski, Georg Os-
trovski, John Quan, Remi Munos, and Will Dabney.
Recurrent experience replay in distributed reinforcement
learning. In International conference on learning repre-
sentations, 2018.

[Kingma and Ba, 2014] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

[LeCun et al., 1989] Yann LeCun, Bernhard Boser, John S.
Denker, Donnie Henderson, Richard E. Howard, Wayne
Hubbard, and Lawrence D. Jackel. Backpropagation ap-
plied to handwritten zip code recognition. Neural compu-
tation, 1(4):541–551, 1989.

[Leonard and Durrant-Whyte, 1991] John J Leonard and
Hugh F Durrant-Whyte. Simultaneous map building and
localization for an autonomous mobile robot. In IROS,
volume 3, pages 1442–1447, 1991.

[Lidén and others, 2002] Lars Lidén et al. Strategic and tac-
tical reasoning with waypoints. In AI Game Programming
Wisdom, Charles River Media. Citeseer, 2002.

[Manolis Savva et al., 2019] Manolis Savva, Abhishek Ka-
dian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans,
Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Ji-
tendra Malik, Devi Parikh, and Dhruv Batra. Habitat: A
Platform for Embodied AI Research. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), 2019.

[Marden, 2008] Paul Marden. Dynamically updating a Nav-
igation Mesh via Efficient Polygon Subdivision, volume 4
of AI Game Programming Wisdom, chapter 2.3, pages 83–
94. Charles River Media, 2008.

[McAnlis, 2008] Colt McAnlis. Intrinsic Detail in Naviga-
tion Mesh Generation, volume 4 of AI Game Program-
ming Wisdom, chapter 2.4, pages 95–112. Charles River
Media, 2008.

[Mirowski et al., 2016] Piotr Mirowski, Razvan Pascanu,
Fabio Viola, Hubert Soyer, Andrew J. Ballard, Andrea
Banino, Misha Denil, Ross Goroshin, Laurent Sifre, Ko-
ray Kavukcuoglu, Dharshan Kumaran, and Raia Hadsell.
Learning to navigate in complex environments. arXiv
preprint arXiv:1611.03673, 2016.

[Oliva and Pelechano, 2011] Ramon Oliva and Nuria
Pelechano. Automatic generation of suboptimal
navmeshes. In International Conference on Motion
in Games, pages 328–339. Springer, 2011.

[Paine et al., 2019] Tom Le Paine, Caglar Gulcehre, Bobak
Shahriari, Misha Denil, Matt Hoffman, Hubert Soyer,
Richard Tanburn, Steven Kapturowski, Neil Rabinowitz,
Duncan Williams, et al. Making efficient use of demon-
strations to solve hard exploration problems. arXiv
preprint arXiv:1909.01387, 2019.

[Parisotto and Salakhutdinov, 2017] Emilio Parisotto and
Ruslan Salakhutdinov. Neural map: Structured mem-
ory for deep reinforcement learning. arXiv preprint
arXiv:1702.08360, 2017.

[Roumimper, 2017] Nick Roumimper. Mesh navigation
through jumping. Master’s thesis, Utrecht University,
2017.

[Silver et al., 2016] David Silver, Aja Huang, Christopher J.
Maddison, Arthur Guez, Laurent Sifre, George van den
Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda
Panneershelvam, Marc Lanctot, Sander Dieleman, Do-
minik Grewe, John Nham, Nal Kalchbrenner, Ilya
Sutskever, Timothy Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mas-
tering the game of go with deep neural networks and tree
search. nature, 529(7587):484–489, 2016.

[Snook, 2000] Greg Snook. Simplified 3D movement and
pathfinding using navigation meshes. In Game Program-
ming Gems, pages 288–304. Charles River Media, 2000.

[Sutton and Barto, 2018] Richard S. Sutton and Andrew G.
Barto. Introduction to reinforcement learning. MIT press
Cambridge, second edition, 2018.

[Sutton, 1991] Richard S. Sutton. Dyna, an integrated archi-
tecture for learning, planning, and reacting. ACM Sigart
Bulletin, 2(4):160–163, 1991.

[Tozour and Austin, 2002] Paul Tozour and IS Austin.
Building a near-optimal navigation mesh. AI game pro-
gramming wisdom, 1:298–304, 2002.

[Van Toll et al., 2011] Wouter Van Toll, Atlas F. Cook, and
Roland Geraerts. Navigation meshes for realistic multi-
layered environments. In 2011 International Conference
on Intelligent Robots and Systems, 2011.

[Van Toll et al., 2016] Wouter Van Toll, Roy Triesscheijn,
Marcelo Kallmann, Ramon Oliva, Nuria Pelechano, Julien
Pettré, and Roland Geraerts. A comparative study of nav-
igation meshes. In Proceedings of the 9th International
Conference on Motion in Games, pages 91–100, 2016.

[Van Waveren, 2001] JMP Van Waveren. The Quake III
arena bot. Master’s thesis, University of Technology Delft,
2001.

[Wijmans et al., 2019] Erik Wijmans, Abhishek Kadian, Ari
Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Mano-
lis Savva, and Dhruv Batra. Dd-ppo: Learning near-
perfect pointgoal navigators from 2.5 billion frames. arXiv
preprint arXiv:1911.00357, 2019.

[Wydmuch et al., 2018] Marek Wydmuch, Michał Kempka,
and Wojciech Jaśkowski. ViZDoom competitions: Play-
ing Doom from pixels. arXiv preprint arXiv:1809.03470,
2018.

[Zhang et al., 2017] Jingwei Zhang, Lei Tai, Joschka
Boedecker, Wolfram Burgard, and Ming Liu. Neural
Slam: Learning to explore with external memory. arXiv
preprint arXiv:1706.09520, 2017.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2139

	Introduction
	Background and Related Work
	Navigation in AAA Games
	Navigation in Robotics and RL

	Approach
	Experiments
	Discussion

