Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Efficient Neural Network Verification via Layer-based Semidefinite Relaxations
and Linear Cuts

Ben Batten, Panagiotis Kouvaros, Alessio Lomuscio, Yang Zheng
Department of Computing, Imperial College London, UK

{b.batten20, p.kouvaros, a.lomuscio, y.zheng } @imperial.ac.uk

Abstract

We introduce an efficient and tight layer-based
semidefinite relaxation for verifying local robust-
ness of neural networks. The improved tightness
is the result of the combination between semidefi-
nite relaxations and linear cuts. We obtain a com-
putationally efficient method by decomposing the
semidefinite formulation into layerwise constraints.
By leveraging on chordal graph decompositions,
we show that the formulation here presented is
provably tighter than current approaches. Experi-
ments on a set of benchmark networks show that
the approach here proposed enables the verifica-
tion of more instances compared to other relaxation
methods. The results also demonstrate that the SDP
relaxation here proposed is one order of magnitude
faster than previous SDP methods.

1 Introduction

Neural networks (NNs) are known to be fragile and suscep-
tible to adversarial attacks [Goodfellow et al., 2014]. In Al-
based, safety-critical applications, it is important to formally
verify that a network is correct with respect to noteworthy
specifications, e.g., local adversarial robustness, before they
are deployed. Current methods for NN verification can be
categorized into complete and incomplete approaches. Aside
from computational considerations, complete approaches are
guaranteed to resolve any verification query. Incomplete ap-
proaches are normally based on various forms of convex ap-
proximations of the network, and only guarantee that when-
ever they output that the network is safe, then that is indeed
the case. While this typically enables faster computation,
the looser this approximation is, the more likely it is that the
method may not be able to verify the problem instance. As a
result, the present objective in incomplete methods is the de-
velopment of tighter approximations, which can be efficiently
computed, thereby strengthening the efficacy of the methods
in answering the verification problem [Salman et al., 2019].
In this paper, we advance the state of the art towards this ob-
jective by developing a novel relaxation based on semidefi-
nite programs (SDPs). Our SDP relaxation is provably tighter
than related SDP approaches, whilst also being more effi-
cient.
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Related Work. Complete methods are either based on
mixed-integer linear programming (MILP) [Bastani et al.,
2016; Lomuscio and Maganti, 2017; Tjeng et al., 2019;
Anderson et al., 2020; Botoeva et al., 2020], satisfiability
modulo theories [Katz er al., 2017; 2019; Ehlers, 20171,
or bound propagation techniques coupled with input refine-
ment [Wang et al., 2018; Henriksen and Lomuscio, 2020].
While these methods offer theoretical termination guarantees,
at present they do not scale to the network sizes that incom-
plete approaches are able to address.

Incomplete methods are typically based on bound prop-
agation [Singh er al., 2018; 2019b; Weng er al., 2018;
Tjandraatmadja et al., 20201, duality [Dvijotham et al., 2018;
Dathathri et al., 2020; Wong and Kolter, 2018] and SDP re-
laxations [Raghunathan et al., 2018; Fazlyab er al., 2020]. A
common theme in this research is the linear program (LP) re-
laxation for the univariate ReL.U function. A foundational re-
laxation is the triangle relaxation from [Ehlers, 2017] which
gives the tightest possible convex relaxation of the univari-
ate ReLU function and forms the basis of many of the cited
methods; see [Salman et al., 2019; Li et al., 2020] for de-
tailed comparisons. It was recently shown that the efficacy
of these methods is intrinsically limited by the same convex
relaxation barrier which is characterised by the tightness of
the triangular relaxation [Salman et al., 2019].

Two recent methods to bypass this barrier are the
kPoly [Singh et al., 2019a] and the OptC2V [Tjandraatmadja
et al., 2020]; both of these offer tighter LP relaxations by
considering interactions of multiple neurons and multivariate
inputs. Another way to bypass the barrier is to seek alterna-
tive stronger relaxations beyond LPs, such as SDPs [Raghu-
nathan er al., 2018; Fazlyab er al., 2020]. It has been em-
pirically observed that the SDP relaxation in [Raghunathan
et al., 2018] is much tighter than LP relaxations. However,
SDPs are computationally harder solve. To overcome this, a
recent work [Dathathri et al., 2020] develops a customized
subgradient algorithm to solve a dual SDP relaxation to the
one introduced in [Raghunathan et al., 2018].

Contributions. We develop a novel, efficient, layer-based
SDP relaxation for NN verification. Unlike [Dathathri et
al., 2020] that centres around first-order algorithm develop-
ments, we here focus on tightening the SDP relaxations, and
on exploiting the cascading structure of NNs for improved
efficiency. Specifically, we first extend the SDP formulation
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in [Raghunathan er al., 2018] with linear cuts from the tri-
angle relaxation [Ehlers, 2017]. This leads to a new SDP
relaxation that is provably tighter than both [Raghunathan er
al., 2018; Dathathri et al., 2020] and the triangle relaxation
from [Ehlers, 2017] (Proposition 1). We further show that
said linear cuts enable the exploitation of the activation pat-
tern of NNs to simplify our SDP formulation (Proposition 2).
By exploiting the cascading structure of NNs, we develop an
equivalent layer decomposition to the SDP approach which
enjoys a significant computational speed-up (Proposition 3).
This layer decomposition strategy is motivated by the ad-
vances in sparse SDPs [Vandenberghe and Andersen, 2015].

We evaluated our approach on benchmarks from [Raghu-
nathan et al., 2018; Singh et al., 2019a; Dathathri et al., 2020;
Tjandraatmadja et al., 2020]. The experiments reported that
the layer-based SDP proposed here offers better accuracy,
while being an order of magnitude faster than [Raghunathan
et al., 2018]. Also, the method could verify more images than
the state-of-the-art LP-based methods such as kPoly [Singh
et al., 2019a] and OptC2V [Tjandraatmadja et al., 2020] for
some networks, while the computational cost of the verifica-
tion step remained in the same order of magnitude.

The rest of the paper is organised as follows: we introduce
the neural network verification problem and two commonly
used relaxations in Section 2. In Section 3, we present new
SDP relaxations via linear cuts and layer-based decomposi-
tion. Section 4 reports a comprehensive evaluation of the
method on various NNs that are commonly used in the lit-
erature. We derive some conclusions in Section 5.

2 Preliminaries

We here outline the notation, present the verification problem,
and introduce two widely used convex relaxations.

Feed-forward ReLLU neural networks (NNs). We con-
sider an L-layer feed-forward NN f(zg) : R? — R™. We
use z; € R™ and z; € R™ to denote the pre-activation and
activation vectors of the ¢-th layer, and define the NN out-
put as f(xo) := Wrxyp + bp, with ;417 = ReLU(&;41)
and 2,41 = Wyx; +b;, 1 = 0,...,L — 1, where W, €
R™i+1%nmi h € R™+1 are the weights and biases, respec-
tively, ngp = d,ny4+1 = m are input and output dimensions,
and the ReLU function is defined as ReLU(z) = max(z,0)
for z € R (the ReLLU function is applied element-wise). We
focus on classification networks whereby an input x is as-
signed to the class associated with the network output of the
highest value: i* = argmax;_; _,, f(20):-

Verification problem. Given a NN f:R%—R™, a nominal
input z € RY, a linear function ¢, also called the specifica-
tion, on the network’s outputs, and a perturbation radius e € R,
the verification problem we study is to determine whether

¢(y) >0, lzo = Zlloo <&, (D)

where || || denotes the standard ., norm of a vector. In par-
ticular, we hereafter focus on the local adversarial robustness
problem whereby the specification is ¢(y) = y(i*) — y(4) for
a target label 7. A network is said to be certifiably robust on
input Z and perturbation radius e if the answer to the verifica-
tion problem (1) is true for all ¢ # ¢*.

subject to y = f(xp),
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Verification via mathematical optimisation. Problem (1)
can be answered by solving the optimisation problem

~* := min
Z0y--»TL

chL + co

subjectto  x;41 = ReLU(W;z; + b;), i € [L], (2a)
70 — Z[oe <, (2b)

where CT = VVL(Z'*7 :) — WL(i, :), Co = bL(i*) — bL(i), and
[L] denotes {0, 1, ..., L —1}. The verification problem (1) is
true if and only if the optimal value, v*, of (2) is positive.
The optimisation problem is however non-convex because
of (2a) and is therefore generally difficult to solve. To obtain
a tractable convex relaxation of the problem, we derive an
outer-approximation of the feasible region (zo,z1,...,2r)
in (2) using a convex set, D. This relaxes (2) to a convex
problem

vp = min cT:rL + ¢o 3)

(z0,x1,...,x1)ED

which provides a valid lower bound, v* > vp. If yp > 0,
then the answer to the verification problem (1) is true. If how-
ever v* > 0 > ~p, then the verification problem cannot
be decided. In this paper we are concerned with two con-
vex relaxations: the triangle relaxation [Ehlers, 2017] and
the semidefinite relaxation [Raghunathan et al., 2018].

Triangle relaxation. The triangle relaxation approximates
a single univariate ReLU function z = max{x,0} with its
convex hull. Specifically, the ReLU constraints (2a) are ap-
proximated by a set of linear constraints

Tiv1 >0, i1 > Tig, (4a)
Tig1 < ki © (Tiq1 — [i+1) + RCLU(ii+1), (4b)
Fiv1 = Wia; + by i1 < @i < i1, (40)

where ¢ € [L], ® denotes the Hadamard product, k; :=

ReLU(qli+1)—BCLU(lq,+1) ,and G4 1, ii+1 € R™+1 are upper

Uip1—lit1
and 10wer+boun+ds of the pre-activation variable Z;; for any
input satisfying (2b); these bounds can be computed using
interval propagation methods, see, e.g., [Wong and Kolter,
2018; Wang et al., 2018]. The optimal value, v.p, of the re-
sulting LP relaxation is relatively easy to compute in practice.
However, the quality of the LP relaxation (4) is intrinsically
limited, i.e., there is always a positive gap 7* — vp > 0
for many practical NN, referred to as the convex relaxation
barrier [Salman et al., 2019]. Two recent approaches that im-
prove the tightness of the LP relaxation are the kPoly [Singh
et al., 2019a], which explicitly considers the interaction of
multiple ReLU constraints, and the OptC2V [Tjandraatmadja
et al., 2020], which explicitly considers multivariate inputs of
a single ReLU constraint.

Semidefinite relaxation. This relaxation utilizes a single
positive semidefinite (PSD) constraint that couples all ReLU
constraints in (2a) to obtain a convex SDP [Raghunathan et
al., 2018]. The key idea is to equivalently replace the ReLU
constraints (2a) with the following quadratic constraints

Tix1 > 0, ip1 > Wiy +b;, i€ [L], (5a)
Tit1 © (a:i_H — Wz, — bz) =0,1€ [L} (5b)
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Also, the input constraint (2b) as well as the lower and up-
per bounds I;,u; € R™ on the activation vectors x;,i =
1,...,L — 1 (which can be obtained using interval proro-
gation methods) can be reformulated as quadratic constraints

xiQxi—(li+ui)®xi+li®uiSO,ie[L}, (6)
where ¢ = 0 corresponds to the [, input constraint (2b).
Polynomial lifting and SDP-based hierarchies can be used
to solve the resulting polynomial optimisation problem.
Specifically a lifting matrix, P, of monomials

T Lo
P:=wvo', wherev:= [L,af,2],...,2]] € R0

can be defined [Raghunathan et al., 2018]. Then, all the con-
straints in (5) and (6) become linear in terms of the elements
of P. By relaxing the monomial matrix P to be P > 0, we
obtain an SDP relaxation of (2) as follows

mgn c"Plzr]) + o
subject to P[l‘i_,_l] >0, P[Q?H_ﬂ > sz[l‘l] +b;,  (7a)
diag (Plaipizfy,] — WiPlaa],,))
diag (P[z;z]]) — (I + w) © Pl
P[1]=1, P >0, (7d)

where we adopt the same symbolic indexing P[] as [Raghu-
nathan et al., 2018] to index the elements of P. It is clear
that (7a) and (7b) correspond to the ReLU constraints (5),
and that (7¢) corresponds to the bounds on activation vectors
in (6). We denote the optimal value of (7) as yspp,1. We
always have v* > ~spp,1, where the equality is achieved if
the optimal solution, P, to (7) is of rank one. The exactness
of a variant of the SDP relaxation (7) is discussed in [Zhang,
2020] via geometric techniques.

3 Linear Cuts and Layer-based Semidefinite
Relaxations

In this section we develop new SDP relaxations for the veri-
fication problem (2). The resulting formulations will lead to
both tighter and computationally more efficient relaxations.
We begin our analysis by observing two potential draw-
backs from the SDP relaxation (7). The first is that, despite
the use of the PSD constraint P > 0, the relaxation quality
of (7) may be looser than the LP relaxation (4), i.e., yp >
~spp,1. The second is that the matrix variable, P, in the con-
straint P > 0, is of size N x N, where N = 1 + Zqu:o n;
corresponds to the network size; this may hinder the scalabil-
ity of the approach for large networks. We resolve the first
shortcoming by adding the linear cuts from (4) to the SDP re-
laxation (7), leading to a provably tighter SDP relaxation. We
alleviate the second by introducing a layer-based SDP relax-
ation consisting of multiple PSD constraints of smaller sizes.

3.1 Tightened SDP Relaxations via Linear Cuts

It is known, see [Raghunathan et al., 2018], that in certain
cases the SDP relaxation (7) can be looser than the LP re-
laxation (4). Figure 1 illustrates this for the case of a single
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Figure 1: LP and SDP-based outer approximations of {(z, 2) € R? |
z = ReLU(z),l < x < w}. Left to right: 1) unstable neuron
|l = —4,u = 1; 2) inactive neuron | = —4, u = 0; 3) strictly active
neuron | = 0,u = 1. The standard SDP relaxation (7) is inexact
even for inactive/stable neurons, while the triangular relaxation be-
comes exact. This motivates us to add linear cuts (8) to the SDP (9).

ReLU neuron with a univariate input. As shown in Figure 1,
the feasible region in the LP relaxation (4) becomes exact
when u < 0 (inactive neuron) or [ > 0 (strictly active neu-
ron), whereas the feasible region in the SDP relaxation (7) is
not exact unless [ = u. As can be observed from the feasi-
ble regions, the tightness of the LP relaxation w.r.t the SDP
relaxation is attributed to the linear cut (4b), which at times
tightens the LP relaxation.

To resolve this, we extend the SDP relaxation (7) to include
the linear cut (4b) thereby tightening the relaxation. We ex-
press the cut (4b) in terms of the matrix P as follows

P[$i+l] <k ® (WZP[.Z'l] +b; — lAl) + ReLU(Zi), (8)

and add it to (7). This leads to the following SDP relaxation
for the verification problem (2):

YsDP,2 i= InFi,n ¢ Plzr] + co

subject to  (7a), (7b), (7c), (7d) )
(®), i€ l[L]

Due to the linear cuts (8), the new SDP relaxation (9) is prov-
ably tighter than both the original SDP relaxation (7) and the
standard triangle LP relaxation (4).

Proposition 1. Given a non-convex NN verification in-
stance (2), we have that v* > yspp,2 > max{yspp,1, yLp }-

The proof of v* > ygpp,2 > Yspp,1 is straightforward. To
establish yspp 2 > 71p, it suffices to show that any feasible
solution in (9) can be used to construct a feasible solution
in (4) with the same cost value.

We now compare SDP to LP relaxations. As already noted
in [Raghunathan ez al., 2018], the single PSD constraint, P >
01in (7), captures the interaction of ReLU constraints (2a) im-
plicitly, while the triangle relaxation (4) relaxes (2a) individ-
ually. However, this constraint P > 0 alone does not guar-
antee an improved relaxation. The linear cuts (4) can still
effectively remove some redundant outer-approximation in
SDP relaxations (Proposition 1). Recent approaches such as
kPoly [Singh et al., 2019a] and OptC2V [Tjandraatmadja et
al., 2020] strengthen the standard triangular LP (4) by adding
additional linear cuts via relaxing multiple ReL.U neurons to-
gether, or reasoning multivariate inputs directly. Those linear
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cuts can be potentially combined with the SDP relaxation (9),
leading to a tighter relaxation for (2).

Another flexibility in SDP relaxations lies in the fact that
they allow the reformulation of different linear constraints
into quadratic constraints and then their linearisation in terms
of the matrix variable P. This is known as the reformulation-
linearisation technique (RLT) [Anstreicher, 2009]. We have
used this technique to derive (7¢) from (6), which often tight-
ens the SDP relaxation.

3.2 Simplified SDP Relaxation via Activation
Patterns

It is a common practice in LP-based relaxations and MILP
formulations (e.g., [Singh et al., 2019b; Weng et al., 2018;
Botoeva et al., 2020]) to simplify the verification problem (2)
using the NN’s activation pattern. After incorporating the lin-
ear cuts (8), the SDP relaxation (9) can also use the activa-
tion pattern to reduce the dimension of the PSD constraint
P = 0; this was not considered in [Raghunathan er al., 2018;
Dathathri et al., 2020]. Particularly, given lower and upper
bounds on the pre-activation vector ii+1 < Zipr < Uiy,
it is known that the constraints (4) for stable neurons of the
(#+1)-th layer become exact and can be simplified: 1) if the k-
th neuron is strictly active, i.e., @;+1(k) > [i+1(k) > 0, then
zit1(k) = Wi(k,:)z; + b;(k), or 2) if the neuron is inactive,
ie.,0> ﬁz—i—l(k) > [i+1(k), then xi—l—l(k) =0.

The information regarding inactive neurons can also be re-
moved in (9) since P[x;1](k) becomes zero due to the linear
cuts (8). This effectively reduces the dimension of the PSD
constraint P > 0 without altering the optimal value.

Proposition 2. Consider a non-convex NN verification in-
stance (2), with n; neurons in each layer, v = 0,1, ..., L.
Given a set of lower and upper bounds l;, u;, ZAZ-H, Uiq1,1 €
[L], suppose the number of unstable and strictly active neu-

rons is n;. Then, in (9), the PSD constraint P > 0 of size
(1+ ZiL:() n;) X (1+ Zf:o n;) can be equivalently replaced
by a smaller PSD constraint P > 0 of size (1 + Zfzo ;) X
(1+ 300 7).

In many practical cases, a significant portion of the neurons
are stable under a given verification query, especially when
small perturbation radiuses, ¢, are considered. Thus, adding
the linear cuts (8) not only makes the SDP relaxation (9) the-
oretically stronger (cf. Proposition 1), but also computation-
ally easier (cf. Proposition 2) than (7) in [Raghunathan et
al., 2018]. We note that it is possible to first prune the inac-
tive neurons to form a new NN, and then apply the SDP (7)
in [Raghunathan et al., 2018] to this newly pruned NN. This
process implicitly uses the power of linear cuts from (4), but

was not discussed nor implemented in [Raghunathan er al.,
2018; Dathathri et al., 2020].

3.3 Layer-based SDP Relaxations

We here further reduce the dimensionality of the PSD con-
straint in (9) by exploiting the layer-wise cascading structure
of NNs, whereby each activation vector of a layer depends
only on the previous layer’s activation vector. We begin with
the equivalent quadratic formulation of (5). Instead of using a
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single big matrix, P, as in (7), we introduce multiple matrices
of monomials P; for each i € [L]:

P;:= v;v] , where v;:= [1,2], xiTH]Té RIFritnie - (10)
Then, the constraints (5a)-(5b) become linear in P;:
Pilzit1] >0, Pilzipa] > WiPi[z;] + b;, (11a)
diag (P[zir12], 1] - WiPi[zizl,]) =b;® Pi[xiq1]. (11b)
Also, (7¢) and (8) can be written with respect to P; as
diag (P,- [I‘LJU;I—D — (i +u)OFx;]) + 1; ©u; <0, (12a)
Plein] <k © (WiP,;[a:i] b — z) + ReLU(y). (12b)

Upon relaxing the monomial matrices P; to P; > 0, we need
to consider the input-output consistency among the F;’s, i.e.,

Pil#i13]] = Pra[#ipa@iy), i=0,...,L =2, (13)
where & = [1,2],].

Now, we can introduce a new layer-based SDP relaxation
for the verification problem (2):

o : T
7spp, = min ¢' Pr_1[zr] + co

s Pr_1

subjectto (11a),(11b),, i€ [L],
(12a), (12b),, i€ [L], (14)
P[l]=1,P =0, icl[L]
(13).

Instead of a single, big PSD constraint, P > 0 of network size
in (9), the layer-based SDP relaxation (14) employs multiple
smaller PSD constraints P; > 0 for each layer. Smaller PSD
constraints in an SDP are helpful to improve the efficiency of
getting its solution using off-the-self solvers [Vandenberghe
and Andersen, 2015; Zheng et al., 2020]. Moreover, the solu-
tion quality (14) is equivalent to that from (9). Formally, we
have:

Proposition 3. Given a non-convex NN verification in-
stance (2), we have that v* > yspp,3 = YSDP,2-

Proof. The proof relies on a celebrated chordal decomposi-
tion result for sparse PSD matrices [Vandenberghe and An-
dersen, 2015, Chapter 10]. In particular, the cascading struc-
ture in a network can be abstracted as a chain graph, which
is chordal with L maximal cliques C; = {i,% + 1},4 € [L].
The block-chordal completion theorem [Zheng, 2019, Theo-
rem 2.18] allows equivalently replacing the single PSD con-
straint P > 0 in (9) with L smaller PSD constraints P; > 0
in (14), each of which corresponds to maximal clique C;.
Now, (14) becomes a reformulation of (9) via the consistency
constraint (13). O

Remark 1 (Merging layers and conversion methods). Intu-
itively, (14) belongs to a class of chordal conversion meth-
ods in sparse SDPs [Fukuda et al., 2001; Zheng et al.,
2020]. Besides two consecutive layers in (10), one can
merge multiple layers (e.g., the first three layers) as one
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clique and form one corresponding PSD variable. The re-
sulting SDP relaxation is equivalent to (9) and (14), mean-
ing that they offer the same optimal solution. Similar to
general conversion methods in SDPs [Fukuda et al., 2001;
Zheng et al., 2020], there exists a tradeoff between the size of
P; > 0 and the number of additional equality constraints (13)
for the efficiency of solving (14). Some heuristics exist to bal-
ance such a tradeoff [ Fukuda et al., 2001].

Further relaxation via dropping equality constraints. As
discussed above, the number of equality constraints (13) is
quadratic in the number of neurons in each layer. Here, we
consider an SDP relaxation that uses only a subset of the con-
straints in (13). In particular, we consider a linear number of
consistency constraints as

i=0,...,L—2, (15)

and form another layer-based SDP relaxation:

Pi[&i11] = Piya[Ziga],

. T
Yspp.4 i=  min ¢ Pr_ilzr)+co

0, Pr—1

subjectto (11a),(11b),, @ € [L],

(12a), (12b),, i € [L], (16)
P1]=1,P, =0, i€[L],
(15).

The solution quality of (16) is worse than (14) but is faster to
solve and it is still provably better than the LP relaxation (4),
i.e., v* > vspp,3 = Yspp,4a = YLp- The proof is similar to
Proposition 1.

4 Experimental Evaluation

We now evaluate the performance of the proposed SDP for-
mulations on several benchmarks from the literature. We
compare the resulting implementation against other state-of-
the-art (SoA) convex relaxation methods, including the orig-
inal SDP formulation in [Raghunathan et al., 2018], the ad-
vanced SDP-FO algorithm [Dathathri et al., 2020], and two
recent SOA LP relaxation methods, i.e., kPoly [Singh et al.,
2019a] and OptC2V [Tjandraatmadja et al., 2020].

4.1 Implementation and Experiment Setup

Verification problem. We consider the standard robustness
verification problem for image classifiers: given a correctly
classified image, verify that the NN returns the same label
for all input within an [, perturbation of e. Formally, given
an image = € [0, 1]¢ with a label i* and a radius ¢, a neural
network is verified to be robust on (Z, €) if v* in (2) is positive
for all 7 # ¢*. For LP- and SDP-based relaxation methods, we
solve (2) multiple times for every potential adversarial target
i # i*, and check whether the lower bound is positive.

Implementation of LP/SDP relaxations. We consider the
formulation (7), originally proposed in [Raghunathan et al.,
2018] and our SDP formulations from (9), (14), and (16)
for experiments. Note that (9) and (14) are equivalent. We
used a subroutine from SparseCoL.O [Fujisawa et al., 2009]
for layer-decomposition that balances the size of PSD con-
straints and equality constraints (see Remark 1). We refer
to (9) and (14) as LayerSDP, and its relaxed version (16) as
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FastSDP. We also consider the standard LP relaxation (4) for
benchmark. We denote (7) as SDP-IP [Raghunathan ef al.,

2018]. The lower and upper bounds I;, u;, l; 11, ;1 Were
computed using a symbolic interval propagation algorithm
in [Botoeva et al., 2020]. To get an upper bound of verified
accuracy, we run a standard projected gradient descent (PGD)
algorithm from [Dathathri et al., 2020].

For numerical computation, we need to convert the convex
relaxations into a standard conic optimization before pass-
ing them to a numerical solver. The authors in [Raghunathan
et al., 2018] used the YALMIP toolbox [Lofberg, 2004] for
the modelling process. However, we found that YALMIP
introduced too much overhead time consumption, also be-
cause very similar instances of (2) need to be converted mul-
tiple times. Besides, we found that the YALMIP toolbox ne-
glected the cascading structure in SDP relaxations. Thus, we
implemented an automatic transformation from the convex
relaxations into standard conic optimization. The resulting
LP/SDPs were then solved by MOSEK [Mosek, 2015]. We
use the time reported by MOSEK for comparison.

Neural Networks. We considered eight fully connected
ReLU networks trained on the MNIST dataset. To facilitate
the comparison with existing tools, we divided our experi-
ments into three groups: 1) One self-trained NN with two
hidden layers, each having 64 neurons; no adversarial train-
ing was used. We varied the perturbation radius, €, from
0.01 to 0.05; 2) Three NNs from [Raghunathan et al.,
2018]: MLP-SDP, MLP-LP, and MLP-Adv. We followed
closely the setup described in [Raghunathan et al., 2018;
Dathathri et al., 2020], and tested a perturbation radius € =
0.1; 3) Four deep NNs from [Singh er al., 2019al: 6x100
(e =0.026), 9x 100 (¢ =0.026), 6x200 (¢ =0.015), 9x200
(€=0.015). These ¢ values were used in [Singh et al., 2019a;
Tjandraatmadja er al., 2020] and cited there as challenging.

For each network, we verified the first 100 images from
the MNIST test set and excluded those incorrectly classi-
fied. We performed our experiments on an Intel(R) i9-
10850K CPU 3.60GHz machine with 32 GB of RAM, ex-
cept for SDP-FO which was carried out on an Intel i7-
1065G7 with 15GB RAM, due to a different implementation
from [Dathathri et al., 2020].

4.2 Verification Results

Figure 2 reports the verified accuracy for the 64 x2 network
with different perturbation radius, €, using different verifiers:
LayerSDP and FastSDP (from this paper), SDP-IP [Raghu-
nathan et al., 2018], SDP-FO [Dathathri et al., 2020], and
standard LP. As expected (cf. Proposition 1), our formu-
lation, LayerSDP, offered improved robust accuracies than
SDP-IP and LP across different e. Interestingly, we ob-
serve that SDP-IP verified fewer images than the standard
LP relaxation when ¢ = 0.03,0.035,0.04, and required
longer time. This indicates that the behavior in Figure 1 per-
sists in practical NN verification, confirming the tightness
of LayerSDP. Furthermore, a combination of inactive neu-
ron pruning (Proposition 2) and layer decomposition (Sec-
tion 3.3) made LayerSDP and FastSDP two orders of mag-
nitude faster to solve than SDP-IP. We observe that SDP-FO
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Accuracy LayerSDP FastSDP SDP-IP SDP-FO? LP kPoly OptC2V
Models Correct PGD verified  time verified time verified! time*  verified time verified verified! verified?
MLP-Adv 98% 94% 91% 159.8 T2% 81.1 82% 3974 84% 811.2 65% - -
MLP-LP 89% 80% 80% 12.1 N < 80% 2453 78% 433 79% - -
MLP-SDP  98% 84% 84 % 3392 < < 80% 17726  64% 153.3 35% - -
6 x 100 99% 91% 75 % 545.3 24% 31.3 - 2456 o o 21% 44.1% 42.9%
9 x 100 97% 86% 35% 4703 18 % 38.8 - 2386 o o 18% 36.9% 38.4%
6 x 200 99% 96% 92 % 2133 33 % 89.2 - 16030 o o 30% 574% 60.1%
9 x 200 97% 91% 42% 1874 27 % 130.8 - 19698 o o 27% 50.6% 52.8%

T These results are taken from previously reported values (SDP-IP from [Raghunathan ef al., 20181, kPoly from [Singh ef al., 2019al, and OptC2V from [Tjandraatmadja ef al.,
2020]); Dashes () indicate previously reported numbers are unavailable.
*: We re-run the implementation of SDP-FO from [Dathathri ez al., 20201, and the verified accuracies are slightly lower than reported numbers due to different hyper-parameters. <
indicates SDP-FO failed to verify any instance within maximum iterations.
*: To facilitate time consumption comparison, we re-run SDP-IP [Raghunathan er al., 2018] over three images for these networks on our machine, and took an average per image.

Table 1: Verified accuracy and runtime per image (in seconds) for a set of NNs used in [Raghunathan er al., 2018; Singh er al., 2019a;

Tjandraatmadja et al., 2020; Dathathri et al., 2020]. LayerSDP and FastSDP are identical for NNs with one hidden layer (denoted as <).
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Figure 2: Verified accuracy and runtime per image across various
perturbation radius by different methods. These results were run for
a 64 x2 neural network. As expected, our method LayerSDP consis-
tently offered improved accuracy and was two orders of magnitude
faster than SDP-IP [Raghunathan et al., 2018].

verified fewer images than SDP-IP using similar time.

The results in Table 1 demonstrate that LayerSDP is also
much faster than SDP-IP, while being more precise than the
LP baseline across the networks in [Raghunathan et al., 2018;
Dathathri et al., 2020; Singh et al., 2019a; Tjandraatmadja
et al., 2020]. Furthermore, for the robustly trained NNs
(MLP-Adv, MLP-SDP, MLP-LP), our LayerSDP achieved a
very good verified accuracy compared to PGD, with MLP-
SDP and MLP-LP matched; this is consistent with the ex-
periments in [Dathathri et al., 2020]. However, we found
that SDP-FO [Dathathri et al., 2020] is very sensitive to some
hyper-parameters due to the nature of subgradient algorithms.

Compared to the SoA LP-based methods, kPoly [Singh et
al., 2019a] and OptC2V [Tjandraatmadja ef al., 2020], our
LayerSDP significantly improved the verified accuracy for
6x100 and 6x200 networks, while remaining competitive
for the other two networks. We observe that the linear cuts in
kPoly and OptC2V can be potentially combined in LayerSDP
to obtain a stronger relaxation. Finally, while the timings
in [Singh et al., 2019a; Tjandraatmadja et al., 2020] may not
be comparable, the authors reported average times for kPoly
within a range of 2 minutes to 8 minutes per image, and for
OptC2V within a range of 2 minutes to 58 minutes per image.
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5 Conclusions

We have presented a new layer-based semidefinite relaxation,
LayerSDP, that is provably tighter than the SDP relaxations
in [Raghunathan et al., 2018; Dathathri er al., 2020]. The
additional linear cuts and layer decomposition also make
LayerSDP an order of magnitude faster to solve than [Raghu-
nathan er al., 2018] using off-the-shelf solvers. Experiments
on a set of fully connected NNs demonstrated the tightness
and computational efficiency of LayerSDP. Note that convo-
lutional neural networks have inherent sparsity and structure
in convolutional layers, for which chordal graph decomposi-
tion is directly applicable and beneficial [Vandenberghe and
Andersen, 2015; Zheng et al., 2020]. We leave for further
work how to unroll efficiently the convolution layers and in-
corporate decompositions. Similarly, we would also like to
explore customized algorithms similar to [Dathathri er al.,
2020] for solving SDPs by exploiting the cascading network
structures. Finally, we note that SDP-based approaches can
easily deal with other robustness specifications involving lin-
ear and quadratic constraints on network inputs. This is a
further direction that appears worth exploring.
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