
Fast Pareto Optimization for Subset Selection with Dynamic Cost Constraints

Chao Bian1 , Chao Qian1∗ , Frank Neumann2 and Yang Yu1

1State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing 210023, China
2Optimisation and Logistics, The University of Adelaide, Adelaide SA 5005, Australia

{bianc,qianc,yuy}@lamda.nju.edu.cn, frank.neumann@adelaide.edu.au

Abstract
Subset selection with cost constraints is a funda-
mental problem with various applications such as
influence maximization and sensor placement. The
goal is to select a subset from a ground set to max-
imize a monotone objective function such that a
monotone cost function is upper bounded by a bud-
get. Previous algorithms with bounded approxi-
mation guarantees include the generalized greedy
algorithm, POMC and EAMC, all of which can
achieve the best known approximation guarantee.
In real-world scenarios, the resources often vary,
i.e., the budget often changes over time, requir-
ing the algorithms to adapt the solutions quickly.
However, when the budget changes dynamically,
all these three algorithms either achieve arbitrar-
ily bad approximation guarantees, or require a long
running time. In this paper, we propose a new al-
gorithm FPOMC by combining the merits of the
generalized greedy algorithm and POMC. That is,
FPOMC introduces a greedy selection strategy into
POMC. We prove that FPOMC can maintain the
best known approximation guarantee efficiently.

1 Introduction
In this paper, we consider the subset selection problem with
general cost constraints, i.e.,

arg maxX⊆V f(X) s.t. c(X) ≤ B, (1)

where both the objective function f : 2V → R and the cost
function c : 2V → R are monotone, but not necessarily sub-
modular. This problem is NP-hard in general, and has vari-
ous applications, such as influence maximization [Kempe et
al., 2003], sensor placement [Krause et al., 2008], document
summarization [Lin and Bilmes, 2011] and unsupervised fea-
ture selection [Feng et al., 2019], just to name a few.

A well-known special case of this problem is subset selec-
tion with cardinality constraints, that is, c(X) = |X|. Das

∗This work was supported by the National Key Research and De-
velopment Program of China (2020AAA0107200), the Fundamental
Research Funds for the Central Universities (0221-14380009), the
NSFC (62022039, 61876077) and the Australian Research Council
(DP160102401). Chao Qian is the corresponding author.

and Kempe [2018] proved that the simple greedy algorithm,
which iteratively selects one item from V with the largest
marginal gain on f , can achieve the optimal polynomial-
time approximation guarantee of (1− e−γf) [Harshaw et al.,
2019], where γf measures how close f is to submodularity.

For the general problem Eq. (1), the simple greedy algo-
rithm fails to obtain a bounded approximation ratio [Khuller
et al., 1999], while the generalized greedy algorithm can
achieve the best known approximation ratio of (αf/2)(1 −
e−αf) [Zhang and Vorobeychik, 2016; Qian et al., 2017],
where αf , different from γf , is another notion for measur-
ing the closeness of f to submodularity. Unlike the sim-
ple greedy algorithm, the generalized greedy algorithm iter-
atively selects one item with the largest ratio of the marginal
gain on f and c.

As the greedy behavior may limit the performance, Qian et
al. [2017] proposed an anytime algorithm POMC by employ-
ing a multi-objective evolutionary algorithm (EA) to maxi-
mize the objective f and minimize the cost c simultaneously.
POMC can find better solutions using more running time in
practice. Though it can also achieve the (αf/2)(1 − e−αf)-
approximation ratio theoretically, the running time is not
polynomially bounded. Thus, Bian et al. [2020] proposed
another anytime algorithm EAMC by employing a single-
objective EA to maximize the surrogate objective f(X)/(1−
e−αf c(X)/B). EAMC achieves empirical performance com-
petitive with POMC, but can guarantee the (αf/2)(1−e−αf)-
approximation ratio in polynomial running time.

In real-world applications of subset selection, the budgetB
on the cost constraint is, however, not fixed, but may change
over time, reflecting the change of resources. For exam-
ples, in influence maximization, more market investment will
makeB increase; in sensor placement, some installed sensors
may not work due to aging and thus B decreases. A natural
question is then whether the generalized greedy algorithm,
POMC and EAMC can adapt their solutions quickly when
the budget B changes dynamically.

The answer is unfortunately negative. For the general-
ized greedy algorithm, Roostapour et al. [2019] have con-
structed instances where the approximation ratios are arbitrar-
ily bad. Though POMC can maintain the (αf/2)(1− e−αf)-
approximation ratio, the required running time depends on
the population size, which is unbounded and may be even ex-
ponential [Roostapour et al., 2019]. EAMC uses a surrogate

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2191

objective depending on B, and thus, the change of B leads
to the change on the objective, making the found solutions
probably unhelpful for solving the problem with a new B.

In this paper, we propose a new algorithm FPOMC for sub-
set selection with dynamic cost constraints, i.e., dynamically
changing B. As the generalized greedy algorithm runs effi-
ciently but cannot guarantee the approximation ratio, while
POMC maintains the approximation ratio but cannot guaran-
tee the polynomial running time, the idea of FPOMC is natu-
rally to combine their merits. In particular, FPOMC is mod-
ified from POMC by introducing a greedy selection strategy.
POMC uses the uniform selection strategy, i.e., selects a solu-
tion from the population uniformly at random, for mutation,
while FPOMC first selects a subset size uniformly at random,
and then selects a specific solution with this size greedily
from the population. We prove that when the budget B de-
creases, FPOMC has already achieved the (αf/2)(1−e−αf)-
approximation ratio; when B increases to B′, FPOMC can
regain the (αf/2)(1 − e−αf)-approximation ratio using at
most O(nKB′(KB′ − KB)) expected running time, where
KB and KB′ denote the largest size of a subset satisfying the
two constraints c(X) ≤ B and c(X) ≤ B′, respectively.

2 Subset Selection with Cost Constraints
Let R and R+ denote the set of reals and non-negative reals,
respectively. Let V = {v1, v2, . . . , vn} denote a ground set.
A set function f : 2V → R is monotone if

∀X ⊆ Y : f(X) ≤ f(Y).

A set function f is submodular if

∀X ⊆ Y, v /∈ Y : f(X∪{v})−f(X) ≥ f(Y ∪{v})−f(Y),

implying the diminishing returns property [Nemhauser et al.,
1978]. The submodularity ratio

αf = min
X⊆Y,v/∈Y

f(X ∪ {v})− f(X)

f(Y ∪ {v})− f(Y)
(2)

is used to characterize the closeness of a general set function
f to submodularity [Zhang and Vorobeychik, 2016; Qian et
al., 2018]. When f satisfies the monotone property, we have
0 ≤ αf ≤ 1, and f is submodular iff αf = 1.

As presented in Definition 1, the subset selection problem
with static cost constraints is to maximize a monotone ob-
jective function f such that a monotone cost function c is no
larger than a budget B. We assume w.l.o.g. that monotone
functions are normalized, i.e., f(∅) = 0 and c(∅) = 0.

Definition 1 (Subset Selection with Static Cost Constraints).
Given a monotone objective function f : 2V → R+, a mono-
tone cost function c : 2V → R+ and a budget B, to find

arg maxX⊆V f(X) s.t. c(X) ≤ B. (3)

Because the cost function c is hard to be computed ex-
actly in some real-world applications [Zhang and Vorobey-
chik, 2016; Qian et al., 2017], we assume that only an ψ(n)-
approximation ĉ can be obtained, where

∀X ⊆ V : c(X) ≤ ĉ(X) ≤ ψ(n) · c(X). (4)

This general problem has many applications such as influ-
ence maximization [Kempe et al., 2003] and sensor place-
ment [Krause et al., 2008]. Influence maximization is to se-
lect a subset of users in social networks such that they can
influence the most number of users in expectation, which of-
ten appears in advertisement marketing. Sensor placement is
to select a few places from all candidate ones to install sen-
sors such that the remaining uncertainty of the environment
is mostly reduced, which often appears in fire detection and
water contamination detection.

Note that the problem in Definition 1 assumes a fixed bud-
get B. However, in real-world scenarios, the resources often
change over time, and thus the budget B may be not fixed,
but change dynamically. For examples, in the application
of influence maximization, a company may increase or de-
crease his investment according to the market situation; in the
application of sensor placement, some installed sensors may
fail due to aging, or some new sensors may be purchased for
placement. In both cases, the budget B will change. In this
paper, we focus on the subset selection problem with dynamic
cost constraints, presented as follows.
Definition 2 (Subset Selection with Dynamic Cost Con-
straints). Given a monotone objective function f : 2V → R+,
a monotone cost function c : 2V → R+ and a sequence of
changes on the budget B, to find a subset optimizing Eq. (3)
for each new B.

Note that after each change of the budget B, we can view
the problem as a static problem with the new budget, and run
any algorithm from scratch, which, however, may lead to a
long running time and a significantly different solution. As
in [Bossek et al., 2019; Doskoč et al., 2020; Assimi et al.,
2020; Do and Neumann, 2021], the main focus of this paper is
the ability of algorithms adapting to the changes ofB. That is,
we concern the running time of an algorithm until regaining
the φ-approximation ratio w.r.t. the new budget B′, when
starting from the solutions having a desired approximation
ratio of φ w.r.t. the old budget B.

3 Previous Algorithms
In this section, we introduce three state-of-the-art algorithms
for the subset selection problem with cost constraints, and
show their approximation performances.

3.1 The Generalized Greedy Algorithm
The generalized greedy algorithm [Zhang and Vorobeychik,
2016] iteratively selects one item maximizing the ratio of the
marginal gain on f and ĉ. After examining all items, the al-
gorithm compares the found subset with the best single item,
and returns the better one. Let

f(X̃) = (5)

max

{
f(X) |c(X)≤B ·αĉ(1 + α2

c(KB − 1)(1− κc))
ψ(n)KB

}
,

where αc and αĉ are the submodularity ratios of the cost func-
tion c and its approximation ĉ in Eq. (4), respectively, κc =

1−minv∈V :c({v})>0
c(V)−c(V \{v})

c({v}) is the total curvature of c,
and KB = max{|X| | c(X) ≤ B}, i.e., the largest size of a

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2192

subset satisfying the constraint. X̃ is actually an optimal so-
lution of Eq. (3) with a slightly smaller budget constraint, be-
cause αĉ(1+α

2
c(KB−1)(1−κc))
ψ(n)KB

≤ 1, where the inequality holds
by 1 − κc ≤ 1/αc, 0 ≤ αĉ, αc ≤ 1 and ψ(n) ≥ 1. Theo-
rem 1 shows that the generalized greedy algorithm can obtain
the approximation ratio of (αf/2)(1− e−αf) w.r.t. f(X̃).

Theorem 1. [Qian et al., 2017] For subset selection with
static cost constraints in Definition 1, the generalized greedy
algorithm finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− e−αf) · f(X̃).

To handle the dynamic situation where the budget B
changes over time, Roostapour et al. [2019] introduced a nat-
ural adaptive version of the generalized greedy algorithm.
When B increases, the algorithm continues to add items
greedily; when B decreases, it iteratively deletes one item
which minimizes the ratio of the marginal loss on f and ĉ.
However, this adaptive algorithm cannot adapt the solutions
well, and the obtained approximation ratio can be arbitrarily
bad, as shown in the following theorem.

Theorem 2. [Roostapour et al., 2019] For subset selection
with dynamic cost constraints in Definition 2, there exist
instances of increasing B and decreasing B such that the
approximation ratios achieved by the adaptive generalized
greedy algorithm are O(1/n) and O(1/

√
n), respectively.

3.2 The POMC Algorithm
Qian et al. [2017] proposed an approach based on Pareto Op-
timization [Friedrich and Neumann, 2015; Qian et al., 2015]
for maximizing a Monotone function with a monotone Cost
constraint, called POMC, which can use more time to find
better solutions. It represents a subset X ⊆ V by a Boolean
vector x ∈ {0, 1}n, where the i-th bit xi = 1 iff vi ∈ X .
POMC tries to maximize the objective function f and mini-
mize the approximate cost function ĉ simultaneously, by re-
formulating the original problem Eq. (3) as a bi-objective
maximization problem

arg maxx∈{0,1}n
(
f1(x), f2(x)

)
, (6)

where f1(x) =

{
−∞, ĉ(x) > B

f(x), otherwise
, f2(x) = −ĉ(x).

The solutions violating the constraint (i.e., with ĉ(X) > B)
are excluded by setting their f1 values to −∞. Note that
the idea of bi-objective reformulation has been used to tackle
hard problems, e.g., covering [Friedrich et al., 2010] and bal-
ancing [Chica et al., 2010] problems.

After the bi-objective transformation, POMC employs a
simple multi-objective EA, i.e., GSEMO [Laumanns et al.,
2004; Qian et al., 2019], to solve the bi-objective problem.
It starts from the empty set 0n. In each iteration of POMC,
a parent solution x is selected from the population P uni-
formly at random, and used to generate an offspring solution
x′ by flipping each bit with probability 1/n; x′ is then used
to update P by domination-based comparison as presented in
Definition 3. After terminated, POMC returns the solution
with the largest f value in P .

Definition 3 (Domination). For two solutions x and x′,
• x weakly dominates x′, denoted as x � x′, if f1(x) ≥
f1(x′) ∧ f2(x) ≥ f2(x′);

• x dominates x′, denoted as x � x′, if x � x′ and either
f1(x) > f1(x′) or f2(x) > f2(x′);

• they are incomparable if neither x � x′ nor x′ � x.
Let Pmax denote the largest size of the population P dur-

ing the running of POMC, and δĉ = min{ĉ(X ∪ {v}) −
ĉ(X) | X ⊆ V, v /∈ X} denote the minimum increment
on ĉ by adding a single item. The following two theorems
show that POMC can achieve the approximation ratio of
(αf/2)(1 − e−αf) for a fixed budget, and can also regain
this approximation ratio when the budget increases.
Theorem 3. [Qian et al., 2017] For subset selection with
static cost constraints in Definition 1, POMC using E[T] ≤
enBPmax/δĉ finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− e−αf) · f(X̃).

Theorem 4. [Roostapour et al., 2019] For subset selection
with dynamic cost constraints in Definition 2, when B is in-
creased toB′, POMC using T = rn(B′−B)Pmax/δĉ can re-
gain the approximation ratio of (αf/2)(1−e−αf) with prob-
ability Ω(1), where r ≥ 8e+ 1 is a constant.

However, for either static or dynamic cases, the running
time of POMC depends on Pmax, B (orB′−B) and 1/δĉ, all
of which may be exponentially large w.r.t. n, resulting in the
exponential running time of POMC.

3.3 The EAMC Algorithm
Bian et al. [2020] proposed a simple EA for maximizing a
Monotone function with a monotone Cost constraint, called
EAMC. It tries to maximize a surrogate objective

g(x) =

{
f(x) |x| = 0,

f(x)/(1− e−αf ĉ(x)/B) |x| ≥ 1,
(7)

which considers both the original objective f and the cost ĉ,
where | · | denotes the number of 1-bits of a vector. EAMC
maintains a solution set bin(i) for each subset size i, which
contains at most two solutions, one with the largest g value
(denoted as ui) and the other with the largest f value (de-
noted as vi) generated-so-far. In each iteration, it generates
an offspring solution x′ as same as POMC. If x′ satisfies the
constraint, bin(|x′|) will be updated by comparing x′ with
u|x

′| and v|x
′|. After terminated, EAMC returns the solution

with the largest f value in the population, which must satisfy
the constraint.
Theorem 5. [Bian et al., 2020] For subset selection with
static cost constraints in Definition 1, EAMC using E[T] ≤
2en2(n+ 1) finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− e−αf) · f(X̃).

The above theorem shows that for a fixed budget, EAMC
can achieve the (αf/2)(1 − e−αf)-approximation ratio in
O(n3) expected running time. However, in dynamic environ-
ments, the budgetB can change toB′. Note that the solutions
kept in the population are decided by the g function defined in
Eq. (7), which relies on B. After B changes, g cannot char-
acterize the new problem well, and thus the solutions may
perform bad for B′.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2193

4 The FPOMC Algorithm
In this section, we propose the Fast Pareto Optimization algo-
rithm for maximizing a Monotone function with a monotone
Cost constraint, called FPOMC.

FPOMC also tries to solve the reformulated bi-objective
maximization problem Eq. (6). It is actually modified from
POMC by introducing a greedy selection strategy. For
POMC, the population size is unbounded and the selection
is uniform. Thus, it is very likely to select a “bad” solution,
which may decrease the efficiency of the algorithm. Inspired
from the generalized greedy algorithm, we define a function
h to estimate the goodness of a solution in selection, and the
solution with the largest h value is selected with a high prob-
ability. This selection mechanism can guide the search direc-
tion efficiently and accelerate the optimization procedure.

To be specific, the population P is divided into subpopula-
tions P0, . . . , Pn, where Pi = {x ∈ P | |x| = i} denotes the
set of solutions with size i in P . In each iteration, FPOMC
first selects a subset size i (which has corresponding solutions
in the population) uniformly at random, and then selects a so-
lution having the largest h value from Pi with probability 1/2.
The function hz(x) is defined as

hz(x) = (8){
f(x)−f(z)
ĉ(x)−ĉ(z) ĉ(x) > ĉ(z),

(f(x)− f(z)) · C + ĉ(z)− ĉ(x) ĉ(x) ≤ ĉ(z),

where x is a solution in Pi, z is a reference point, and C is a
large enough number. Intuitively, hz(x) measures the good-
ness of x by the marginal gain on f and ĉ w.r.t. a reference
point z, and FPOMC selects a solution greedily, i.e., having
the largest h value. For each subset size i, FPOMC maintains
a reference point, denoted by xi, which is updated adaptively
during the running of the algorithm.

The procedure of FPOMC is described in Algorithm 1.
Starting from the empty set 0n (line 1), it repeatedly improves
the solutions in each subpopulation Pi (lines 2–22). In each
iteration, a solution in P is selected (line 3) according to the
SELECT subroutine in Algorithm 2. Then, a solution x′ is
generated by randomly flipping bits of x (line 4), which is
used to update the population Pj (line 7) and the reference
point xj (lines 8–13), respectively. Note that if xj is updated
(line 13), a local search (LS) subroutine in Algorithm 3 is
employed to quickly exploit the new solution xj (line 14),
and the generated solution y will be used to update Pj+1

(lines 15–17). After T iterations, the solution with the largest
f value in the population P is output (line 23).

The SELECT subroutine in Algorithm 2 selects a nonempty
Pi randomly, and returns a solution x ∈ S with probability
1/2, where S denotes the set of solutions in Pi such that hz(·)
is maximized. Note that if xi exists and is contained in S, it
is preferred than other solutions in S. To determine S, the
reference point z is selected to be the existing xk with the
largest k smaller than i. With the other probability of 1/2, a
solution in Pi \ S is selected uniformly at random.

The LS subroutine in Algorithm 3 returns a solution y by
adding an item into x, such that hx(y) is maximized. By
Eq. (8), y is actually generated by adding an item with the
largest ratio of the marginal gain on f and ĉ w.r.t. x.

Algorithm 1 FPOMC Algorithm
Input: a monotone objective function f , a monotone approx-
imate cost function ĉ, and a budget B
Parameter: the number T of iterations
Output: a solution x ∈ {0, 1}n with ĉ(x) ≤ B
Process:

1: Let x = x0 = 0n, P = {x} and t = 0;
2: while t < T do
3: x = SELECT(P);
4: Generate x′ by flipping each bit of x with prob. 1/n;
5: Let j = |x′|;
6: if 0 < ĉ(x′) ≤ B and @s ∈ Pj such that s � x′ then
7: Pj = (Pj \ {s ∈ Pj | x′ � s}) ∪ {x′};
8: if xj doesn’t exist then
9: Let xj = x′

10: else
11: Let z = xk, where k is the largest integer such

that k < j and xk exists;
12: if hz(x′) ≥ max{hz(xj), hz(LS(z))} then
13: xj = x′;
14: y = LS(xj);
15: if ĉ(y)≤B and @s∈Pj+1 such thats�y then
16: Pj+1 = (Pj+1 \{s ∈ Pj+1 | y � s})∪{y}
17: end if
18: end if
19: end if
20: end if
21: t = t+ 1
22: end while
23: return arg maxx∈P f(x)

5 Theoretical Analysis
In this section, we prove the general approximation bound of
FPOMC in Theorem 6, implying that FPOMC can achieve the
best known polynomial-time approximation guarantee, i.e.,
(αf/2)(1−e−αf). We also prove that when the budgetB de-
creases, FPOMC has already achieved the (αf/2)(1−e−αf)-
approximation ratio (Theorem 7); when B increases to B′,
FPOMC can regain the (αf/2)(1− e−αf)-approximation ra-
tio in at most O(nKB′(KB′ − KB)) expected running time
(Theorem 8), where KB and KB′ denote the largest size of a
subset satisfying c(X) ≤ B and c(X) ≤ B′ , respectively.

The proof of Theorem 6 relies on Lemma 1, which intu-
itively means that for any subset, the inclusion of a specific
item can improve f by at least a quantity proportional to the
current distance to the optimum. As in [Zhang and Vorob-
eychik, 2016; Qian et al., 2017], we assume that ∀v ∈ V :
ĉ({v}) ≤ B and δĉ defined in Section 3.2 is larger than 0.
Lemma 1. [Qian et al., 2017] For any X ⊆ V , let v∗ ∈
arg maxv/∈X

f(X∪{v})−f(X)
ĉ(X∪{v})−ĉ(X) . It holds that f(X ∪ {v∗}) −

f(X) ≥ αf ĉ(X∪{v
∗})−ĉ(X)
B · (f(X̃)− f(X)).

Theorem 6. For the problem in Definition 1, FPOMC using
E[T] = O(n2KB) finds a subset X ⊆ V with

f(X) ≥ (αf/2) · (1− e−αf) · f(X̃),

where f(X̃) is defined in Eq. (5).

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2194

Algorithm 2 SELECT(P): Subroutine of FPOMC
Input: the population P
Output: a solution in P for mutation
Process:

1: Choose a nonempty Pi uniformly at random;
2: Let z = xk, where k is the largest integer such that k < i

and xk exists;
3: Let S = {x | x ∈ arg maxx∈Pi

hz(x)};
4: if xi ∈ S then
5: Let s = xi

6: else
7: Let s = a solution uniformly selected from S
8: end if
9: Let x = s or a solution uniformly selected from Pi \ S,

with equal probability, i.e., 1/2
10: return x

Algorithm 3 LS(x): Subroutine of FPOMC
Input: the solution x
Output: a solution with size |x|+ 1
Process:

1: Let y = x;
2: for i = 1, 2, . . . , n do
3: if xi = 0 then
4: Let s = x, and set its i-th bit to 1, i.e., si = 1;
5: if hx(s) ≥ hx(y) then
6: y = s
7: end if
8: end if
9: end for

10: return y

Proof. The theorem is proved by analyzing the increase of
Jmax, which is defined as the maximal J such that ∀1 ≤ i ≤
J , the following two conditions hold:

C1: ∃xi−1 such that D(xi−1) holds;
C2: ∃x ∈ Pi such that hxi−1(x)≥hxi−1(xi−1 ∪ {vi−1∗ }),

where D(x) denotes that f(x) ≥
(
1− e−αf ĉ(x)/B

)
· f(X̃),

and vi−1∗ ∈ arg maxv∈V hxi−1(xi−1 ∪ {v}).
We first show that Jmax ≥ 1 after at most en(KB + 1)

expected number of iterations. By lines 9 and 13 of Al-
gorithm 1, x0 can only be replaced by a solution with
size 0, thus x0 is always 0n. Then we have f(x0) =(
1− e−αf ĉ(0

n)/B
)
· f(X̃) = 0, which implies that condi-

tion C1 holds for i = 1. By the update procedure of FPOMC,
0n will always be kept in P . In each iteration, 0n will be
selected for mutation with probability at least 1/(KB + 1)
by line 3 of Algorithm 1. Flipping a specific 0-bit of 0n

(i.e., adding a specific item) can generate a new solution
x′ with |x′| = 1 such that hx0(x′) = hx0(x0 ∪ {v0∗}).
Thus, in each iteration, x′ can be generated with probabil-
ity at least 1

KB+1 ·
1
n (1− 1

n)n−1 ≥ 1
en(KB+1) , implying that

it needs at most en(KB + 1) expected number of iterations
to generate x′. If x′ is added into P , condition C2 holds
for i = 1; otherwise, there must exist a solution s ∈ P1

such that f(s) ≥ f(x′) and ĉ(s) ≤ ĉ(x′), implying that

hx0(s) ≥ hx0(x′) = hx0(x0 ∪{v0∗}), and thus condition C2
has already hold. Thus, after en(KB + 1) expected number
of iterations, Jmax ≥ 1.

Assume that currently Jmax = J , we now show that Jmax

will not decrease. Assume that in some iteration t, a solution
x′ with |x′| = j, 1 ≤ j ≤ J − 1, is generated and added
into Pj in line 7. We need to show that condition C1 holds
for j + 1, and condition C2 holds for j and j + 1.

First we consider condition C1, i.e., D(xj) holds. If xj is
not replaced by x′ in line 13, C1 trivially holds. Thus, we
only need to consider that xj is replaced. By line 12, we have
hxj−1(x′) ≥ hxj−1(LS(xj−1)). Note that xj is replaced by
x′, we have

hxj−1(xj) ≥ hxj−1(LS(xj−1)) = hxj−1(xj−1 ∪ {vj−1∗ }).
(9)

Note that ĉ(xj−1 ∪ {vj−1∗ }) > ĉ(xj−1), thus

hxj−1(xj−1 ∪ {vj−1∗ })=
f(xj−1 ∪ {vj−1∗ })−f(xj−1)

ĉ(xj−1 ∪ {vj−1∗ })−ĉ(xj−1)
≥0,

(10)
implying hxj−1(xj) ≥ 0 by Eq. (9). Next, we consider two
cases for ĉ(xj)− ĉ(xj−1).
(1) ĉ(xj) − ĉ(xj−1) ≤ 0, then by Eq. (8), hxj−1(xj) =
(f(xj)− f(xj−1)) · C + ĉ(xj−1)− ĉ(xj) ≥ 0. Because C
is large enough, we have f(xj) ≥ f(xj−1). Thus,

f(xj) ≥ f(xj−1) ≥
(

1− e−αf ĉ(xj−1)/B
)
· f(X̃)

≥
(

1− e−αf ĉ(xj)/B
)
· f(X̃).

(2) ĉ(xj)− ĉ(xj−1) > 0, then

f(xj)− f(xj−1)

ĉ(xj)− ĉ(xj−1)
≥ f(xj−1 ∪ {vj−1∗ })− f(xj−1)

ĉ(xj−1 ∪ {vj−1∗ })− ĉ(xj−1)

≥ αf
B
·
(
f(X̃)− f

(
xj−1

))
,

(11)

where the first inequality is by Eqs. (8) and (9), and the sec-
ond inequality is by Lemma 1. Thus,

f(xj) ≥ αf
ĉ
(
xj

)
− ĉ(xj−1)

B
· f(X̃)

+
(

1− αf
ĉ(xj)− ĉ(xj−1)

B

)
(1− e−αf ĉ(x

j−1)/B)f(X̃)

≥
(

1− e−αf ĉ(xj)/B
)
· f(X̃).

where the first inequality holds by Eq. (11) and the definition
of Jmax, and the second inequality holds by ∀r ∈ R : 1 −
r ≤ e−r. Combining cases (1) and (2), D(xj) holds, i.e.,
condition C1 holds for j + 1.

Now we consider condition C2 for j. Before x′ is added
into Pj , there must exist a solution s ∈ Pj such that
hxj−1(s) ≥ hxj−1(xj−1 ∪ {vj−1∗ }) according to the defini-
tion of Jmax. If s is not deleted, condition C2 trivially holds
for j. Thus, we only need to consider that s is deleted from Pj
in line 7, implying that f(x′) ≥ f(s) and ĉ(x′) ≤ ĉ(s). By
Eq. (10), we have hxj−1(s) ≥ 0, implying f(s) ≥ f(xj−1)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2195

according to Eq. (8). By classification on ĉ(xj−1), we will
show that

hxj−1(x′) ≥ hxj−1(s). (12)

(1) ĉ(xj−1) < ĉ(x′) ≤ ĉ(s). Then, by Eq. (8), hxj−1(x′) =
f(x′)−f(xj−1)
ĉ(x′)−ĉ(xj−1) ≥

f(s)−f(xj−1)
ĉ(s)−ĉ(xj−1) = hxj−1(s).

(2) ĉ(x′) ≤ ĉ(xj−1) < ĉ(s). Then, by Eq. (8), hxj−1(x′) =

(f(x′)− f(xj−1)) ·C + ĉ(xj−1)− ĉ(x′) > f(s)−f(xj−1)
ĉ(s)−ĉ(xj−1) =

hxj−1(s), where the inequality holds for large enough C.
(3) ĉ(x′) ≤ ĉ(s) ≤ ĉ(xj−1). Then, by Eq. (8), hxj−1(x′) =
(f(x′)−f(xj−1))·C+ĉ(xj−1)−ĉ(x′) ≥ (f(s)−f(xj−1))·
C + ĉ(xj−1)− ĉ(s) = hxj−1(s).
Combining the three cases, we have proved Eq. (12), imply-
ing that condition C2 holds for j.

If xj is updated by x′ in line 13, the LS subroutine will
generate a solution y with |y| = j + 1 such that hxj (y) =

hxj (xj ∪ {vj∗}). If y is added into Pj+1, condition C2 holds
for j+1; otherwise, there must exist a solution s ∈ Pj+1 that
dominates y. Then, similar to the analysis of Eq. (12), we
have hxj (s) ≥ hxj (y) = hxj (xj ∪ {vj∗}). Thus, condition
C2 also holds for j + 1.

By far, we have shown that Jmax will not decrease when
the newly generated solution x′ satisfies 1 ≤ |x′| = j ≤
J − 1. When j = J , we only need to consider condition
C2 for j, and the proof is similar to the analysis of Eq. (12).
Thus, Jmax will always not decrease.

Next we consider the increase of Jmax. Let x∗ =
arg maxx∈PJ

hxJ−1(x). By the definition of Jmax, we have
hxJ−1(x∗)≥hxJ−1(xJ−1∪{vJ−1∗ }). We consider two cases:

(1) xJ exists and hxJ−1(xJ) = hxJ−1(x∗), then simi-
lar to the analysis after Eq. (9), D(xJ) holds, i.e., condi-
tion C1 holds for J + 1. In each iteration, xJ will be se-
lected with probability at least 1/(2(KB + 1)) by line 3.
The probability that no bits of xJ are flipped in line 4 is
(1−1/n)n ≥ (1−1/n) ·1/e, and the generated solution will
be added into PJ in line 7 and used to update xJ in line 13.
Then, the LS subroutine will generate a solution y such that
hxJ (y) = hxJ (xJ ∪ {vJ∗ }).
If ĉ(y) ≤ B, y will be used to update PJ+1 in line 16. If y
is not added into PJ+1, there must exist a solution s ∈ PJ+1

that dominates y. Similar to the analysis of Eq. (12), we have
hxJ (s) ≥ hxJ (y) = hxJ (xJ ∪ {vJ∗ }), implying that condi-
tion C2 holds for J + 1. If y is added into PJ+1, condition
C2 also holds for J + 1. Thus, Jmax can increase by 1.
If ĉ(y) > B, similar to the analysis after Eq. (9), D(y)

holds, implying f(y) ≥ (1 − e−αf) · f(X̃). Let u ∈
arg maxv∈V :ĉ({v})≤B f({v}). We have

f(y) = f(xJ) + (f(y)− f(xJ))≤f(xJ) + f(y \ xJ)/αf

≤ f(xJ) + f(u)/αf ≤ (f(xJ) + f(u))/αf ,

where the first inequality holds by Eq. (2), and the last holds
by αf ∈ [0, 1]. In each iteration, u can be generated by se-
lecting 0n and flipping a specific 0-bit, occurring with prob-
ability at least 1/(en(KB + 1)). Thus, u can be generated
in at most en(KB + 1) expected number of iterations. Ac-
cording to the updating procedure of P1 in lines 7 and 16,
we know that once u is generated, P will always contain a

solution u′ ∈ P1 with f(u′) ≥ f(u). Thus, FPOMC finds
a solution with the f value at least max{f(xJ), f(u)} ≥
(αf/2)f(y) ≥ (αf/2)(1 − e−αf) · f(X̃). i.e., the desired
approximate solution has been found.

(2) xJ exists and hxJ−1(xJ) < hxJ−1(x∗), or xJ doesn’t
exist. The proof is similar to that of case (1), and the only
difference is that x∗ instead of xJ is selected for mutation.

Combining the two cases, Jmax can increase by 1, i.e., con-
ditions C1 and C2 hold for J + 1, in O(KB) iterations, or it
has found a solution x with f(x) ≥ (αf/2)(1−e−αf)·f(X̃).

Finally, we examine the total expected number of itera-
tions. Note that Jmax can increase to at most KB , because a
solution with size larger than KB will violate the constraint.
To make Jmax ≥ 1, the expected number of iterations is
at most en(KB + 1); to increase Jmax from 1 to KB , the
expected number of iterations is at most O(KB) · KB =
O(K2

B); to generate u, the expected number of iterations is
at most en(KB + 1). Thus, the total expected number of iter-
ations isO(nKB). Note that in each iteration, FPOMC needs
to evaluate the objective value at most 2n + 1 times (i.e., the
cost of evaluating x′ and two LS subroutines), implying that
the total expected running time is O(n2KB).

Theorem 7. For the problem in Definition 2, assume FPOMC
achieves a (αf/2)(1 − e−αf)-approximation ratio, when
B decreases to B′, FPOMC has already achieved the
(αf/2)(1− e−αf)-approximation ratio for the new problem.

Proof. The result can be derived from the proof of Theo-
rem 6, because B can be replaced by B′ directly.

Theorem 8. For the problem in Definition 2, assume FPOMC
achieves a (αf/2)(1 − e−αf)-approximation ratio, when B
increases toB′, FPOMC using E[T]=O(nKB′(KB′−KB))
can regain the (αf/2)(1− e−αf)-approximation ratio.

Proof. Note that FPOMC has run O(nKB) expected number
of iterations, to achieve the (αf/2)(1−e−αf)-approximation
ratio for the problem with budget B. For the problem with
budget B′, the B in the proof of Theorem 6 can be re-
placed by B′ directly, and after O(nKB) expected number
of iterations, Jmax has increased to KB . To achieve the
desired approximation guarantee, it is sufficient to continue
increasing Jmax to KB′ , whose expected number of itera-
tions is O(KB′(KB′ − KB)). Thus, the expected running
time to regain the (αf/2)(1 − e−αf)-approximation ratio is
O(nKB′(KB′ −KB)).

6 Conclusion
This paper proposes a new algorithm FPOMC for subset se-
lection with dynamic cost constraints. When the budget on
the constraint changes dynamically, FPOMC can maintain the
best known approximation ratio of (αf/2)(1 − e−αf) effi-
ciently, while previous algorithms either achieve arbitrarily
bad approximation ratios or require a long running time to
maintain this approximation ratio. FPOMC has shown its su-
periority theoretically, and it is expected to study the empiri-
cal performance of FPOMC in the future.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2196

References
[Assimi et al., 2020] H. Assimi, O. Harper, Y. Xie, A. Neumann,

and F. Neumann. Evolutionary bi-objective optimization for
the dynamic chance-constrained knapsack problem based on tail
bound objectives. In Proceedings of the 24th European Confer-
ence on Artificial Intelligence (ECAI), pages 307–314, Santiago
de Compostela, Spain, 2020.

[Bian et al., 2020] C. Bian, C. Feng, C. Qian, and Y. Yu. An ef-
ficient evolutionary algorithm for subset selection with general
cost constraints. In Proceedings of the 34th AAAI Conference on
Artificial Intelligence (AAAI), pages 3267–3274, New York, NY,
2020.

[Bossek et al., 2019] J. Bossek, F. Neumann, P. Peng, and D. Sud-
holt. Runtime analysis of randomized search heuristics for dy-
namic graph coloring. In Proceedings of the 21st ACM Confer-
ence on Genetic and Evolutionary Computation (GECCO), pages
1443–1451, Prague, Czech Republic, 2019.

[Chica et al., 2010] M. Chica, Ó. Cordón, S. Damas, and
J. Bautista. Multiobjective constructive heuristics for the 1/3
variant of the time and space assembly line balancing prob-
lem: ACO and random greedy search. Information Sciences,
180(18):3465–3487, 2010.

[Das and Kempe, 2018] A. Das and D. Kempe. Approximate sub-
modularity and its applications: Subset selection, sparse approx-
imation and dictionary selection. Journal of Machine Learning
Research, 19:1–34, 2018.

[Do and Neumann, 2021] A. V. Do and F. Neumann. Pareto opti-
mization for subset selection with dynamic partition matroid con-
straints. In Proceedings of the 35th AAAI Conference on Artificial
Intelligence (AAAI), Virtual, 2021.

[Doskoč et al., 2020] V. Doskoč, T. Friedrich, A. Göbel, F. Neu-
mann, A. Neumann, and F. Quinzan. Non-monotone submodu-
lar maximization with multiple knapsacks in static and dynamic
settings. In Proceedings of the 24th European Conference on
Artificial Intelligence (ECAI), pages 435–442, Santiago de Com-
postela, Spain, 2020.

[Feng et al., 2019] C. Feng, C. Qian, and K. Tang. Unsupervised
feature selection by Pareto optimization. In Proceedings of the
33rd AAAI Conference on Artificial Intelligence (AAAI), pages
3534–3541, Honolulu, HI, 2019.

[Friedrich and Neumann, 2015] T. Friedrich and F. Neumann.
Maximizing submodular functions under matroid constraints by
evolutionary algorithms. Evolutionary Computation, 23(4):543–
558, 2015.

[Friedrich et al., 2010] T. Friedrich, J. He, N. Hebbinghaus, F. Neu-
mann, and C. Witt. Approximating covering problems by ran-
domized search heuristics using multi-objective models. Evolu-
tionary Computation, 18(4):617–633, 2010.

[Harshaw et al., 2019] C. Harshaw, M. Feldman, J. Ward, and
A. Karbasi. Submodular maximization beyond non-negativity:
Guarantees, fast algorithms, and applications. In Proceedings of
the 36th International Conference on Machine Learning (ICML),
pages 2634–2643, Long Beach, CA, 2019.

[Kempe et al., 2003] D. Kempe, J. Kleinberg, and É. Tardos. Max-
imizing the spread of influence through a social network. In Pro-
ceedings of the 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), pages 137–146,
Washington, DC, 2003.

[Khuller et al., 1999] S. Khuller, A. Moss, and J. Naor. The bud-
geted maximum coverage problem. Information Processing Let-
ters, 70(1):39–45, 1999.

[Krause et al., 2008] A. Krause, A. Singh, and C. Guestrin. Near-
optimal sensor placements in Gaussian processes: Theory, ef-
ficient algorithms and empirical studies. Journal of Machine
Learning Research, 9:235–284, 2008.

[Laumanns et al., 2004] M. Laumanns, L. Thiele, and E. Zitzler.
Running time analysis of multiobjective evolutionary algorithms
on pseudo-Boolean functions. IEEE Transactions on Evolution-
ary Computation, 8(2):170–182, 2004.

[Lin and Bilmes, 2011] H. Lin and J. Bilmes. A class of submodu-
lar functions for document summarization. In Proceedings of the
49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies (ACL), pages 510–520,
Portland, OR, 2011.

[Nemhauser et al., 1978] G. L. Nemhauser, L. A. Wolsey, and M. L.
Fisher. An analysis of approximations for maximizing submod-
ular set functions – I. Mathematical Programming, 14(1):265–
294, 1978.

[Qian et al., 2015] C. Qian, Y. Yu, and Z.-H. Zhou. Subset selection
by Pareto optimization. In Advances in Neural Information Pro-
cessing Systems 28 (NIPS), pages 1765–1773, Montreal, Canada,
2015.

[Qian et al., 2017] C. Qian, J.-C. Shi, Y. Yu, and K. Tang. On subset
selection with general cost constraints. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI),
pages 2613–2619, Melbourne, Australia, 2017.

[Qian et al., 2018] Chao Qian, Yang Yu, and Ke Tang. Approxima-
tion guarantees of stochastic greedy algorithms for subset selec-
tion. In Proceedings of the 27th International Joint Conference
on Artificial Intelligence (IJCAI), pages 1478–1484, 2018.

[Qian et al., 2019] C. Qian, Y. Yu, K. Tang, X. Yao, and Z.-H.
Zhou. Maximizing submodular or monotone approximately sub-
modular functions by multi-objective evolutionary algorithms.
Artificial Intelligence, 275:279–294, 2019.

[Roostapour et al., 2019] V. Roostapour, A. Neumann, F. Neu-
mann, and T. Friedrich. Pareto optimization for subset selection
with dynamic cost constraints. In Proceedings of the 33rd AAAI
Conference on Artificial Intelligence (AAAI), pages 2354–2361,
Honolulu, HI, 2019.

[Zhang and Vorobeychik, 2016] H. Zhang and Y. Vorobeychik.
Submodular optimization with routing constraints. In Pro-
ceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI), pages 819–826, Phoenix, AZ, 2016.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2197

	Introduction
	Subset Selection with Cost Constraints
	Previous Algorithms
	The Generalized Greedy Algorithm
	The POMC Algorithm
	The EAMC Algorithm

	The FPOMC Algorithm
	Theoretical Analysis
	Conclusion

