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Abstract
Partial multi-label learning deals with the circum-
stance in which the ground-truth labels are not
directly available but hidden in a candidate label
set. Due to the presence of other irrelevant labels,
vanilla multi-label learning methods are prone to be
misled and fail to generalize well on unseen data,
thus how to enable them to get rid of the noisy la-
bels turns to be the core problem of partial multi-
label learning. In this paper, we propose the Par-
tial Multi-Label Optimal margin Distribution Ma-
chine (PML-ODM), which distinguishs the noisy
labels through explicitly optimizing the distribu-
tion of ranking margin, and exhibits better gener-
alization performance than minimum margin based
counterparts. In addition, we propose a novel fea-
ture prototype representation to further enhance the
disambiguation ability, and apply the non-linear
kernels to handle the linearly inseparable data. Ex-
tensive experiments on real-world data sets vali-
dates the superiority of our proposed method.

1 Introduction
Multi-label learning is a supervised learning framework to
cope with the problems where each instance is associated
with more than one class label [Boutell et al., 2004; Zhang
and Zhou, 2013; Gibaja and Ventura, 2015]. Existing multi-
label learning methods heavily rely on the high quality la-
beled data, which can be hardly satisfied in many real-world
applications, because precise annotations are quite expensive
and even impossible in some restricted scenarios. Instead, a
set of noisy candidate labels are usually accessible. To deal
with such imprecisely labeled data, the partial multi-label
learning [Xie and Huang, 2018; Chen et al., 2020], a uni-
fied framework of multi-label learning and partial label learn-
ing [Cour et al., 2011; Feng and An, 2019], comes into being.

A trivial way to partial multi-label learning is to directly
apply the vanilla multi-label learning methods [Zhang and
Zhou, 2007; Feng et al., 2019], but due to the presence of
false positive labels, these methods are prone to be misled
and generalize poorly on unseen data. One more sensible
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way is to adopt some elaborated disambiguation strategies to
recover the ground-truth labels during training, which can be
further divided into two groups. One is the low-rank models,
which assumes the ground-truth label matrix is intrinsically
low-rank, and the noisy label matrix is sparse [Sun et al.,
2019], or shares some low-rank subspace with feature ma-
trix [Yu et al., 2018]. Besides the low-rank and sparse de-
composition on label matrix, the same assumption has also
been made on the learner side [Xie and Huang, 2020], which
leads to a joint learning of a low-rank multi-label classifier
and a sparse noisy label identifier. However, the low-rank re-
quirement sometimes is too rigorous to fulfill, and all these
methods can hardly incorporate the non-linear kernels. The
other is the confidence learning models, whose main idea is
to evaluate the possibility of each label being a ground-truth.
For example in [Zhang and Fang, 2020], an iterative label
propagation is performed at first and only those with confi-
dence value above the threshold are treated as credible labels
to train the subsequent multi-label classifier; while in [Xie
and Huang, 2018; Wang et al., 2019], some smooth assump-
tions that highly correlated labels share similar confidence
values or closest instances have similar ground-truth labels
are adopted, and the confidence is learned through utilizing
the local topological structure.

In this paper, we propose the Partial Multi-Label Opti-
mal margin Distribution Machine (PML-ODM), which re-
covers the ground-truth labels via explicit optimization of the
distribution of ranking margin. It is the generalization of
ODM [Zhang and Zhou, 2019], a newly proposed learning
framework rooting in margin theory [Gao and Zhou, 2013],
thus it inherits the superiority and performs significantly bet-
ter than the minimum margin based counterparts. Besides,
we propose a novel feature prototype representation which
is adaptively updated during training to further enhance the
disambiguation ability. Extensive empirical studies show
that PML-ODM can effectively identify the ground-truth la-
bels, and achieve excellent generalization performance. Our
method belongs to the second group mentioned above, but
enjoys three advantages compared with previous works:

• It is the first attempt to introduce the powerful mar-
gin distribution into partial multi-label learning, and
achieves significantly better generalization performance.

• It proposes a novel method to adaptively update the fea-
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ture prototype during training, rather than heuristically
fixing it as constant ahead of time.

• It incorporates non-linear kernels to further enhance the
generalization performance for linearly inseparable data.

The rest of paper is organized as follows. We first briefly
introduce some preliminaries, and then detail the proposed
method. After that, we derive the optimization procedure,
followed by the empirical studies. Finally we conclude the
paper with future work.

2 Preliminaries
For convenience, we first introduce some notations and termi-
nologies used throughout the paper. We denote scalars with
lower case letters (e.g., y), and vectors / matrix with boldface
letters (e.g., x / X). Sets are designated by upper case letters
(e.g., Y ), and in particular [n] , {1, 2, . . . , n}.

Let X,Y,H denote the instance, label, hypothesis space
respectively, and D = {(x1, Ŷ1), (x2, Ŷ2), . . . , (xm, Ŷm)} is
a training set of size m drawn identically and independently
(i.i.d.) according to some unknown distribution over X × Y .
The feature mapping associated with some positive definite
kernel κ(·, ·) is denoted by φ : X 7→ H. The hypothesis h ∈
H is parameterized with n weight vectorsw1,w2, . . . ,wn ∈
H, each of which induces a scoring function x 7→ w>k φ(x)
for k ∈ [n].

2.1 Optimal Margin Distribution Learning
Margin is one of the most essential concepts in machine learn-
ing. Roughly speaking, it indicates the confidence of learning
results. The larger the margin, the more confidence we have
on the learner, and a negative margin signifies a wrong pre-
diction. Formally, it is a function mapping from X × Y ×H
to R. Let Ȳ = Y \ Ŷ denotes the irrelevant label set. For
single-label learning problems where Ŷ = {y} is a singleton,
it is defined as

γ(x, Ŷ , h) = w>y φ(x)−max
l∈Ȳ

w>l φ(x) (1)

that is the smallest difference of scores between the ground-
truth label and irrelevant labels. Particularly for binary clas-
sification problem where Y = {1, 2}, Eqn. (1) reduces to a
more common form γ(x, {y}, h) = ŷw>φ(x) where ŷ =
−2y + 3 ∈ {±1} and w = w1 −w2. For multi-label learn-
ing problem where |Ŷ | ≥ 2, the following ranking margin is
commonly considered,

γ(x, Ŷ , h) = w>k φ(x)−w>l φ(x), ∀(k, l) ∈ Ŷ × Ȳ (2)

that is the difference of scores between each relevant and ir-
relevant label pair.

Recent studies on margin theory [Gao and Zhou, 2013]
demonstrate an upper bound characterizing the relationship
between the generalization and margin distribution, and the
subsequent study on lower bound [Grønlund et al., 2019] fur-
ther proves that the upper bound is almost optimal up to a
logarithmic factor, which means margin distribution is ac-
tually the essence of generalization. Inspired by these in-
sightful works, a novel statistical learning framework named

Optimal margin Distribution Machine (ODM) has appeared.
Formally, it explicitly optimizes the distribution of margin by
maximizing mean and minimizing variance simultaneously,
that is

min
h,ξi,εi

Ω(h)− αγ̄ +
λ

2m

∑
i∈[m]

(ξ2
i + ε2i )

s.t. γ̄ − ξi ≤ γ(xi, Ŷi, h) ≤ γ̄ + εi, ∀i ∈ [m]

where Ω(h) is a regularization term to control model com-
plexity, γ̄ is the mean of margin, and α, λ are trading-off
hyper-parameters. Note that the slack variables ξi and εi are
deviations from margin mean, thus the summation in the last
term is exactly the margin variance.

Due to the excellent generalization performance shown
on both binary and multi-class classification tasks [Zhang
and Zhou, 2014; Zhang and Zhou, 2017], many works ex-
tend ODM to some general learning settings. For exam-
ple in [Tan et al., 2020], a multi-label version of ODM is
proposed. In addition to the cardinality, i.e., |Ŷ |, the accu-
racy of supervision is also commonly considered, and for
most inaccurate supervised learning settings, ODM has al-
ready owned corresponding adaptions, just to name a few,
clustering in which no supervision is provided [Zhang and
Zhou, 2018a], semi-supervised learning in which only a frac-
tion of instances have labels [Zhang and Zhou, 2018b], and
multi-instance learning in which one label is just associ-
ated with a collection of instances [Zhang and Jin, 2020;
Luan et al., 2020]. Partial label learning [Xu et al., 2019] is
also a kind of inaccurate supervised learning, in which super-
vision is redundant with irrelevant labels. By further mixing
up with the cardinality leads to the partial multi-label learn-
ing, which is much more difficult since the number of ground-
truth labels is also unknown.

3 Proposed Method
In this section, we detail the PML-ODM. Following the same
strategy in [Wang et al., 2019], we incorporate a confidence
matrix to distinguish the ground-truth labels. To be specific,
let pik ∈ [0, 1] denote the confidence that label k is a ground-
truth label of xi, and P ∈ Rm×n denote the confidence ma-
trix with pik as the (i, k)-th entry. Obviously, if k is an irrel-
evant label of xi, i.e., k ∈ Ȳi, we have pik = 0.

Different from multi-label learning in which ranking mar-
gin is only calculated for each relevant and irrelevant label
pair, here we have two kinds of label pairs: 1) (k, l) ∈ Ŷ × Ȳ ,
i.e., one is a candidate label and the other is irrelevant; 2)
(k, l) ∈ Ŷ × Ŷ , i.e., both are candidate labels. By putting the
two kinds of label pairs together, and substituting the ranking
margin into the formulation of ODM, we obtain:

min
w,ξi,εi

Ω(w)− αγ̄ +
λ

2m

∑
i∈[m]

∑
(k,l)∈Zi

p̃ikl(ξ
2
ikl + ε2ikl)

|Zi|

s.t. w>k φ(xi)−w>l φ(xi) ≥ γ̄ − ξikl (3)

w>k φ(xi)−w>l φ(xi) ≤ γ̄ + εikl, ∀(k, l) ∈ Zi
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where Zi = Ŷi × Y is the label pair set associated with xi,
p̃ikl = max(0, pik − pil) is the difference of confidence be-
tween label k and l, and the larger this value, the more impor-
tant this label pair. From this perspective, p̃ikl is actually an
attention which can filter out unimportant label pairs.

If the confidence matrix P is given by users in advance or
can be summarized from domain knowledge, Eqn. (3) turns
to a convex optimization problem and can be solved similarly
as ODM. However in general P is unavailable, thus we treat it
as a variable and learn it jointly with the multi-label classifier.
Following the formulation in [Xie and Huang, 2018], let qk
denotes the feature prototype for the k-th class, we can obtain
the following optimization problem:

min
P

∑
i∈[m]

∑
k∈Ŷi

pik‖xi − qk‖

s.t.
∑
k∈Ŷi

pik ≥ 1, 0 ≤ pik ≤ 1, pil = 0

∀i ∈ [m], k ∈ Ŷi, l ∈ Ȳi

(4)

where the constraint
∑
k∈Ŷi

pik ≥ 1 is to avoid the trivial
solution P = 0. In [Xie and Huang, 2018], the feature
prototype qk is simply set as the average of all instances
with label k and kept unchanged in the subsequent train-
ing, which will undoubtedly hurt the generalization perfor-
mance since the initialization involves noisy labels. Instead
in this paper, we iteratively refine it. Specificly, given the cur-
rent multi-label classifier, we can obtain the latest prediction
yi = [yi1, yi2, . . . , yin] ∈ {0, 1}n for xi, and according to
which we collect all instances with label k and calculate the
feature prototype as a weighted sum of them:

qk =
∑
i∈Vk

cik∑
j∈Vk

cjk
xi (5)

where Vk = {i ∈ [m] | yik = 1} is the index set of instances
with label k, and the weight coefficient cik is determined by

cik =

(
yik +

∑
t∈Ni

ytk
dmax − dt
dmax − dmin

)
/(|Ni|+ 1) (6)

where Ni is the index set of xi’s nearest neighbors, dt de-
notes the distance between xi and the neighbor xt, dmax =
maxk∈Ni

{dk} and dmin = mink∈Ni
{dk}. The intuition be-

hind Eqn. (6) is that the closer the instances, the more likely
they share similar labels, which can also be regarded as the
smooth constraint being able to avoid over-fitting.

By combining with Eqns. (3)-(4), we obtain the final for-
mulation of PML-ODM:

min
w,ξ,ε,P

1

2

∑
s∈[n]

‖ws‖2H +
λ1

2m

∑
i∈[m]

∑
(k,l)∈Zi

p̃ikl(ξ
2
ikl + µε2ikl)

|Zi|

+ λ2

∑
i∈[m]

∑
k∈Ŷi

pik‖xi − qk‖

s.t. w>k φ(xi)−w>l φ(xi) ≥ 1− θ − ξikl
w>k φ(xi)−w>l φ(xi) ≤ 1 + θ + εikl (7)

∑
k∈Ŷi

pik ≥ 1, 0 ≤ pik ≤ 1, pil = 0

∀i ∈ [m], k ∈ Ŷi, l ∈ Ȳi

Here we follow the same processing as ODM, i.e., scaling w
to make the mean γ̄ as 1, introducing hyper-parameters µ and
θ to enhance the model’s capability and flexibility, and using
the `2 regularization to control the model complexity.

Once we obtain the solution of Eqn. (7), i.e., w1, . . . ,wn,
we can calculate the scores for any unseen data, but to pre-
dict whether a label is relevant or irrelevant, an extra thresh-
old is required. Here we determine the threshold tk for any
label k by minimizing the overall misclassification rate. To
be specific, for any training instance (xi, Ŷi), if k ∈ Ŷi yet
w>k φ(xi) < tk, or k ∈ Ȳi yet w>k φ(xi) > tk, a mis-
classification occurs. We determine tk by minimizing over-
all misclassification rate, which can be solved by sorting
{w>k φ(xi)}i∈[m]. Without loss of generality, let us assume
w>k φ(x1) ≤ w>k φ(x2) ≤ · · · ≤ w>k φ(xm), then tk can be
determined by checking the middle value of m − 1 intervals
[w>k φ(xi),w

>
k φ(xi+1)]i∈[m−1].

4 Optimization
Due to the coupling of P, ξ, ε in the second term, Eqn. (7)
is difficult to optimize directly, thus we resort to the alternat-
ing optimization strategy, i.e., in each iteration, we first solve
w, ξ, ε by fixing P, then update q as described previously,
and finally solve P with the latest ξ, ε, q. As for initialization,
we can first calculate cik as Eqn. (6) and appropriately scale
it as pik; on the other hand qk can be initialized by Eqn. (5).
The above steps are performed iteratively until convergence
or the maximum number of iterations is reached. Algorithm 1
summarizes the whole procedure.

4.1 Subproblem
When fixing P, Eqn. (7) turns to a quadratic programming
problem. Due to the underlying infinite dimensional feature
mapping φ(·), it is usually cast in the dual form. By introduc-
ing the dual variables αikl and βikl, the Lagrangian function

Algorithm 1 PML-ODM

1: Input: data set D = {(xi, Ŷi)}i∈[m], hyper-parameters
µ, θ, λ1, λ2, nearest neighbors number |N |, maximum it-
eration number T .

2: Initialize: confidence matrix P, feature prototype q, t←
0.

3: while t < T and not converge do
4: Optimize w, ξ and ε by fixing P;
5: Obtain the indicator vector yi according to w;
6: Calculate weight coefficient ci as Eqn. (6);
7: Update qk as Eqn. (5);
8: Optimize P by fixing w, ξ and ε;
9: end while

10: Output: ws for s ∈ [n].
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can be written as:

L =
1

2

∑
s∈[n]

‖ws‖2H +
λ1

2m

∑
i∈[m]

∑
(k,l)∈Zi

p̃ikl(ξ
2
ikl + µε2ikl)

|Zi|

−
∑
i∈[m]

∑
(k,l)∈Zi

αikl((wk −wl)>φ(xi)− 1 + θ + ξikl)

+
∑
i∈[m]

∑
(k,l)∈Zi

βikl((wk −wl)>φ(xi)− 1− θ − εikl)

The partial derivatives of L w.r.t. ws, ξikl, εikl are
∂L

∂ws
= ws −

∑
i∈[m]

1s∈Ŷi

∑
l∈Y

(αisl − βisl)φ(xi)

+
∑
i∈[m]

∑
k∈Ŷi

(αiks − βiks)φ(xi)

= ws −
∑
i∈[m]

∑
(k,l)∈Zi

(αikl − βikl)d(s)
iklφ(xi),

∂L

∂ξikl
=
λ1p̃iklξikl
m|Zi|

− αikl,
∂L

∂εikl
=
λ1p̃iklµεikl
m|Zi|

− βikl

where d(s)
ikl = 1k=s−1l=s. By setting these partial derivatives

to zero, we have

ws =
∑
i∈[m]

(αi − βi)>d(s)
i φ(xi)

ξikl =
m|Zi|
λ1p̃ikl

αikl, εikl =
m|Zi|
λ1p̃iklµ

βikl

where αi = [αikl](k,l)∈Zi
, βi = [βikl](k,l)∈Zi

, d(s)
i =

[d
(s)
ikl](k,l)∈Zi

, By substituting into the Lagrangian function,
we can obtain the dual problem:

min
α,β

1

2

∑
s∈[n]

∑
i,j∈[m]

(αi − βi)>d(s)
i (αj − βj)>d(s)

j κ(xi,xj)

+
∑
i∈[m]

((θ − 1)α>i ei + (θ + 1)β>i ei)

+
∑
i∈[m]

m|Zi|
2λ1

(
α>i P̃αi +

β>i P̃βi
µ

)
s.t. αi ≥ 0, βi ≥ 0, ∀i ∈ [m]

where ei ∈ R|Zi| is the all one vector, and P̃ ∈ R|Zi|×|Zi| is
the diagonal matrix with 1/p̃ikl as the diagonal element.

The dual problem is a convex quadratic programming. No-
tice that all the variables are decoupled and only have a lower
bound constraint, therefore it can be efficiently solved by the
coordinate descent method [Hsieh et al., 2008]. To be spe-
cific, in each iteration, only one variable is selected to mini-
mize while other variables are kept as constants, and a closed-
form solution can be achieved, finally this procedure is re-
peated until convergence.

When fixingw, ξ and ε, Eqn. (7) turns to a linear program-
ming problem, whose solution has already matured attribute
to the intensive studies for decades. Thus we simply invoke
the off-the-shelf solver Mosek, which integrates the effective
interior point method.

5 Experiments
In this section, we empirically evaluate the effectiveness of
our proposed method.

5.1 Setting
We conduct the experiments on eight real-world multi-label
data sets1 which come from a broad range of field. Since
partial multi-label learning is a recently proposed learning
framework, the customized public data sets are not available
yet, thus for each data set, we randomly add η ∈ {1, 2, 3}
noisy labels to candidate label set and repeat five times to
performe the experiments. The average values as well as the
standard deviations are recorded. All the data sets with their
basic statistics are listed in Table 1.

Data sets #Ins. #Fea. #Lab. avg#CL avg#GL

Birds 645 260 19 2,3,4 1.01
Emotions 593 72 6 2,3,4 1.87
Scene 2407 294 6 2,3,4 1.07
Flags 194 10 7 4,5,6 3.39
Yeast 2417 103 14 5,6,7 4.24
Genbase 662 1186 27 2,3,4 1.25
Medical 978 1449 45 2,3,4 1.25
Enron 1702 1001 53 4,5,6 3.38

Table 1: Experimental data sets with their basic statistics, avg#CL
and avg#GL indicate the average number of candidate labels and
ground-truth labels respectively

To demonstrate the superiority of the proposed PML-
ODM, we compare it with two confidence learning models
PAR-VLS and PAR-MAP [Zhang and Fang, 2020], and one
low-rank model PML-LRS [Sun et al., 2019]. We also com-
pare PML-ODM with the mlODM [Tan et al., 2020], the
state-of-the-art multi-label learning method which also opti-
mizes the margin distribution.

The parameters of PAR-VAL and PAR-MAP are set as sug-
gested in its paper, i.e., balancing parameter α = 0.95 and
credible label elicitation threshold t = 0.9. For our method
k = 10 and the width of RBF kernel is selected from the
set {2−10, 2−9, . . . , 23}. For the ODM based method, the pa-
rameters µ and θ are selected from the set {0.1, 0.2, . . . , 0.9}.
All the parameters are selected by 5-fold cross validation.

We take the Ranking Loss , Hamming Loss , Coverage ,
Average Precision , Macro-F1 and Micro-F1 as the perfor-
mance evaluation metrics.

5.2 Results
Table 2 summarizes the performance of five methods on eight
data sets in terms of six evaluation metrics. From the results
we can see that our proposed PML-ODM outperforms most
of the baselines and achieves best performance in most cases.
Among the five methods, PML-ODM beats other methods
on three data sets Emotions, Scene, Genbase in terms of

1http://palm.seu.edu.cn/zhangml/ and http://mulan.sourceforge.
net/datasets-mlc.html
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Data sets PML-ODM PAR-VAL PAR-MAP PML-LRS mlODM PML-ODM PAR-VAL PAR-MAP PML-LRS mlODM

η = 1 η = 2

Ranking Loss ↓

Birds .217±.011 .197±.035 .332±.027• .317±.024• .227±.017 .243±.007 .282±.023• .289±.024• .351±.014• .244±.013
Emotions .177±.009 .181±.019 .189±.011• .304±.015• .181±.011 .212±.003 .261±.007• .281±.014• .313±.027• .227±.014•
Scene .079±.008 .097±.023• .201±.018• .091±.013 .103±.015• .117±.023 .169±.018• .282±.023• .119±.008 .119±.011
Flags .219±.004 .283±.021• .229±.024 .302±.022• .258±.009• .225±.009 .385±.021• .246±.019 .303±.019• .331±.017•
Yeast .169±.004 .193±.012• .183±.016• .371±.009• .189±.018• .168±.009 .194±.009• .182±.021 .267±.011• .184±.017•
Genbase .002±.001 .039±.014• .061±.004• .002±.011 .003±.002 .004±.002 .043±.013• .067±.009• .005±.002 .007±.005
Medical .081±.005 .115±.027• .112±.008• .094±.018• .091±.006• .113±.014 .137±.011• .132±.018• .112±.012 .107±.009
Enron .146±.014 .231±.018• .169±.017• .179±.008• .161±.019• .133±.017 .253±.014• .143±.018• .189±.015• .172±.018•

w/t/l 6/2/0 7/1/0 6/2/0 5/3/0 8/0/0 6/2/0 5/3/0 4/4/0

Hamming Loss ↓

Birds .078±.004 .115±.037• .127±.019• .088±.012 .089±.008 .094±.004 .118±.016• .123±.014• .125±.021• .112±.006•
Emotions .274±.013 .277±.009 .291±.029• .322±.014• .287±.017• .392±.005 .419±.013• .424±.016• .301±.017◦ .479±.013•
Scene .151±.007 .178±.012• .162±.009 .314±.018• .159±.011 .167±.017 .177±.013 .266±.008• .279±.013• .496±.021•
Flags .334±.009 .479±.017• .357±.012• .371±.011• .351±.015• .424±.013 .473±.019• .454±.013 .462±.014• .478±.016•
Yeast .261±.023 .279±.026• .263±.017 .324±.023• .228±.014◦ .274±.013 .297±.012• .294±.021• .288±.027• .261±.011
Genbase .014±.003 .017±.004 .045±.016• .032±.009• .021±.007• .043±.017 .062±.023• .062±.011• .041±.011 .033±.012
Medical .027±.005 .041±.019• .084±.017• .094±.019• .052±.011• .028±.012 .073±.026• .088±.017• .121±.009• .092±.009•
Enron .059±.008 .072±.016• .081±.013• .075±.011• .091±.027• .008±.004 .113±.008• .117±.006• .132±.014• .109±.017•

w/t/l 6/2/0 6/2/0 7/1/0 5/2/1 7/1/0 7/1/0 6/1/1 6/2/0

Coverage ↓

Birds .119±.024 .121±.033 .157±.019• .176±.011• .153±.012• .142±.003 .143±.021 .163±.022• .193±.024• .171±.018•
Emotions .342±.005 .349±.011 .367±.012• .441±.018• .348±.019 .350±.007 .401±.011• .401±.018• .441±.015• .372±.009•
Scene .112±.009 .132±.034• .173±.018• .117±.014 .113±.008 .119±.014 .122±.017 .238±.011• .119±.018 .121±.017
Flags .544±.007 .668±.018• .559±.019 .486±.021 .564±.013• .551±.017 .742±.014• .589±.006• .631±.023• .649±.014•
Yeast .455±.017 .482±.019• .479±.014• .659±.011• .475±.021• .457±.009 .481±.009• .478±.021• .647±.024• .481±.019•
Genbase .012±.007 .078±.013• .097±.004• .044±.002• .022±.009• .016±.006 .087±.014• .183±.019• .048±.019• .031±.012•
Medical .121±.005 .132±.012 .133±.007 .146±.018• .124±.022 .118±.009 .142±.018• .137±.009• .142±.014• .127±.011•
Enron .419±.023 .461±.011• .425±.016 .454±.022• .437±.024• .319±.011 .451±.015• .324±.014 .373±.021• .392±.023•

w/t/l 5/3/0 5/3/0 6/2/0 5/3/0 6/2/0 7/1/0 7/1/0 7/1/0

Average Precision ↑

Birds .513±.009 .412±.032• .409±.031• .397±.022• .521±.014 .480±.013 .389±.032• .382±.018• .381±.017• .509±.013
Emotions .791±.012 .771±.012• .773±.019• .648±.009• .788±.003 .760±.002 .734±.021• .681±.013• .647±.018• .744±.007•
Scene .894±.023 .893±.017 .718±.024• .827±.011• .837±.012• .818±.024 .768±.016• .601±.026• .796±.023 .823±.019
Flags .831±.014 .811±.022• .816±.019• .796±.017• .778±.011• .795±.011 .728±.022• .783±.019 .753±.021• .741±.013•
Yeast .771±.011 .755±.013• .738±.018• .587±.021• .741±.016• .762±.009 .751±.017 .738±.017• .601±.009• .735±.015•
Genbase .994±.005 .965±.012• .849±.003• .981±.006 .982±.014 .987±.007 .956±.013• .841±.008• .982±.007 .983±.021
Medical .703±.005 .569±.024• .504±.016• .682±.018• .662±.024• .644±.004 .595±.012• .525±.012• .618±.017• .623±.024•
Enron .559±.021 .488±.019• .531±.011• .509±.021• .544±.019• .629±.005 .451±.014• .524±.018 .479±.011• .531±.011•

w/t/l 7/1/0 8/0/0 7/1/0 5/3/0 7/1/0 6/2/0 6/2/0 5/3/0

Macro-F1 ↑

Birds .531±.011 .523±.016• .275±.021• .443±.016• .297±.024• .485±.014 .456±.022• .199±.019• .332±.013• .323±.022•
Emotions .697±.007 .684±.008 .491±.013• .677±.009• .672±.015• .639±.009 .616±.011• .474±.017• .607±.021• .578±.017•
Scene .821±.004 .834±.017 .718±.019• .803±.007• .505±.014• .772±.015 .797±.011◦ .614±.019• .701±.025• .419±.021•
Flags .691±.011 .645±.019• .667±.013• .632±.013• .625±.017• .677±.013 .597±.024• .651±.021 .619±.018• .613±.019•
Yeast .773±.016 .808±.022◦ .845±.026◦ .639±.019• .508±.019• .644±.012 .627±.021 .648±.026 .601±.021• .479±.018•
Genbase .924±.009 .929±.013 .911±.017• .937±.008 .884±.011• .889±.007 .878±.016 .885±.009 .837±.012• .814±.015•
Medical .673±.013 .659±.012• .494±.013• .379±.022• .198±.028• .585±.006 .556±.011• .462±.015• .469±.016• .272±.022•
Enron .701±.022 .726±.018 .418±.021• .438±.026• .218±.021• .667±.019 .704±.015• .512±.018• .497±.019• .218±.023•

w/t/l 3/4/1 7/0/1 7/1/0 8/0/0 5/2/1 5/3/0 8/0/0 8/0/0

Micro-F1 ↑

Birds .537±.008 .381±.014• .237±.019• .344±.018• .341±.023• .471±.011 .337±.018• .179±.015• .322±.019• .329±.019•
Emotions .711±.013 .724±.005• .531±.009• .541±.011• .679±.021• .677±.013 .668±.014 .503±.013• .599±.017• .579±.019•
Scene .793±.006 .785±.013 .424±.017• .705±.014• .521±.018• .712±.017 .708±.017 .464±.024• .695±.024• .417±.022•
Flags .747±.011 .561±.023• .544±.027• .619±.019• .712±.015• .721±.016 .689±.021• .609±.017• .603±.026• .659±.021•
Yeast .698±.015 .707±.017 .471±.021• .418±.024• .677±.019 .683±.009 .694±.023 .473±.013• .651±.018• .652±.017•
Genbase .954±.009 .922±.015• .847±.009• .929±.011 .891±.019• .907±.008 .916±.013• .844±.011• .901±.014 .854±.014•
Medical .709±.008 .572±.019• .466±.016• .419±.023• .169±.022• .664±.009 .622±.014• .426±.014• .417±.018• .211±.025•
Enron .471±.025 .448±.016• .352±.013• .331±.022• .164±.025• .457±.021 .464±.019 .416±.023• .356±.017• .158±.021•

w/t/l 6/2/0 8/0/0 7/1/0 7/1/0 4/4/0 8/0/0 7/1/0 8/0/0

Table 2: Results on eight data sets in terms of six evaluation metrics, the ↓ indicates that the smaller the value, the better the performance,
and vice versa. The best result on each data set is bolded. •/◦ indicates the performance of PML-ODM is significantly better/worse than the
compared method (pairwise t-test at 0.05 significance level). The win/tie/loss counts for PML-ODM are summarized in the last row.
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Figure 1: Bonferroni-Dunn test of PML-ODM. Methods not connected with ours are considered to have significant difference with PML-
ODM (CD = 1.1401 at 0.05 significance level).

nearly all the evaluation metrics, and on two data sets Medi-
cal and Flags in terms of Average Precision, Macro-F1 and
Micro-F1. Compared to mlODM, PML-ODM is much more
robust in resisting the noisy labels, and achieves better per-
formance in most of the experiments.

To verify the superiority of our proposed feature prototype,
we compare PML-ODM with its variant PML-ODMf , which
fixs the feature prototype as the average of all the instances.
Experiments are performed on data sets Emotions, Scene,
Flags, each of which contains 1 noisy label, and we take the
Average Precision (AP) and One Error (OE) as evaluation
metrics. As shown in Table 3, we can find that PML-ODM
achieves higher Average Precision (AP) and lower One Er-
ror (OE) than PML-ODMf , which validates the superiority
of our proposed feature prototype.

Prototype Emotions Scene Flags

AP OE AP OE AP OE

PML-ODMf .717 .411 .782 .368 .782 .247
PML-ODM .771 .322 .803 .336 .815 .184

Table 3: Feature prototype comparison test

To analyze their relative performance, we also conduct the
Friedman test. Table 4 shows the Friedman statistical results
as well as the corresponding critical value with respect to six
evaluation criteria, from the results we can find that all the
Friedman statistical values are greater than the critical value
which indicates that the performance of PML-ODM is re-
markably different from other methods. For each criterion,
the null hypothesis of distinguishable performance within the
four baselines is rejected at 0.05 significance level.

Furthermore, the post-hoc Bonferroni-Dunn test is utilized
to analyze the relative performance of our PML-ODM with
other baselines. The control method is our PML-ODM, and
the difference of average ranking between control method
and other methods will be calibrated with the Critical Dif-
ference (CD). The PML-ODM is believed to have promi-
nently different performance to another baselines if the aver-
age ranking gap is larger than one CD. Figure 1 displays the
results of Bonferroni-Dunn test on six evaluation metrics. For
each baselines, the average ranking in terms of each evalua-

Evaluation Metric Friedman Statistics Critical Value

Hamming Loss 15.7653 2.4982
Ranking Loss 20.3861
Coverage 25.3154
Average Precision 29.1573
Macro-F1 46.9472
Micro-F1 55.1361

Table 4: Friedman statistics in terms of evaluation metric and the
critical value at 0.05 significance level (baselines k = 5, data sets
N = 24)

tion metric is marked on the axis, and for the methods whose
distance to the control method are less than one CD, we use
the thick line to connect them with PML-ODM. Obviously,
PML-ODM significantly outperforms most of the baselines.

6 Conclusion
In this paper, we propose the Partial Multi-Label Optimal
margin Distribution Machine (PML-ODM). To sum up, our
contributions are threefold: 1) we first introduce the power-
ful margin distribution into partial multi-label learning; 2) we
propose an ingenious method to adaptively refine the feature
prototype during the training process rather than fixing it as
constant; 3) we leverage non-linear kernels to further improve
the generalization performance for linearly inseparable data.
In the future, we will make some theoretical analysis on our
proposed method.
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