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Abstract
Learning generative models and inferring latent tra-
jectories have shown to be challenging for time se-
ries due to the intractable marginal likelihoods of
flexible generative models. It can be addressed by
surrogate objectives for optimization. We propose
Monte Carlo filtering objectives (MCFOs), a family
of variational objectives for jointly learning para-
metric generative models and amortized adaptive
importance proposals of time series. MCFOs ex-
tend the choices of likelihood estimators beyond
Sequential Monte Carlo in state-of-the-art objec-
tives, possess important properties revealing the
factors for the tightness of objectives, and allow
for less biased and variant gradient estimates. We
demonstrate that the proposed MCFOs and gradi-
ent estimations lead to efficient and stable model
learning, and learned generative models well ex-
plain data and importance proposals are more sam-
ple efficient on various kinds of time series data.

1 Introduction
Learning a generative model with latent variables for time se-
ries is of interest in many applications. However, exact in-
ference and marginalization are often intractable for flexi-
ble generative models, making it challenging to learn. There
are a few popular approaches to circumvent these difficul-
ties: implicit methods that learn generative models by com-
paring generated samples to data distributions like Gen-
erative Adversarial Networks (GANs) [Goodfellow et al.,
2014]; and explicit methods that define surrogate objec-
tives of the intractable marginal log-likelihood like Varia-
tional Autoencoder (VAEs) [Kingma and Welling, 2014], or
tractable marginals by invertible transformations like Nor-
malizing Flows (NFs) [Rezende and Mohamed, 2015]. Ex-
plicit methods are often preferable when latent/encoded in-
formation is of importance, e.g. filtering and smoothing prob-
lems for some subsequent tasks. In this work, we mainly fo-
cus on the second approach and propose a family of surrogate
filtering objectives to learn generative models and adaptive
importance proposal models for time series.

∗Contact Author

Researchers have introduced various surrogate objectives
using variational approximations of intractable posterior for
time series, known as evidence lower bounds (ELBOs), such
as STONE [Bayer and Osendorfer, 2014], VRNN [Chung
et al., 2015], SRNN [Fraccaro et al., 2016], DKF [Krish-
nan et al., 2017], KVAE [Fraccaro et al., 2017]. However,
they typically suffer from a general issue caused by the lim-
ited flexibility of the variational approximations, thus restrict-
ing the learning of generative models. To alleviate this con-
straint, IWAE [Burda et al., 2016] proposes a tighter objective
by averaging importance weights of multiple samples drawn
from a variational approximation. Monte Carlo objectives
(MCOs) [Mnih and Rezende, 2016] generalizes the IWAE
objective and ELBOs for non-sequential data. AESMC [Le et
al., 2018], FIVO [Maddison et al., 2017], and VSMC [Naes-
seth et al., 2018] extend this idea for sequential data using
the estimators by Sequential Monte Carlo (SMC) and propose
closely related surrogates objectives for learning.

Inspired by MCOs and the sequential variants, we propose
Monte Carlo filtering objectives (MCFOs), a new family of
surrogate objectives for generative models of time series, that

• broadens previously limited choices of estimators for
time series other than SMC,

• possesses unique properties such as monotonic conver-
gence and asymptotic bias, revealing the factors that de-
termine a tighter objective: the number of samples and
importance proposals,

• reduces high variance in gradient estimates of proposal
models common in state-of-the-art algorithms, without
introducing bias, which allows for faster convergence
and sample efficient proposal models.

The paper is organized as follows: we first review the def-
inition of MCOs and discuss common limitations of existing
filtering variants. In Section 3, we derive MCFOs, explain
their relations to other objectives and important properties.
We demonstrate two instances of MCFOs with SMC and Par-
ticle Independence Metropolis-Hasting (PIMH) to learn mod-
els on 1) Linear Gaussian State Space Models (LGSSMs), 2)
nonlinear, non-Gaussian, high dimensional SSMs of video se-
quences, 3) non-Markovian music sequences1.

1See [Chen et al., 2021] for a complete version of this manuscript
including appendices.
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2 Background
2.1 Monte Carlo Objectives
For a generative model with observation x and latent state z,
a Monte Carlo objective (MCO) [Mnih and Rezende, 2016] is
defined as an estimate of the marginal log-likelihood log p(x)
by samples drawn from a proposal distribution q:

Eq(z)[logR] = log p(x)− Eq(z)[log
p(x)

R
] ≤ log p(x), (1)

where R is any unbiased estimator of p(x) that E[R] = p(x).
It is also a lower bound of log p(x) as can be shown using
Jensen’s inequality. When an estimator takes a single sam-
ple from q and R = p(x, z)/q(z), the MCO can be iden-
tified as ELBO in variational inference [Mnih and Rezende,
2016]. When an estimator averages importance weights from
K samples, RK = K−1

∑K
i=1 p(z

i,x)/q(zi), it yields an
importance weighted ELBO (IW-ELBO) [Burda et al., 2016;
Domke and Sheldon, 2018]. This bound is proven to be
tighter with increasing K and asymptotically converges to
log p(x), as K →∞.

2.2 Sequential Monte Carlo
For a sequential observation x1:T with latent trajectory z1:T ,
the generative process can be factorized as p(z1:T ,x1:T ) =

p(z1)p(x1|z1)
∏T
t=2 p(zt|z1:t−1,x1:t−1)p(xt|z1:t,x1:t−1).

Inferring latent trajectory, p(z1:T |x1:T ), is of importance
for marginalization and to learn generative models, how-
ever, usually intractable. Sequential Monte Carlo (SMC)
approximates a target distribution, specifically p(z1:T |x1:T ),
using a set of weighted sample trajectories {w̃iT , ẑi1:T }i=1:K .
It combines Sequential Importance Sampling (SIS) with
resampling, consisting of four main steps:

Sample K particles ẑit from proposal q(zt|z̄i1:t−1,x1:t)

with previously resampled trajectories z̄i1:t−1;

Append to trajectory ẑi1:t = (ẑit, z̄
i
1:t−1);

Weight trajectories with w̃it = wit/
∑K
j=1 w

j
t , where

wit = p(x1:t, ẑ
i
1:t|x1:t−1, z̄

i
1:t−1)/q(ẑit|z̄i1:t−1,x1:t);

Resample from {w̃it, ẑi1:t} to obtain equally-weighted

particles z̄i1:t = ẑ
Ai

t−1

1:t , with ancestral indices Ait−1.
This iteration continues until time T . Besides being an ap-
proximate inference, SMC also gives an unbiased estimate of
the marginal likelihood p(x1:T ) by the importance weights:

p̂(x1:T ) =
T∏
t=1

(
1

K

K∑
i=1

wit

)
. (2)

The variance of this estimate, accessed by the so-called Effec-
tive Sample Size (ESS) for sample efficiency, is largely de-
pendent on the proposal distributions q. We refer to [Doucet
and Johansen, 2009] for a more in-depth discussion.

2.3 Variational Filtering Objectives
To learn a generative model for time series data, various
ELBO-like surrogate objectives have been proposed using
different factorizations of generative models and approxima-
tions q(z1:T |x1:T ). IW-ELBO can be extended to sequences

by changing from Importance Sampling (IS) to SIS estimator
RK = K−1

∑K
i=1 p(z

i
1:T ,x1:T )/q(zi1:T ). However, such an

estimator suffers from exponential growth of variance with
the length of sequences.To improve this, AESMC, FIVO and
VSMC propose three closely related MCOs, exploiting the
SMC estimators (2):

ELBOSMC = EQSMC

[ T∑
t=1

log

(
1

K

K∑
i=1

wit

)
︸ ︷︷ ︸

RK
t

]

QSMC(z1:K1:T ) =

∫ ( K∏
i=1

q(zi1)

)
T∏
t=2

K∏
i=1

q(zit|zAi
t−1

1:t−1) ·
w
Ai

t−1

t−1∑
j w

j
t−1

 dA1:K
1:T−1.

(3)

It is found that the learning of generative models via the ob-
jective suffers high variance in gradient estimation, since im-
portance weight wit does not allow for smooth gradient com-
putation. We show that simply ignoring some high variance
term in the gradient estimate as the suggested solution in pre-
vious methods, introduces an extra bias and leads to non-
optimality of proposal and generative parameters at conver-
gence. To tackle these problems and extend variational filter-
ing objectives, we propose MCFOs, and discuss their impor-
tant properties in the following sections.

3 Monte Carlo Filtering Objectives

Instead of constructing variational lower bound from (2), we
leverage the decomposition of joint marginal log-likelihood:

log p(x1:T ) = log p(x1) +
T∑
t=2

log p(xt|x1:t−1). (4)

Nonetheless, log p(xt|x1:t−1) is usually intractable, which
makes learning a generative model by maximizing (4) only
possible in some limited cases. Instead, we define LKt , an
MCO for each log p(xt|x1:t−1) with K samples:

LKt = EQK
t

[logRKt ],

QKt (z1:K1:t |x1:t) = p(z1:K1:t−1|x1:t−1) ·
K∏
i=1

q(zit|zi1:t−1,x1:t),

RKt =
1

K

K∑
i=1

p(zi1:t,x1:t)

p(zi1:t−1,x1:t−1)q(zit|zi1:t−1,x1:t)
,

specifically LK1 for log p(x1),

QK1 (z1:K1 |x1) =
K∏
i=1

q(zi1|x1), RK1 =
1

K

K∑
i=1

p(zi1,x1)

q(zi1|x1)
,

(5)
where q(zt|z1:t−1,x1:t) and q(z1|x1) are the proposal dis-
tributions, RKt and RK1 are the unbiased estimators of
p(xt|x1:t−1) and p(x1) with K samples; see [Chen et al.,
2021, Appendix B.1] for derivations. Summing up the series
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of MCOs , a Monte Carlo filtering objective (MCFO),LMCFO:

LKMCFO(x1:T , p, q) =
T∑
t=1

LKt ≤ log p(x1:T ),

is defined as the lower bound of log p(x1:T ). To avoid nota-
tion clutter, we leave out arguments when the context permits.

Considering the filtering problem for which future ob-
servations have no impact on the current posterior, replac-
ing p(z1:K1:t−1|x1:t−1) in QKt with K sample approximations
p̂(z1:K1:t−1|x1:t−1) =

∑K
i=1 w̃

i
t−1δ(z

i
1:t−1 − ẑi1:t−1) retrieves

the definition of ELBOSMC in (3). The objective can be con-
sidered as an estimate of MCFOs by SMC and is consistent
to MCFOs with the asymptotic bias of O(1/K); see [Chen
et al., 2021, Appendix B.2] for details. MCFOs can freely
choose other estimator alternatives such as PIMH [Andrieu et
al., 2010] and unbiased MCMC with couplings [Jacob et al.,
2017] to further improve sampling efficiency of SMC.

3.1 Properties of MCFOs
Except for the general properties inherited from MCOs such
as bound and consistency, the convergence of MCFOs is
monotonic like IW-ELBO, but unique to earlier filtering ob-
jectives. Additionally, the asymptotic bias of MCFOs can be
shown to relate to the total variances of estimators.
Proposition 1. (Properties of MCFOs). Let LKMCFO be an
MCFO of log p(x1:T ) by a series of unbiased estimators Rt
of p(xt|x1:t−1) using K samples. Then,

a) (Bound) log p(x1:T ) ≥ LKMCFO.

b) (Monotonic convergence) LK+1
MCFO ≥ LKMCFO ≥ . . . ≥

L1
MCFO.

c) (Consistency) If p(z1,x1)/q(z1|x1) and
p(z1:t,x1:t)/(p(z1:t−1,x1:t−1)q(zt|z1:t−1,x1:t)) for
all t ∈ [2, T ] are bounded, then LKMCFO → log p(x1:T )
as K→∞.

d) (Asymptotic Bias) For a large K, the bias of bound is
related to the variance of estimator Rt, V[Rt],

lim
K→∞

K(log p(x1:T )− LKMCFO) =
T∑
t=1

V[Rt]

2p(xt|x1:t−1)2
.

Proof. See [Chen et al., 2021, Appendix B.3].
Although increasing the number of samples K leads to a

tighter MCFO, a large K is infeasible in terms of computa-
tional and memory. It has also been shown that larger K may
deteriorate to learn proposals [Rainforth et al., 2018]. An ap-
propriate K is a critical hyperparameters that affects learn-
ing both generative and proposal models. On the other hand,
asymptotic bias suggests another way for a tighter bound,
i.e. using less variant estimators Rt, which has been over-
looked in recent literature. It explains why the bounds defined
by SMC are tighter than IW-ELBO by SIS. Thus, the proposal
model that permits less variantRt, either designed or learned,
is another key instrument.

3.2 Optimal Importance Proposals
Considering proposals q as an argument of MCFOs, we can
derive the optimal proposals when they maximize the bound.

Proposition 2. (Optimal importance proposals q∗ for an
MCFO). The bound is maximized and exact to log p(x1:T )
when the importance proposals are
q∗(z1|x1) = p(z1|x1),

for all t = 2 : T

q∗(zt|z1:t−1,x1:t) =
p(z1:t|x1:t)

p(z1:t−1|x1:t−1)
= p(zt|z1:t−1,x1:t).

Proof. See [Chen et al., 2021, Appendix B.4].
The optimal importance proposals always propagate sam-

ples from the previous filtering posterior p(z1:t−1|x1:t−1) to
the new target p(z1:t|x1:t), thus leads MCFOs to be exact. For
SSMs that assume Markovian latent variables and conditional
independent observations, the optimal importance proposals
are further simplified to p(zt|zt−1,xt) [Doucet et al., 2000,
Proposition 2]. For common intractable problems, though the
filtering posteriors and optimal proposals are not accessi-
ble, we can learn a parametric adaptive importance proposal
model jointly with generative models by optimizing MCFOs.

3.3 Learning Generative and Proposal Models

To illustrate the learning of a flexible importance proposal
and/or a generative model, we explicitly parameterize genera-
tive model pθ and proposal model qφ by θ and φ respectively,
and optimize them by gradient-based algorithms.

Earlier methods suffer from high variance in gradient esti-
mate due to the second term in (6) in Table 1. This is mainly
caused by 1) large magnitudes of log p̂(x1:T ), especially at
the beginning of training; and 2) high variance in the gra-
dient for non-smooth categorical distribution of discrete an-
cestral indices Ait−1 in SMC. FIVO and VSMC propose to
ignore the high variance term to stabilize and accelerate con-
vergence. However, it comes at the cost of an induced bias
that cannot be eliminated by increasing the number of sam-
plesand deteriorates the convergence to optimum [Roeder et
al., 2017].

MCFOs can circumvent the issue for OφLKMCFO by repa-
rameterization trick [Kingma and Welling, 2014] without an
extra bias. Assuming the proposal distribution qφ is reparam-
eterizable, OφLKt is estimated less variantly by:

OφLKt = Epθ(zi
1:t−1|x1:t−1)

[
OφEqφ(zi

t|zi
1:t−1,x1:t)

log
1

K

K∑
i=1

pθ(zi1:t,x1:t)

pθ(zi1:t−1,x1:t−1)qφ(zit|zi1:t−1,x1:t)

]
'Oφfθ,φ(x1:t, ẑ

1:K
1:t−1,

gφ(ẑ11:t−1, ε
i,x1:t), . . . , gφ(ẑK1:t−1, ε

K ,x1:t)︸ ︷︷ ︸
reparameterization trick, ẑi

t=gφ(ẑi
1:t−1,ε

i,x1:t)

),

(7)

where {ẑi1:t}i=1:K are K sample trajectories, e.g. from SMC,
and can be specified with ancestral indices Ait−1 when re-
sampling applies, fθ,φ(·) is the logarithm average function
log 1

K

∑K
i=1

( ·
·
)
, and εi is a sample from a base distribution

p(ε). The same trick cannot directly apply to OθLKt , because
of the existence of θ in the expectation. Instead, we use the
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Method Oφ Oθ

MCFO See (7) See (8)

AESMC/FIVO/VSMC Oθ,φ log p̂(x1:T ) +

T∑
t=2

log
p̂(x1:t)

p̂(x1:t−1)

(
K∑
i=1

Oθ,φ log(w
Ai

t−1
t−1 /

∑
j

wj
t−1)

)
(6)

IWAE Oθ,φfθ,φ(x1:T , g̃φ(x
1
1:T , ε

1
1:T ), . . . , g̃φ(x1:T , ε

K
1:T )), where g̃ is reparameterized function of qφ(z1:T |x1:T )

NASMC
∑T

t=1

∑K
i=1 w̃

i
tOφ log qφ(ẑ

i
t|x1:t, ẑ

Ai
t−1

1:t−1)
∑T

t=1

∑K
i=1 w̃

i
tOθ log pθ(ẑ

i
t,xt|x1:t−1, ẑ

Ai
t−1

1:t−1)

Table 1: Comparison of gradient estimates by MCFO, AESMC/FIVO/VSMC, IWAE, NASMC.

score function of p(xt|x1:t−1) to estimate OθLKt :

OθLKt '
K∑
i=1

w̃itOθ log pθ(xt, ẑ
i
t|x1:t−1, ẑ

i
1:t−1), (8)

where w̃it are the normalized importance weights of ẑi1:t;
see [Chen et al., 2021, Appendix B.5, B.6] for detailed deriva-
tion of (7) and (8). Essentially, the score function estimate is
equivalent as dropping the high variance term in (6) for Oθ .

NASMC [Gu et al., 2015] is closely related to MCFOs with
SMC implementation in terms of Oθ , and RWS [Bornschein
and Bengio, 2015] is a special case of NASMC that replaces
SMC by SIS. These two methods, however, construct a differ-
ent surrogate objectives for optimizing φ. While NASMC and
RWS minimize the approximated inclusive KL-divergence,
KL(p̂θ(z1:t|x1:t)||qφ(z1:t|x1:t)), MCFOs minimize the dis-
clusive KL-divergence, KL(QKt (z1:K1:t |x1:t)||pθ(z1:K1:t |x1:t)),
on the extended latent space as the dual problem of maxi-
mizing surrogate objectives. When the family of proposals
is adequately flexible to include simple true posteriors, both
NASMC and MCFOs converge to the same optimum. To fit
a potentially complex multi-modal posterior, the simple pro-
posal learned by NASMC and RWS tends to have undesired
low density everywhere in order to cover all modalities, thus
impairs the sample efficiency of estimators and restricts the
learning of generative models. For MCFOs, QKt (z1:K1:t |x1:t)
is naturally a mixture of simple proposal distributions qφ with
importance weights w̃it−1, which remains flexible to fit multi-
modal posteriors, while sustaining sample efficiency.

Furthermore, when the latent and observation variables are
assumed to be finite-order Markovian, both gradients of MC-
FOs can be updated incrementally which makes them well
suited for arbitrarily long sequences and data streams.

4 Experiments

We seek to evaluate our method in experiments by answer-
ing: 1) what is the side-effect of ignoring the high vari-
ance term as proposed in earlier methods; 2) do the gradi-
ent estimates of MCFOs reduce the variance without the cost
of additional bias; 3) how does the number of samples af-
fect the learning of generative models and how sample effi-
cient are the learned proposal models? We evaluate two in-
stances of MCFOs, MCFO-SMC and MCFO-PIMH, using
SMC and PIMH respectively to learn generative and proposal
models on LGSSM, non-Gaussian, nonlinear, high dimen-
sional SSMs of video sequences, and non-Markovian poly-

phonic music sequences2. We restrict the form of posteriors
to qφ(zt|zt−1,xt) for SSM cases to encode history into low
dimensional representations, while using VRNN to accom-
modate long temporal dependencies for non-Markovian data.
To be noted, all models are amortized over all time instances.

4.1 Gradient Estimation
Following [Rainforth et al., 2018; Le et al., 2018], we carry
out experiments to examine gradient estimators on a tractable
LGSSM, defined by θ1 and θ2, and importance proposal
qφ(zt|zt−1,xt), parameterized by φ:

p(z1) = N (z1;µ0, σ
2
0), pθ(zt|zt−1) = N (zt; θ1zt−1,ΣQ),

pθ(xt|zt) = N (xt; θ2zt,ΣR),

qφ(z1|x1) = N (z1;φ1x1 + φ2,Σq,1),

qφ(zt|zt−1, xt) = N (zt;φ3zt−1 + φ4xt + φ5,Σq,t).
(9)

The gradient estimates are computed by backwards au-
tomatic differentiationon the objectives defined by IWAE,
AESMC and MCFO-SMC w.r.t. θ and φ using sequences
generated by the LGSSM. AESMC is implemented ignoring
the high variance term in (6) as suggested. Figure 1 shows
1000 gradient samples by all three methods under different
numbers of samples, K, when both θ and φ are at optima.

For Oφ, the induced bias of AESMC is distinct and does
not disappear with increasing K, which makes parameters
unable to converge to the exact optimum. Although increas-
ing K decreases the variance for all methods, it is spe-
cially detrimental to AESMC for which gradient estimates
are barely close to true gradients [Rainforth et al., 2018], but
beneficial to IWAE and MCFO. For Oθ, MCFO and AESMC
have similar estimates close to the analytical gradients, while
IWAE estimates are substantially deviated due to the high
variance of SIS estimators. Training by MCFOs is expected to
have a similar performance but with less computations, com-
pared to the alternating strategy to optimize IWAE objective
for φ and AESMC for θ [Le et al., 2018]. See [Chen et al.,
2021, Appendix D.1] for gradient estimates at other locations.

4.2 Learning and Inference on LGSSMs
To examine the learning of generative and proposal param-
eters, we generate 5000 trajectories by LGSSM in (9) with
θ1 = 0.9, θ2 = 1.2, of which 4000 are for training and rest
for testing. Figure 2 illustrates 5 benchmarking methods in-
cluding bootstrap filtering [Särkkä, 2013], IWAE, AESMC,

2The implementation of our algorithms and experiments are
available at https://github.com/ssajj1212/MCFO.
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Figure 2: Left: Negative marginal log-likelihoods (NLLs) on test data. Middle: Gradient norms of parameters. Right: Effective sample size
(ESS). Lines indicate the average of 3 random seed trainings and shaded areas for standard deviation.

NASMC and MCFO-SMC, using the same initialization and
optimizer; see [Chen et al., 2021, Appendix D.2] for experi-
ment setups. Note that bootstrap uses prior as proposal, thus
no proposal parameter needs to learn. To evaluate the perfor-
mance of learned proposal models for sample efficiency and
tightness of lower bound, we report the variance of estimators
by ESS = (

∑
i(w̃

i
t)

2)−1, and average over test sequences.

MCFO-SMC and NASMC learn more sample efficient pro-
posal models than bootstrap, AESMC and IWAE, and con-
verge to the exact analytic optimum. Although AESMC does
not differ significantly in terms of NLLs from MCFO and
NASMC, the bias in gradient estimates shown previously,
causes it slow to converge and cannot converge to the ex-
act optimum. MCFO learns both generative and proposal
models faster than AESMC. For this simple case, NASMC
converges faster than MCFOs, since fitting a Gaussian pro-
posal with NASMC to the uni-modal Gaussian posterior of
LGSSM is easier than fitting a mixture of Gaussian propos-
als with MCFO. However, NASMC may fail to learn multi-
modal posteriors for general intractable problems, as shown
in the next section. Furthermore, increasing the number of
samples and replacing SMC by PIMH with different number
of sweeps only slightly improve the learning by MCFOs, see

more results in [Chen et al., 2021, Appendix D.2].

4.3 Video Sequences
To assess MCFOs in more general cases, we simulate 1000
video sequences of a single pendulum system in gym, out
of which 500 are used for testing. Each sequence contains
20 32 × 32 pixel grayscale images representing factorized
Bernoulli distributions of high-dimensional observations; see
examples in Figure 3. The transition and proposal distri-
butions, pθ(zt|zt−1) and qφ(zt|xt, zt−1), are parameteric
Gaussian MLPs, while observation models, pθ(xt|zt), are
parameteric Bernoulli MLPs. The latent dimension is set to
3, and optimizers and model definitions are the same for all
methods; see [Chen et al., 2021, Appendix E].

Figure 3 shows the commonly used one-step prediction er-
rors in observations and ESSs on the test set, evaluated by
SMC with 1000 particles on the models trained by AESMC,
MCFO-SMC and MCFO-PIMH with K = 10, 20, 50, 100.
Additionally, Table 2 reports both metrics averaged over the
last 1000 iterations of trainings. Note that NASMC fails to
converge in this task regardless of K. Compared to AESMC,
both MCFO-SMC and MCFO-PIMH, show quicker conver-
gences, lower prediction errors and higher ESSs that indicate
more sample efficient proposal models, especially at smaller
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Figure 3: Left, Middle: One-step prediction errors and ESS on the test sets of generative and proposal models learned by AESMC, MCFO-
SMC, MCFO-PIMH with K = 10, 20, 50, 100, evaluated by SMC with 1000 samples and moving average over 3 evaluation runs. Right: Two
sequences with one-step predictions by AESMC, MCFO-SMC and MCFO-PIMH with K = 100. Each row is Bernoulli mean of observations,
the one-step predictions and the absolute differences between predictions and observations by AESMC, MCFO-SMC and MCFO-PIMH.

K AESMC MCFO-SMC MCFO-PIMH K AESMC MCFO-SMC MCFO-PIMH
Prediction 10 65.53 ± 0.18 47.54 ± 0.94 42.14 ± 1.49 50 50.84 ± 0.16 34.06 ± 1.46 37.01 ± 1.47
ESS 160.04 ± 1.97 180.97 ± 3.16 195.62 ± 3.05 112.53 ± 2.42 139.24 ± 2.46 168.78± 4.51
Prediction 20 51.13 ± 0.37 37.18 ± 0.72 33.82 ± 2.06 100 37.87 ± 0.21 36.17 ± 1.82 33.71 ± 0.98
ESS 122.51 ± 1.89 172.99 ± 3.46 163.01 ± 2.10 81.93 ± 0.82 130.09 ± 2.12 104.53 ± 1.94

Table 2: One-step prediction errors and ESS on the test set of generative and proposal models learned by AESMC, MCFO-SMC, MCFO-
PIMH with K = 10, 20, 50, 100, evaluated by SMC with 1000 samples averaged over last 1000 iterations.

Methods Nottingham JSB chorales MuseData Piano-midi.de
MCFO-SMC-10 2.23 ±0.16 3.87 ±0.09 3.79 ±0.10 6.24±0.14
MCFO-SMC-20 2.14 ±0.13 3.69 ±0.12 3.65 ±0.11 6.11±0.15
MCFO-PIMH-10 2.12 ±0.10 3.63 ±0.07 3.59 ±0.08 6.08±0.09
MCFO-PIMH-20 2.06 ±0.08 3.54 ±0.08 3.48 ±0.10 6.03 ±0.12
FIVO 2.58 † (2.60 ± 0.18) 4.08 † (3.90 ±0.14) 5.80 † (5.85±0.15) 6.41 † (6.37±0.19)
IWAE 2.52 † (2.50 ± 0.25) 5.77 † (5.43±0.20) 6.54 † (6.28±0.23) 6.74 † (6.54±0.21)
NASMC [Gu et al., 2015] † 2.72 3.99 6.89 7.61
SRNN [Fraccaro et al., 2016] † 2.94 4.74 6.28 8.20
STONE [Bayer and Osendorfer, 2014] † 2.85 6.91 6.16 7.13

Table 3: Estimated NLL per time on polyphonic test sets by SMC with 500 particles. MCFOs, FIVO and IWAE are evaluated by 10 runs, and
both FIVO and IWAE, trained the same as MCFO-SMC-10, are reported in parenthesis. † is originally reported.

K. Furthermore, MCFOs implicitly regularize to learn sim-
pler generative models, see [Chen et al., 2021, Appendix E].
Although MCFO-PIMH converges faster than MCFO-SMC
and AESMC because of better Monte Carlo approximations,
the improvement at convergence is marginally small consid-
ering that it requires more computations for each sweep in
PIMH. Increasing K does improve generative model learn-
ing, but slightly impairs the sample efficiency of proposal
models. No statistically significant gain is observed to in-
crease K over 200. Therefore, the sweet spot of K needs to
balance the performance of generation and inference.

4.4 Polyphonic Music
To demonstrate the performance of MCFOs for non-
Markovian high dimensional data with complex temporal de-
pendencies, we train VRNN models with MCFO-SMC and
MCFO-PIMH on four polyphonic music datasets [Boulanger
et al., 2012]. We preprocess all musical notes to 88-
dimensional binary sequences and configure generative and
proposal models as [Maddison et al., 2017]; see [Chen et al.,
2021, Appendix F] for experiment details. Table 3 reports the
estimated NLLs using 500 samples, as with the other bench-

marked methods, on the models trained by MCFO-SMC and
MCFO-PIMH with 10, 20 samples. As can be seen for all four
datasets, MCFO-SMC and MCFO-PIMH are either superior
or comparable to the other state-of-the-art algorithms.

5 Conclusion
We introduce Monte Carlo filtering objectives (MCFOs), a
new family of variational filtering objectives to learn gener-
ative and importance proposal models for time series. MC-
FOs extend the choices of estimators to use and accommodate
some theoretical properties for tighter objectives. We show
empirically that MCFOs and the proposed gradient estimators
facilitate to learn parametric generative and proposal mod-
els more stably and efficiently, compared to state-of-the-art
methods in various tasks. In future works, we would like to
explore the equivalence of MCFOs for smoothing problems
and explore tractable MCFOs by flow-based methods.
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