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Abstract

Recently, the teacher-student knowledge distil-
lation framework has demonstrated its poten-
tial in training Graph Neural Networks (GNNs).
However, due to the difficulty of training over-
parameterized GNN models, one may not eas-
ily obtain a satisfactory teacher model for distil-
lation. Furthermore, the inefficient training pro-
cess of teacher-student knowledge distillation also
impedes its applications in GNN models. In this
paper, we propose the first teacher-free knowl-
edge distillation method for GNNs, termed GNN
Self-Distillation (GNN-SD), that serves as a drop-
in replacement of the standard training process.
The method is built upon the proposed neighbor-
hood discrepancy rate (NDR), which quantifies the
non-smoothness of the embedded graph in an effi-
cient way. Based on this metric, we propose the
adaptive discrepancy retaining (ADR) regularizer
to empower the transferability of knowledge that
maintains high neighborhood discrepancy across
GNN layers. We also summarize a generic GNN-
SD framework that could be exploited to induce
other distillation strategies. Experiments further
prove the effectiveness and generalization of our
approach, as it brings: 1) state-of-the-art GNN dis-
tillation performance with less training cost, 2) con-
sistent and considerable performance enhancement
for various popular backbones.

1 Introduction

Knowledge Distillation (KD) has demonstrated its effective-
ness in boosting compact neural networks. Yet, most of
the KD researches focus on Convolutional Neural Networks
(CNNs) with regular data as input instances, while little at-
tention has been devoted to Graph Neural Networks (GNN5)
that are capable of processing irregular data. A significant
discrepancy is that GNNs involve the topological informa-
tion into the updating of feature embeddings across network

*This work is done when Yuzhao Chen works as an intern in
Tencent Al Lab
fCorresponding authors: Yatao Bian and Xi Xiao

2278

layers, which is not taken into account in the existing KD
schemes, restricting their potential extensions to GNNs.

A recent work, termed LSP [2020], proposed to combine
KD with GNNs by transferring the local structure, which is
modeled as the distribution of the similarity of connected
node pairs, from a pre-trained teacher GNN to a light-weight
student GNN. However, there exists a major concern on the
selection of qualified teacher GNN models. On the one hand,
it’s likely to cause performance degradation once improper
teacher networks are selected [2019]. On the another hand,
the performance of GNNs is not always indicated by their
model capacity due to the issues of over-smoothing [2018]
and over-fitting [2019], which have caused obstacles to train
over-parameterized and powerful GNNs. As a result, every
time encountering a new learning task, one may spend sub-
stantial efforts in searching for a qualified GNN architecture
to work as a teacher model, and thus the generalization abil-
ity of this method remains a challenge. Another barrier of the
adopted conventional teacher-student framework is the ineffi-
ciency in the training process. Such distillation pipeline usu-
ally requires two steps: first, pre-training a relatively heavy
model, and second, transferring the forward predictions (or
transformed features) of the teacher model to the student
model. With the assistance of the teacher model, the train-
ing cost would tremendously increase more than twice than
an ordinary training procedure.

In this work, we resort to cope with these issues via
the self-distillation techniques (or termed teacher-free dis-
tillation), which perform knowledge extraction and transfer
between layers of a single network without the assistance
from auxiliary models [2019; 2019]. Our work provides the
first dedicated self-distillation approach designed for generic
GNNs, named GNN-SD. The core ingredient of GNN-SD
is motivated by the mentioned challenge of over-smoothing,
which occurs when GNNs go deeper and lead the node fea-
tures to lose their discriminative power. Intuitively, one may
avoid such dissatisfied cases by pushing node embeddings in
deep layers to be distinguishable from their neighbors, which
is exactly the property possessed by shallow GNN layers.

To this end, we first present the Neighborhood Discrepancy
Rate (NDR) to serve as an approximate metric in quantify-
ing the non-smoothness of the embedded graph at each GNN
layer. Under such knowledge refined by NDR, we propose
to perform knowledge self-distillation by an adaptive dis-
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crepancy retaining (ADR) regularizer. The ADR regularizer
adaptively selects the target knowledge contained in shallow
layers as the supervision signal and retains it to deeper lay-
ers. Furthermore, we summarize a generic GNN-SD frame-
work that could be exploited to derive other distillation strate-
gies. As an instance, we extend GNN-SD to involve another
knowledge source of compact graph embedding for better
matching the requirements of graph classification tasks. In
a nutshell, our main contributions are:

* We present GNN-SD, to our knowledge, the first generic
framework designed for distilling the graph neural net-
works with no assistance from extra teacher models. It
serves as a drop-in replacement of the standard training
process to improve the training dynamics.

We introduce a simple yet efficient metric of NDR to re-
fine the knowledge from each GNN layer. Based on it,
the ADR regularizer is proposed to empower the adap-
tive knowledge transfer inside a single GNN model.

We validate the effectiveness and generalization ability
of our GNN-SD by conducting experiments on multiple
popular GNN models, yielding the state-of-the-art dis-
tillation result and consistent performance improvement
against baselines.

2 Related Work

Graph Neural Network Recently, Graph Neural Networks
(GNNs), which propose to perform message passing across
nodes in the graph and updating their representation, has
achieved great success on various tasks with irregular data,
such as node classification, protein property prediction to
name a few. Working as a crucial tool for graph representa-
tion learning, however, these models encounter the challenge
of over-smoothing. It says that the representations of the
nodes in GNNs would converge to a stationary point and be-
come indistinguishable from each other when the number of
layers in GNNs increases. This phenomenon limits the depth
of the GNNs and thus hinders their representation power.

One solution to alleviate this problem is to design network
architectures that can better memorize and utilize the initial
node features. Representative papers includes GCN [2016],
JKNet [2018b] DeeperGCN [2020], GCNII [2020b], etc.
On the other hand, methods like DropEdge [2019] and
AdaEdge [2020a] have proposed solutions from the view of
conducting data augmentation.

In this paper, we design a distillation approach tailored for
GNNs, which also provides a feasible solution to this prob-
lem. Somewhat related, Chen et al. [2020a] proposed a reg-
ularizer to the training loss, which simply forces the nodes in
the last GNN layer to obtain a large distance between remote
nodes and their neighboring nodes. However, it can only ob-
tain a slight performance improvement.

Teacher-Student Knowledge Distillation Knowledge dis-
tillation [2015], aims at transferring the knowledge hidden in
the target network (i.e. teacher model) into the online net-
work (i.e. student model) that is typically light-weight, so
that the student achieves better performance compared with
the one trained in an ordinary way. Generally, there exist two
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technical routes for KD. The first one is closely related to la-
bel smoothing [2020], which utilizes the output distribution
of the teacher model to serve as a smooth label for training
the student. Another line of research is termed as feature dis-
tillation [2014; 2016; 2018], which exploits the semantic in-
formation contained in the intermediate representations. As
summarized in [2019], with different concerning knowledge
to distill, these methods can be distinguished by the formula-
tion of feature transformation and knowledge matching loss
function.

Recently, Yang et al. [2020] studied the teacher-student
distillation methods in training GNNs. They extract the
knowledge of local graph structure based on the similarity
of connected node pairs from the teacher model and student
model, then perform distillation by forcing the student model
to match such knowledge. However, the performance im-
provement resulted from such conventional distillation frame-
work does not come with a free price, as discussed in Sec-
tion 1.

Self-Distillation For addressing the issues of the teacher-
student framework, a new research area termed teacher-free
distillation, or self-distillation, attracts a surge of attention
recently. Throughout this work, we refer this notion to the
KD techniques that perform knowledge refining and transfer
between network layers inside a single model. In this way,
the distillation learning could be conducted with a single for-
ward propagation in each training iteration. BYOT [2019]
proposed the first self-distillation method. They consider that
the teacher and student are composed in the same networks
since the deeper part of the networks can extract more seman-
tic information than the shallow one. Naturally, they manage
to distill feature representations as well as the smooth label
from deeper layers into the shallow layers. Similarly, Hou et
al. [2019] proposed to distill the attention feature maps from
the deep layers to shallow ones for lane detection. However,
these methods focus on the application of CNNs, neglecting
the usage of graph topology information, and thus restricting
their potential extension to GNNGs.

3 GNN Self-Distillation

A straightforward solution to perform self-distillation for
training GNNs is to supervise the hidden states of shallow
layers by the ones of deep layers as the target, as the scheme
proposed in BYOT [2019]. However, we empirically find that
such a strategy leads to performance degradation. It’s on the
one hand attributed to the neglection of the graph topologi-
cal information. On the other hand, it’s too burdensome for
shallow GNN layers to match their outputs to such unrefined
knowledge and eventually leads to over-regularizing. Further-
more, such a simple solution requires fixed representation di-
mensionalities across network layers, which limits its appli-
cations to generic GNN models. In the following sections, we
first introduce the key ingredient of our GNN Self-Distillation
(GNN-SD). Then we summarize a unified GNN-SD frame-
work that is well extendable to other distillation variants.

Notation Throughout this work, a graph is represented as
G ={V,E, A}, where V is vertex set that has N nodes with
d-dimension features of X € RV*9, edge set £ of size M



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Graph Neural Network Do s Legend
k. (V11y) > .
> MP, > MP, > MP, > MP, » Predictor —>» § [ Lgp | | Forvard Propagation
| x® | x® l X® | x@® Knowledge Refining
A L - I
Neighborhood Discrepancy Rate ] — .
x© Loss Calculation
¥ s * Vs® Vs® Vs® .

e e e v v

.

v

N
For l > 2, make
comparison:

if [sOf| > [l

Determine the initial
target position:
2= argmax”s(l)”

l

Lapr

No
b 0

Adaptive Discrepancy Retaining (ADR) Regularizer

o o e £ o e
J

Yes 2
R LR

Initial Target Position

MP: Message Passing
X: Node Hidden States
A: Adjacency Matrix

s: Discrepancy Rate
Vector
S,: Discrepancy Rate
of Node v

’ Dissimilarity:
/
SA ¥ » Sp,=0.81
Mean
(Dp~'AX)
v3

Neighborhood Discrepancy Rate (NDR)

Figure 1: The schemata of the distillation strategy of adaptive discrepancy retaining. A four-layer GNN is adopted for the illustration.

is encoded with edge features of E, and A € RV*¥ is the
adjacency matrix. The node degree matrix is given by D =
diag(A1y). Node hidden states of [-th GNN layer is denoted
as X and the initial hidden states X(?) is usually set as the
node intrinsic features X. Given a node v, its connected-
neighbors are denoted as . For a matrix X, X;. denotes its
i1-th row and X.; denotes its j-th column.

3.1 Adaptive Discrepancy Retaining

Since the well-known over-smoothing issue of GNNs occurs
when the input graph data flows into deep layers, an inspired
insight is that we can utilize the property of non-smoothness
in shallow GNN layers, and distill such knowledge into deep
ones. In this way, the model is self-guided to retain non-
smoothness from the initial embedded graph to the final em-
bedded output. The remained questions are: how to refine the
desired knowledge from the fine-grained node embeddings?
and what is a proper knowledge transfer strategy?

Neighborhood Discrepancy Rate To answer the first ques-
tion, we introduce the module of Neighborhood Discrepancy
Rate (NDR), which is used to quantify the non-smoothness of
each GNN layer.

It’s proved that nodes in a graph component converge to
the same stationary point while iteratively updating the mes-
sage passing process of GNNs, and hence the hidden states of
connected-nodes become indistinguishable [2018]. It implies
that, given a node v in the graph,

> XM = XD, < €,if 1 = 00,¥e > 0. (1)

As a result, it leads to the issue of over-smoothing and
further hurts the accuracy of node classification. Center-
ing around this conclusion, it is a natural choice to use the
pair-wise metric (and the resulting distance matrix) to de-
fine the local non-smoothness of the embedded graph. How-
ever, such fine-grained knowledge might still cause over-
regularization for GNNs trained under teacher-free distilla-
tion. By introducing the following proposition (details de-
ferred to Appendix), one can easily derive from formula (1)

that, | X — (DflAX)g.) l, < €aslayer ! goes to infinity.
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Proposition 1 Suppose dy(X, G) calculates the L,-norm of
the difference of each central node and their aggregated
neighbors in the graph G, and the pair-wise distance metric
dy(X, G), on the other hand, computes the difference at the
level of node pairs. Then, it holds: d2(X,G) > d1(X,G).

We leverage this property to refine the knowledge from a
higher level. Specifically, given a central node v in layer [,
we first obtain the aggregation of its adjacent nodes to work
as the virtual node that indicates its overall neighborhood,
N = (D-'AX®),.. For excluding the effect of embed-
dings’ magnitude, we use the cosine similarity between the

embeddings of central node Xg,l.) and virtual node Ng) to cal-
culate their affinity, and transform it into a distance metric,
Xf,l,) AXOHT
S =1— D ( Jo. v=1,.,N, (2
X7 |2 - [1(AXD),.[]
Note that it’s not needed to perform the inverse matrix multi-
plication of node degrees due to the normalization conducted

by cosine similarity metric. The defined 578” of all nodes
compose the neighborhood discrepancy rate of layer I:

s = (s s 3)

Compared with the pair-wise metric, the NDR extracts
neighbor-wise non-smoothness, which is easier to transfer
and prevents over-regularizing by self-distillation. More-
over, it can be easily implemented with two consecutive ma-
trix multiplication operations, enjoying a significant compu-
tational advantage. The NDR also possesses better flexibility
to model local non-smoothness of the graph, since pair-wise
metrics can not be naturally applied together with layer-wise
sampling techniques [2018; 2018].

Specially, for the task of node classification, there is
another reasonable formulation of the virtual neighboring
node. That is, taking node labels into account, Ng)
(D 'A'XD),. where A" = A ®Y denotes the masked
adjacency, Y € RV*Y the binary matrix with entries Y; ;
equal to 1 if node 7 and j are adjacent and belong to different
categories, and ® the element-wise multiplication operator.
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Then, the NDR would not count the discrepancy of nodes that
are supposed to share high similarity. For unity and simplic-
ity, we still use the former definition throughout this work.

Strategy for Retaining Neighborhood Discrepancy Pre-
vious self-distillation methods usually treat the deep repre-
sentations as the target supervision signals, since they are
considered to contain more semantic information. However,
we found that such a strategy is not optimal, sometimes even
detrimental for training GNNs (refer to Appendix for de-
tails). The rationale behind our design of distilling neigh-
borhood discrepancy is to retain the non-smoothness, which
is extracted as the knowledge by NDR, from shallow GNN
layers to the deep ones. In details, we design the following
guidelines (refer to Appendix for more analysis) for the self-
distillation learning, which formulate our adaptive discrep-
ancy retaining (ADR) regularizer:

* The noise in shallow network layers might cause the cal-
culated NDR of the first few embedded graphs to be in-
accurate, thus the initial supervision target is adaptively
determined by the magnitude of the calculated NDR.

* For facilitating the distillation learning, the knowledge
transfer should be progressive. Hence, the ADR loss is
computed by matching the NDR of deep layer (online
layer) to the target one of its previous layer (target layer).

» Explicit and adaptive teacher selection is performed, i.e
the ADR regularizes the GNN only when the magnitude
of NDR of the target layer is larger than the online layer.

* Considering that the nodes in regions of different con-
nected densities have different rates of becoming over-
smoothing [2018], the matching loss can be weighted
by the normalized node degrees (denoted as D for con-
ciseness) to emphasize such a difference.

As a result, the final ADR regularizer is defined as:
Ly= Y A(s@Y > sV a* s, s0), @)

where the indicator function 1(-) performs the teacher selec-
tion, I* = argmax, {||s**)|||k € {1,..., L—1}} determine the
position of initial supervision target, and d?(s(*1) s()) =
[D(st*D — SG(sW))T||3 is the degree-weighted mean
squared error function that calculates the knowledge match-
ing loss. Here SG(-) denotes the Stop Gradient operation,
meaning that the gradient of the target NDR tensor is de-
tached in the implementation, for serving as a supervision
signal. The approach is depicted in Figure 1.

We also analytically demonstrate that the proposed dis-
crepancy retaining can be comprehended from the perspec-
tive of information theory. This is analogous to the concept
in [2019]. Specifically, the retaining of neighborhood dis-
crepancy rate encourages the online layer to share high mu-
tual information with the target layer, as illustrated in the fol-
lowing proposition (I stands for mutual information, H de-
notes the entropy, details are deferred to Appendix).

Proposition 2 The optimization of the ADR loss increase
the lower bound of the mutual information between the tar-
get NDR and the online one. That is, the inequality holds:
I(sW,s0HD) > H(sW) —Egw san [[|D(sH —s)7|[3].

2281

3.2 Generic GNN-SD Framework

Generally, by refining and transferring compact and informa-
tive knowledge between layers, self-distillation on GNNs can
be summarized as the learning of the additional mapping,

MEE  To(Co(G, P.)) — To(Ci(G, Pr)), 5)

where P € {1,..., L} is the layer position to extract knowl-
edge from the network, C denotes the granularity (or coarse-
ness) of the embedded graph, 7 represents the specific trans-
formation applied to the chosen embeddings, and the sub-
scripts of s and ¢ denote the identity of student (to simulate)
and teacher (to transfer), respectively.

Naturally, the combinations of different granularities and
transformation functions lead to various distilled knowledge.
As an instance, we show here to involve another knowledge
source of the full-graph embedding, and provide further dis-
cussions in Appendix for completeness.

Considering the scenario of graph classification, where
GNNs might focus more on obtaining meaningful embedding
of the entire graph than individual nodes, the full-graph em-
bedding could be the well-suited knowledge, since it provides
a global view of the embedded graph (while the NDR cap-
tures the local property),

C(G,P) = GP) = Readout,eg(X'"), (6)

where Readout is a permutation invariant operator that ag-
gregates embedded nodes to a single embedding vector. In
contrast to the fine-grained node features, the coarse-grained
graph embedding is sufficiently compact so as we can simply
use the identity function to preserve the transferred knowl-
edge. Hence the target mapping is:

oL (G - 1(a0). (7)

graph *
It can be learned by optimizing the graph-level distilling loss:

Le=), 6"V -sG@M)E  ®)

In this way, GNN-SD extends the utilization of mixed knowl-
edge sources over different granularities of the embedded
graph.

Overall Loss The total loss function is formulated as:

Lt = CE(3,y) + oLy, + BLx + LG )

The first term calculates the basic cross entropy loss between
the final predicted distribution g and the ground-truth label
y. The second term, borrowing from [2019], regularizes the
intermediate logits generated by intermediate layers to mimic
the final predicted distribution for accelerating the training
and improving the capacity of shallow layers. We provide
its formulation in Appendix to make it self-contained. The
remaining terms are defined in Eq.(4) and Eq.(8). «, /3, and ~y
are the hyper-parameters that balance the supervision of the
distilling objectives and target label.

4 Experiments

4.1 Exploring Analysis of Discrepancy Retaining
We first conduct exploring analysis to investigate how the
ADR regularizer helps improve the training dynamics of
GNNs. Hyper-parameters of « and +y are fixed to 0.
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Figure 2: (a) Comparison of NDR between training w/ (solid line) and w/o (dotted line) imposing ADR regularizer. Smaller value means
suffering from more over-smoothing. (b) The correlation between test accuracy and converged NDR of the final layer, controlled by the loss
weights of ADR regularizer. (c) Comparison of validation loss curves. GAT-n denotes GAT model with n hidden layers.

In Figure 2(a), we show the comparison of NDR curves
of each layer in a 4-layer GraphSage [2017]. In line with the
expectations, the neighborhood discrepancy drops when the
layer grows, and the final layer (in dark blue, dotted line) ap-
proaches a close-to-zero value of NDR, which indicates that
the output node embeddings become indistinguishable with
their neighbors. Conversely, the GNN trained with GNN-
SD preserves higher discrepancy over shallow to deep lay-
ers, and even reveals an increasing tendency as the training
progresses. It might imply that the GNN gradually learns
to pull the connected-node embeddings away if they’re not
of the same class, for obtaining more generalized representa-
tions. This observation indicates ADR’s effect on alleviating
the over-smoothing issue. We provide related examples in
Appendix that motivate the development of ADR regularizer.

In Figure 2(b), we study the correlation of model perfor-
mance and the converged NDR: as the ADR loss weight in-
creases in a reasonable range (e.g. from 1e0 to 1e2), the NDR
increases and the performance gain improves (from 0.6% to
2.5%). The shown positive correlation between test accu-
racy and NDR verifies the rationality of the NDR metric and
the distillation strategy as well. Notably, there also exists a
trade-off in determining the optimal loss weight. If an over-
estimated weight (1e3) was assigned, the knowledge transfer
task would become too burdensome for the GNN model to
learn the main classification task and hurt the performance.

Figure 2(c) depicts the validation loss on GAT [2018]
backbones with different depths. The validation loss curves
are dramatically pulled down after applying GNN-SD. It ex-
plains that ADR regularizer also helps GNNs relieve the issue
of over-fitting, which is known as another tough obstacle in
training deep GNNSs.

4.2 Comparison with KD Methods

We compare our method with other distillation methods, in-
cluding AT [2016], FitNet [2014], BYOT and LSP. We follow
[2020] to perform the comparisons on the baseline of a 5-
layer GAT on the PPI dataset [2017]. For evaluating AT and
FitNet in a teacher-free KD scheme, we follow their papers
to perform transformations on node embeddings to get the
attention maps and intermediate features, respectively. We
also evaluate BYOT to see the effect of intermediate logits.
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Method Knowledge Source | F1Score | Time
Teacher (T) / 97.6 0.85s
Baseline / 95.7 0.62s
AT T(X) 95.4 1.75s
FitNet T(X) 95.6 1.99s
LSP T(X).T(A) 96.1 1.90s
Baseline / 95.6140.20 | 0.62s
AT X 95.8840.25 | 0.73s
FitNet X 95.6040.17 | 0.95s
BYOT X 95.8110.56 | 0.80s
GNN-SD XA 96.209.03 | 0.87s

Table 1: Performance comparison with other distillation methods.
The second column indicates the knowledge source, X is node fea-
tures, A is the adjacency matrix, 7'(-) denotes the teacher model.

The experiments are conducted for 4 runs, and those under
teacher-student framework are cited from [2020]. For our
method, the hyper-parameters of o and /3 are both set to 0.01
and 7y is 0. Results are summarized in Table 1. Clearly, GNN-
SD obtains significant performance promotion against other
self-distillation methods by involving the topological infor-
mation into the refined knowledge. GNN-SD also achieves a
better performance gain (0.59) on the baseline compared with
LSP (0.4), even when our method does not require the assis-
tance from an extra teacher model. In this way, the training
cost is greatly saved (40% training time per epoch increase
against baseline for GNN-SD v.s. 190% increase for LSP).
Besides, it avoids the process of selecting qualified teachers,
bringing much better usability.

4.3 Overall Comparison Results

Node Classification Table 2 summarizes the results
of GNNs with various depths on Cora, Citeseer and
PubMed [2008]. We follow the setting of semi-supervised
learning, using the fixed 20 nodes per class for training. The
hyper-parameters of v is fixed to 0 for node classification,
and we determine « and (3 via a simple grid search. Details
are provided in Appendix. It’s observed that GNN-SD con-
sistently improves the test accuracy for all cases. Generally,
GNN-SD yields larger improvement for deeper architecture,
as it gains 0.5% average improvement for a two-layer GAT
on Cora while achieving 3.2% increase for the 8-layer one.
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Layers

Dataset Model ) 4 3 16
GAT 832 80.1 769 748
Cora GAT w/ GNN-SD 83.7 812 80.1 77.6
GraphSage 81.3 803 788 772
GraphSage w/ GNN-SD | 81.7 81.5 79.8 78.2
GAT 72.5 70.5 65.1 645
Citeseer GAT w/ GNN-SD 726 715 683 66.2
GraphSage 723 70.7 61.7 592
GraphSage w/ GNN-SD | 72.7 71.0 645 61.8
GAT 792 785 76.6 756
Pubmed GAT w/ GNN-SD 795 794 785 76.6
GraphSage 78.8 779 738 772
GraphSage w/ GNN-SD | 79.2 794 77.6 178.2

Table 2: Node classification on varying-depths models.

Graph Classification Table 3 summarizes the results of
various popular GNNs on the graph kernel classification
datasets, including ENZYMES, DD, and PROTEINS in TU
dataset [2016]. Since there exist no default splittings, each
experiment is conducted by 10-fold cross validation with the
splits ratio at 8:1:1 for training, validating and testing. We
choose five widely-used GNN models, including GCN, GAT,
GraphSage, GIN [2018a] and GatedGCN [2017], to work as
the evaluation baselines. Hyper-parameter settings are de-
ferred to Appendix. Again, one can observe that GNN-SD
achieves consistent and considerable performance enhance-
ment against all the baselines. On classification of PRO-
TEINS, for example, even the next to last model trained with
GNN-SD (GraphSage, 76.71%) outperforms the best model
(GAT, 76.36%) trained in the ordinary way. The results fur-
ther validate the generalization ability of our self-distilling
strategy.

Dataset Model | Baseline w/ GNN-SD Gain
GCN 64.00+5.63 66.66.+3.94 (4+2.66)
GAT 65.33+5.90 68.00+2.66 (+2.66)
ENZYMES GraphSage | 68.331641 70.001505 (+1.66)
GIN 66.00+7.19 69.33.4.02 (+3.33)
GatedGCN | 65.33+£4.52 67.334+1.33 (+2.00)
GCN T7.8341.02 78671165 (+0.84)
GAT 76.65+2.51 77.5042.50 (40.85)
DD GraphSage | 76.141166 77494189  (+1.35)
GIN 73.00+3.90 T4.77+3.50 (+1.77)
GatedGCN | 77.83+1.67 78.204 1 95 (40.37)
GCN 75.5542.91 76.8143.19 (+1.26)
GAT 76.364077 77531335 (+1.17)
PROTEINS GrdphSage 7555:&402 7()71:(:’%81 (+115)
GIN 64.86+3.03 70.064+4.89 (+5‘20)
GatedGCN | 76.3613.94 76.90_ 3 ¢ (40.54)

Table 3: Graph classification on various GNN backbones.

Compatibility Evaluation There exist other methods that
aim at facilitating the training of GNNs. One influential
work is DropEdge, which randomly samples graph edges to
introduce data augmentation. We conduct experiments on
JKNet and Citeseer dataset to evaluate the compatibility of
these orthogonal training schemes. The edge sampling ra-
tio in DropEdge is searched at the range of {0.1,...,0.9},
with results demonstrated in Table 4. It reads that while both

2283

Layers
Models 8 16 32 50
Baseline 78.1:‘:0'9 79~1j:141 79-3:&:08 78.4:{:1,1
w/ DropEdge 79-4i0.7 793j:00 79-4i142 787i0<)
w/GNN-SD | 791108 799+05 797111 792108
w/ Both 80.1106 7964058 802,08 79.6405

Table 4: Compatibility study. Experiments are conducted under the
full-supervised scheme, following DropEdge’s implementation.

GNN-SD and DropEdge are capable of improving the train-
ing, GNN-SD might perform better on deep backbones. No-
tably, employing them concurrently is likely to deliver further
promising enhancement.

| GNN-B | GNN-L GNN-N GNN-G | GNN-M
Ly, v v v
LN v v v
Lg v v
Cora 80.12 79.83 80.83 / 81.16 /
Citeseer 70.53 ‘ 71.16 71.43 / 71.52 /
Pubmed 78.52 78.53 79.44 / 79.26 /
ENZYMES 66.00 66.66 67.66 67.66 66.66 69.33
DD 73.00 73.76 74.77 73.51 73.76  74.14

Table 5: Ablation study of different knowledge sources.

Ablation Studies We perform an ablation study to evalu-
ate the knowledge sources and identify the effectiveness of
our core technique, as shown in Table 5. We select GAT
as the evaluation backbone for node classification and GIN
for graph classification. We name the baseline as ‘GNN-
B’, and model solely distilled by intermediate logits [2019],
neighborhood discrepancy, and compact graph embedding as
‘GNN-L’, ‘GNN-N’, ‘GNN-G’, respectively. The models dis-
tilled by mixed knowledge are represented as ‘GNN-M". One
observation from the results is that simply adopting the in-
termediate logits seems to fail in bring consistent improve-
ment (highlighted in gray), while it may cooperate well with
other sources since it promotes the updating of shallow fea-
tures (highlighted in blue). In contrast, the discrepancy re-
taining plays the most important role in distillation training.
For graph classifications, the involvement of compact graph
embedding also contributes well while jointly works with the
others.

5 Conclusion

We have presented an efficient self-distillation framework tai-
lored for GNNSs. Serving as a drop-in replacement of the stan-
dard training process, it yields consistent and considerable
enhancement on various GNN models.
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