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Abstract

Multi-scale information is crucial for modeling
time series. Although most existing methods con-
sider multiple scales in the time-series data, they
assume all kinds of scales are equally important
for each sample, making them unable to capture
the dynamic temporal patterns of time series. To
this end, we propose Time-Aware Multi-Scale Re-
current Neural Networks (TAMS-RNNSs), which
disentangle representations of different scales and
adaptively select the most important scale for each
sample at each time step. First, the hidden state
of the RNN is disentangled into multiple inde-
pendently updated small hidden states, which use
different update frequencies to model time-series
multi-scale information. Then, at each time step,
the temporal context information is used to mod-
ulate the features of different scales, selecting the
most important time-series scale. Therefore, the
proposed model can capture the multi-scale in-
formation for each time series at each time step
adaptively. Extensive experiments demonstrate that
the model outperforms state-of-the-art methods on
multivariate time series classification and human
motion prediction tasks. Furthermore, visualized
analysis on music genre recognition verifies the ef-
fectiveness of the model.

1 Introduction

Time series is a set of values sequentially recorded over time.
Modeling of time series can provide meaningful knowledge,
which is beneficial for decision-making in a variety of fields,
such as human motion prediction [Martinez et al., 2017] and
EEG/ECG data analysis [Bagnall et al., 2018].

Multi-scale information is crucial to the modeling of time
series [Mozer, 1992; Koutnik et al., 2014]. Currently, most
methods use multi-scale convolution [Cui et al., 2016] or skip
connections to model multiple scales of time series [Koutnik
etal., 2014; Chang et al., 2017; Chiu et al., 2019; Carta et al.,
2020]. Multi-scale convolution uses different downsampling
frequencies or convolution kernels of different sizes, while
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Figure 1: Music time series of two different genres.

models with skip connections capture multiple scales through
direct connections spanning different lengths. These methods
use pre-fixed multiple scales, assuming that all the scales are
equally important for each sample.

However, it is difficult for these fixed-scale methods to
capture the dynamic temporal patterns of time series. For
example, Fig. 1 shows two music clips of different genres.
“Hip-Hop” is a style of music with a strong beat, while “Ex-
perimental” is relatively chaotic. Intuitively, “Hip-Hop” re-
quires a larger scale to capture long-term dependencies due to
its regularity, while “Experimental” needs a smaller scale to
capture short-term dependencies due to its sharp fluctuations.
Hence, we need to adaptively select a suitable scale for each
sample rather than a fixed one. Meanwhile, the recognition
of genres requires modeling the emotional changes in music,
which are controlled by note duration. Therefore, different
scales are also needed at different time steps as the notes have
different durations at different times [Hu et al., 2019].

Recently, some methods have been proposed to select ap-
propriate scales corresponding to each sample dynamically
[Neil et al., 2016; Jernite er al., 2016; Campos et al., 2018,
Hu et al., 2019]. These methods select a specific scale adap-
tively or decide whether to update the hidden state at each
time step of the Recurrent Neural Network (RNN). However,
these methods attempt to use uniform feature representations
to model multiple scales, entangling representations of differ-
ent scales. It is hard to explore the impact of different scales
using the entangled representation, which is harmful to the
interpretability of the model [Tamkin et al., 2020]. Hence,
disentangling the scales helps learning the representations of
different scales better and is conducive to interpretability.

To address the above issues, we propose Time-Aware
Multi-Scale RNNs (TAMS-RNNG5) that can adaptively model
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the multi-scale information for each time series at each time
step. First, we design a mechanism called Multi-Scale Fea-
ture Disentanglement (MSFD) to obtain decoupled feature
representations of different scales. Concretely, the hidden
state of the RNN is disentangled into multiple independently
updated small hidden states, which use different update fre-
quencies to model the multi-scale information. Further-
more, a mechanism called Time-Aware Feature Modulation
(TAFM) is designed to modulate the features of different
scales, adaptively selecting the most important scale at each
time step. We conduct comparative experiments on Multi-
variate Time Series (MTS) classification, human motion pre-
diction, and music genre recognition to verify the superiority
of TAMS-RNNSs. The contributions of our work are:

* We propose Time-Aware Multi-Scale RNNs (TAMS-
RNN5s) to adaptively model the multi-scale information
for time series modeling. It uses a Multi-Scale Fea-
ture Disentanglement (MSFD) mechanism to disentan-
gle feature representations of different scales.

* We design a simple but effective mechanism we call
Time-Aware Feature Modulation (TAFM) that uses tem-
poral context information to modulate the features of
different scales, adaptively selecting the most important
scale for each sample at each time step.

* We conduct extensive experiments showing that our
model outperforms state-of-the-art methods on MTS
classification and human motion prediction tasks. Fur-
thermore, we visualize the network’s behavior on music
genre recognition, verifying the model’s effectiveness.

2 Related Work

Many methods have been proposed that use RNNs to model
multi-scale time series dynamics. They can be roughly di-
vided into two categories:

Pre-fixed multi-scale. Clockwork RNN (CW-RNN) [Kout-
nik et al., 2014] divides one layer of the RNN into separate
modules, each processing inputs at its own temporal granular-
ity. Dilated RNN [Chang et al., 2017] extracts the representa-
tions of multiple scales by stacking multiple layers of RNNs
and using skip connections of different lengths. MS-LMN
[Carta et al., 2020] separates the RNN into different modules
with different sampling rates, using an incremental training
algorithm to learn long-term dependencies. However, these
methods use fixed, predefined scales, making it difficult to
adapt to different time series dynamics.

Learnable multi-scale. There are also methods that select
suitable scales dynamically. Phased LSTM [Neil ez al., 2016]
and Skip RNN [Campos et al., 2018] decide whether to up-
date the hidden state at each time step of the RNN to learn
representations at multiple scales. VCRNN [Jernite et al.,
2016] adaptively determines the number of neurons to be up-
dated at each time step. ASRNN [Hu et al., 2019] presets
multiple scales and selects a specific scale at each time step.
However, these methods attempt to use uniform feature rep-
resentations to model multiple scales, and the information of
various scales are entangled together. Hence, it is difficult to
explore the impact of different scales on the model.
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The most relevant model to ours is CW-RNN [Koutnik et
al., 2014]. However, in CW-RNN, representations of differ-
ent scales are entangled together, and it is difficult for the
model to capture the dynamic temporal patterns of time se-
ries. We update the small hidden states independently to learn
the representations of different scales better. Meanwhile, the
temporal context information is used to select the most impor-
tant scale at each time step adaptively, capturing more com-
plicated temporal patterns. A detailed comparison of their
update process to ours is shown in Fig. 3.

3 Time-Aware Multi-Scale RNNs

We propose Time-Aware Multi-Scale RNNs (TAMS-RNNG5)
and design two mechanisms (named Multi-Scale Feature Dis-
entanglement and Time-Aware Feature Modulation, respec-
tively) for TAMS-RNNSs to adaptively model the multi-scale
information for time series modeling. The whole architecture
of TAMS-RNN:S is shown in Fig. 2.

3.1 Multi-Scale Feature Disentanglement

Given time series X = {x1,Xy, - , X7} where x; € R%,
dy is the dimension of input data and 7" denotes the length
of time series, the hidden state h; € R? of RNN cell can be
expressed as follows:

ht = f(WXf —+ Uht_l —+ b), (1)

where x; and h; are the input and hidden state at time step
t, respectively. W € R4xdo U e R4%? and b € R? are
the learnable parameters. f denotes the hyperbolic tangent
activation function tanh.

To capture the feature representations of different scales,
the mechanism of MSFD is designed. First, the hidden state
of RNN is disentangled into multiple small hidden states that
are updated independently. Specifically, the hidden state at
time step ¢ is disentangled into K small hidden states as
h; = [h},---  hX], where h¥ € RP, p = d/K and [] is the
concatenation operation. The corresponding recurrent matrix
is defined as U = [U?,--. | UK], where U¥ € RP*P, Each
small hidden state h} is independently updated by an individ-
ual recurrent matrix U* and then merged via concatenation
to constitute the hidden state h;. Meanwhile, The learnable
parameter W is defined as W = [W1! ... WZX] where
WP ¢ RP*do_ The update equation of h; is defined as:

hf = f(Whx, + UPhl_| + D), )
h, = [h{, -+, hf], 3)

where f denotes the hyperbolic tangent activation function

tanh and b € RP is the learnable parameter. Specifically, the
model is equivalent to RNN when K = 1.

After the disentangling process, each small hidden state
would use a specific update frequency to capture information
of a particular scale. Suppose the scale set S'is {s1, - , sk },
for simplicity, s is usually set to a power of 2 in our exper-
imentation. For scale s, the small hidden state hf will be
updated every s time steps. As shown in Fig. 2, the en-
tire hidden state of RNN is disentangled into 3 small hidden
states, and the corresponding scale set is {1,2,4}. Scale s;
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Figure 2: The architecture of TAMS-RNN. This is an example with 3 small hidden states and the scales set to {1, 2, 4}. The hidden state of
the RNN is disentangled into multiple independently updated small hidden states, using different update frequencies to capture multi-scale
information. Then, we propose Time-Aware Feature Modulation (TAFM) to modulate the features of different scales adaptively. The dotted
lines indicate that the features of the corresponding scales will not be modulated by TAFM when the "COPY” operation is employed.
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Figure 3: The update process of three recurrent models. In TAMS-
RNN and CW-RNN, the number of small hidden states is 2. For
simplicity, in TAMS-RNN, we do not draw the process of TAFM.

means the small hidden state is updated every time step, while
the hidden state of scale s3 is updated every four time steps.
Specifically, the update equation of h¥ is defined as follow:

e [hi if t MOD s, # 0 (COPY)
E 7 ) F(WFx, + U*hE | +1), otherwise (UPDATE)
“
When t MOD s, # 0, the “COPY” operation is used, di-
rectly copying the hidden state at the last time step. Other-
wise, the “UPDATE” operation is employed, using the equa-
tion (2) to update the hidden state. After disentangling the
hidden state with different update frequencies, each small
hidden state is able to capture information of a certain scale.
The hidden state with a small scale captures the short-term
dependencies, which is crucial for the time series where the
values change frequently. Meanwhile, the hidden state with a
large scale captures the long-term dependencies, which pro-
vides essential information to time series modeling tasks.
Furthermore, we compare the update process of the pro-
posed TAMS-RNN with RNN and CW-RNN [Koutnik ef al.,
2014], which is shown in Fig. 3. Firstly, compared to RNN,
CW-RNN and TAMS-RNN separate the hidden state of RNN
into multiple small hidden states, using different update fre-
quencies to capture the multi-scale information of time series.
However, in CW-RNN, representations of different scales are
entangled together. For example, the hidden state of scale so

will affect the update process of the small-scale hidden state.
Compared to CW-RNN, TAMS-RNN updates the small hid-
den states independently to learn the representations of cor-
responding scales better and is also conducive to the inter-
pretability of the model [Tamkin er al., 2020].

3.2 Time-Aware Feature Modulation

After the proposed MSFD, the model still uses multiple fixed
scales, which is difficult to capture the dynamic temporal pat-
terns of time series. For example, as shown in Fig. 1, the
temporal patterns of two music clips are quite different, and
even the patterns of different time steps within the same music
series are also different. Therefore, different temporal scales
are needed to model the corresponding patterns. To solve the
problem, we design a simple but effective mechanism named
TAFM that uses temporal context information to modulate
the features of different scales so that the model can focus on
different scales at different time steps.

First, the temporal context information h,_; and x; are
utilized to generate the distribution o for each time step:

a; = softmax(W'x; + Uh,_1 + 1), &)

where o; € R¥ indicates the importance degree of K small
hidden states, and the value of af is in the range of 0 to 1.
W' € RExdo U’ ¢ REX4 and b’ € RX are learnable pa-
rameters. A larger of means that the small hidden state of
scale sy, is more important for current time step. Then, oy is
utilized to modulate the features of different scales, and the
update equation of h¥ is changed to:

Wt — hf ., if t MOD s, # 0 (COPY)
L) fF(Whx, + UF(afh¥ ) +b), otherwise (UPDATE)

(6)

Specially, when the “COPY” operation is used, hf_; is not
multiplied by ¥, because continuously multiplying by values
less than 1 will make the value of feature close to zero, which
will lead to gradient vanishing problem. Thus, of is utilized
to weight h¥_, only when the “UPDATE” operation is used.
After modulating the features of different scales, the model
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Data set TAMS CwW TapNet MLSTM WEASEL ED DTW DTW
-LSTM -LSTM -FCN +MUSE -INN -INN-I -INN-D

ArticularyWordRecognition ~ 0.973 0.947 0.987 0.973 0.990 0.970  0.980 0.987
AtrialFibrillation 0.400 0.333 0.333 0.267 0.333 0.267 0.267 0.200
BasicMotions 1.000 1.000 1.000 0.950 1.000 0.675  1.000 0.975
CharacterTrajectories 0.994 0.990 0.997 0.985 0.990 0.964  0.969 0.990
FaceDetection 0.602 0.594  0.556 0.545 0.545 0.519 0.513 0.529
HandMovementDirection 0.473 0.473 0.378 0.365 0.365 0.279  0.306 0.231
Heartbeat 0.756 0.722 0.751 0.663 0.727 0.620  0.659 0.717
MotorImagery 0.590 0.520  0.590 0.510 0.500 0.510  0.390 0.500
NATOPS 0.956 0950  0.939 0.889 0.870 0.860  0.850 0.883
PEMS-SF 0.890 0.890  0.751 0.699 N/A 0.705 0.734 0.711
Pen Digits 0.981 0.976 0.980 0.978 0.948 0973  0.939 0.977
Phoneme 0.203 0.178 0.175 0.110 0.190 0.104  0.151 0.151
SelfRegulationSCP2 0.561 0.544  0.550 0.472 0.460 0.483  0.533 0.539
SpokenArabicDigits 0.990 0.986 0.983 0.990 0.982 0.967  0.960 0.963
StandWalkJump 0.400 0.333 0.400 0.067 0.333 0.200 0.333 0.200

No. best 13 3 4 1 2 0 | 0

Best rate 0.867 0200  0.267 0.067 0.133 0 0.067 0

Table 1: Classification accuracy on 15 MTS classification data sets.

can adaptively select the most important scale at each time
step and capture more complex dynamic temporal patterns.

Since our model is based on vanilla RNN, the recurrent cell
of TAMS-RNN can be easily replaced with Long Short-Term
Memory (LSTM) and Gated Recurrent Units (GRU), which
we refer to as TAMS-LSTM and TAMS-GRU.

4 Experiments

Experiments are conducted on MTS classification, human
motion prediction and music genre recognition to verify the
superiority of the model.

4.1 Multivariate Time Series Classification

Following TapNet [Zhang er al., 2020], we conduct exper-
iments on 15 data sets from the latest MTS classification
archive [Bagnall er al., 2018]. These data sets come from
various fields with different numbers of classes and variables.
Classification accuracy is computed as the evaluation metric.

For MTS classification, following previous work, we use
LSTM as the recurrent cell of our model. The number of
layers of TAMS-LSTM is set to 2, the hidden state dimen-
sion is set to 256 (d = 256), and the hidden state of the final
time step is used for classification. Meanwhile, the number
of small hidden states is set to 4(K = 4) with the scale set
{1,2,4,8}. We apply the dropout operation [Srivastava et
al., 2014] to the input time series X with dropout rate of 0.1.
The gradient-based optimizer Adam [Kingma and Ba, 2014]
is chosen, and the learning rate is set to be 0.001.

We compare the proposed model with six benchmark meth-
ods, including deep learning methods (MLSTM-FCN [Karim
et al.,2019] and TapNet [Zhang et al., 2020]), bag-of-patterns
method (WEASEL+MUSE [Schifer and Leser, 2017]), and
common distance-based methods (ED/DTW-NN [Shokoohi-
Yekta et al., 2015]). To fairly compare TAMS-LSTM with
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CW-RNN [Koutnik et al., 2014], we design a baseline model
called “CW-LSTM”, replacing the RNN cell of CW-RNN
with LSTM. The experiment result is shown in Table 1.
The result “N/A” in the table indicates the corresponding
approach is unable to run because of computational issues.
Meanwhile, the best rate of each model is computed and
shown to better describe the performance of these models.
The performance comparison shows that TAMS-LSTM out-
performs other methods on 13 out of 15 MTS classification
data sets and yields the highest best rate of 0.867, which is
significantly better than the existing state-of-the-art approach
TapNet with the best rate of 0.267. In addition, TAMS-LSTM
is also significantly better than CW-LSTM, which illustrates
the effectiveness of MSFD and TAFM.

4.2 Human Motion Prediction

In addition to these 15 MTS data sets, we also conduct exper-
iments on human motion prediction, using the Human 3.6M
(H3.6M) data set [Ionescu et al., 2013]. H3.6M is one of the
largest publicly available data sets of human motion capture,
including seven actors performing 15 activities. Following
previous work [Jain et al., 2016; Martinez ef al., 2017], we
use six actors for training and the actor five for testing. Mean-
while, we train our model for long-term prediction, forecast-
ing the future 25 frames (1000ms). The error is measured by
the euclidean distance between the predicted sequences and
ground truth, in terms of the Euler angles.

For human motion prediction, RRNN [Martinez et al.,
2017] is first proposed, using a sequence-to-sequence archi-
tecture with residual connections, which results in much more
accurate prediction results. Therefore, under the architecture
of RRNN, we replace the vanilla GRU in RRNN with the pro-
posed TAMS-GRU (refer to as TAMS-RRNN) to model the
multi-scale information existing in skeleton-based action se-
quences, such as movements of different amplitudes. Mean-
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Milliseconds 80 160 320 400 560 1000

LSTM-3LR 0.87 093 1.19 130 149 1.89
RRNN 042 074 111 126 142 1.83
cgRNN 041 0.73 1.12 126 151 1.92

TP-RNN 037 0.66 099 1.11 130 171

TAMS-RRNN 041 0.71 106 1.19 138 1.79
TAMS-TP-RNN 0.36 0.64 098 1.09 1.27 171

Table 2: Mean Euler angle errors (averaged over all 15 activities) on
the H3.6M data set.

Models TAMS-LSTM ASLSTM SLSTM LSTM

Acc(%) 25.5 20.1 18.9 18.5

Table 3: Recognition accuracy (%) on the FMA-small data set.

while, we also compare the proposed model with LSTM-
3LR [Fragkiadaki er al., 2015] and cgRNN [Wolter and Yao,
2018]. Finally, since TP-RNN [Chiu et al., 2019] is a recently
proposed advanced model based on recurrent architecture, we
also replace the vanilla LSTM in TP-RNN with the proposed
TAMS-LSTM (refer to as TAMS-TP-RNN) to further verify
the effectiveness of the proposed model. Since RRNN [Mar-
tinez et al., 2017] and cgRNN [Wolter and Yao, 2018] are
only trained for short-term prediction (up to 400ms), we train
their models for long-term prediction (up to 1000ms) using
the publicly available implementations!. In TAMS-RRNN
and TAMS-TP-RNN, the number of small hidden states is set
to 4(K = 4) with the scale set {1, 2,4, 8}. Other configura-
tions are consistent with the corresponding papers.

The experiment result is shown in Table 2. After re-
placing the vanilla RNN cell with the proposed TAMS-
RNN cell, TAMS-RRNN is significantly better than RRNN,
while TAMS-TP-RNN also achieves better or competitive re-
sults compared with TP-RNN. The results show that TAMS-
RNN is capable of capturing the multi-scale information of
skeleton-based action sequences. The detailed results of TP-
RNN and TAMS-TP-RNN are shown in Appendix AZ.

4.3 Music Genre Recognition

Furthermore, since multi-scale structure naturally exists in
music time series [Hu ef al., 2019], we conduct experiments
on music genre recognition to verify the effectiveness of the
proposed TAMS-RNN. Music genre recognition is a chal-
lenging task because the boundaries between different gen-
res are hard to distinguish due to people’s subjective feelings.
Following ASRNN [Hu et al., 2019], we choose the FMA-
small data set [Defferrard et al., 2016] to conduct our exper-
iments, which contains 8000 music clips of 8 genres. We
follow the standard 80/10/10% data splitting protocols to get
training, validation and testing sets and directly employ raw
music clips as inputs. The sampling rate is reduced to 200 Hz,
resulting in very long sequences with about 6000 time steps.

"https://github.com/una-dinosauria/human-motion-prediction,
https://github.com/v0lta/Complex-gated-recurrent-neural-networks
*https://github.com/qianlima-lab/TAMS-RNNs
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Figure 4: The statistics of scales between each music genre.

For music genre recognition, the one-layer TAMS-LSTM
is chosen, and the hidden state of the final time step is used for
classification. Meanwhile, the number of small hidden states
is set to 4(K = 4) with a large scale set {1,4, 16,64} due to
the long input sequences. The Adam optimizer [Kingma and
Ba, 2014] is used, and the learning rate is set to 0.001.

We compare TAMS-LSTM with several recurrent models,
including SLSTM, ASLSTM [Hu et al., 2019], and LSTM.
To keep the number of parameters consistent with ASLSTM,
the hidden state dimension of TAMS-LSTM is setto 192 (d =
192). The recognition accuracy is computed as the evaluation
metric, and the result is shown in Table 3. The performance
comparison shows that TAMS-LSTM is significantly better
than ASLSTM, verifying the effectiveness of the model.

Furthermore, for each genre, we count the weights as-
signed to each scale, averaging over all the samples and all
the time steps ¢ when t MOD s = 0 (s = 64). The results
are normalized and shown in Fig. 4. Firstly, all the genres
prefer to choose larger scales (scale s3 and s,4) since the input
sequences are so long, and large scale is conducive to mod-
eling the long-term dependence of time series. Meanwhile,
there are also significant differences between music of dif-
ferent genres. “Hip-Hop” and “Electronic” prefer to choose
the largest scale, compared with the other six. More specif-
ically, Fig. 5 shows three music clips and the corresponding
weights assigned to the scales. Music such as “Hip-Hop” is
rhythmic and regular, which requires a large scale to model
its regularity, thus the weight assigned to scale s4 is large.
On the contrary, a smaller scale is sufficient for chaotic music
“Folk™, since the values of this time series are only related to
values within a local window. Therefore, the model would
assign similar weights to all four scales. Meanwhile, at each
time step ¢, we record the scale with the largest weight, which
is shown in Figure 5(f). The music series in the yellow region
has small changes, so there is no need for the model to be
updated frequently, and a larger scale would be chosen. On
the contrary, series in the purple region varies greatly, thus
the choice of scale is more flexible. Similar observations for
more examples are shown in the Appendix B. In general, our
model better models the multi-scale information of time se-
ries and improves the interpretability of the model.

4.4 Ablation Study

Ablation study is conducted on 2 MTS data sets, and the re-
sults are shown in Table 4. “LSTM+MSFD(M)” outperforms
“LSTM+MSFD(S)” and “LSTM”, indicating the importance
of multi-scale information. Meanwhile, “LSTM+MSFD(M)”
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Figure 5: Three music clips and the corresponding weights assigned to the scales. (a)(c)(e) are three music clips. (b)(d) are the weights
assigned to four scales, averaging over all the time steps ¢ when ¢ MOD sx = 0, corresponding to music clips (a) and (c), respectively. (f) is
the scale with the largest weight at each time step ¢ when ¢ MOD sx = 0, showing the dynamics of the weights for (e). The series in yellow
region prefers the largest scale due to its small changes, while the series in purple one prefers multiple scales due to its sharp fluctuations.

Models FaceDetection Phoneme
LSTM 0.573 0.189
CW-LSTM 0.594 0.178
LSTM+MSFD(S) 0.562 0.178
LSTM+MSFD(M) 0.595 0.194
CW-LSTM+TAFM 0.596 0.186
LSTM+MSFD(M)+TAFM 0.602 0.203

Table 4: Ablation study on 2 MTS classification data sets. “S”
means using single frequency to update different small hidden states,
while “M” means using multiple frequencies.

outperforms “CW-LSTM”, verifying the effectiveness of
MSFD. Finally, the full model (last column) outperforms
“LSTM+MSFD(M)” and “CW-LSTM+TAFM”, which illus-
trates the effectiveness of TAFM and MSFD, respectively.
The results of other data sets are shown in Appendix C.

4.5 Model Analysis

Impact of the value K. To study the influence of the value
K (the number of small hidden states), we conduct experi-
ments on 2 MTS classification data sets, FaceDetection and
Phoneme. K is set in the range of 1 to 6, and the correspond-
ing scale sets are set to {1}, {1,2}, {1,2,4}, {1,2,4,8},
{1,2,4,8,16} and {1,2,4,8,16, 32}, respectively. The re-
sults are shown in Figure 6(a). We found that the optimal
value K is 4. Increasing K helps to model the multi-scale
information of time series, while the hidden size is too small
to provide enough features when K is too large.

Impact of the scale set S. The impact of the scale sets is
explored and shown in Figure 6(b). 1 to 4 denotes the scale set
{1,2,3,4}, {1,2,4,8}, {1,4,8,16} and {1,4,16,64}. The
optimal one is {1, 2,4, 8}. When the range of scales is small,
the difference between scales is relatively small, making it
hard to learn multi-scale information. When the range of
scales is too large, it is hard for a large scale to learn enough
information because most time steps are skipped. Other anal-
ysis of the model is shown in Appendix D.
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Figure 6: Impact of different K and scale sets .

5 Conclusion and Future Work

In this paper, we propose Time-Aware Multi-Scale RNNs
(TAMS-RNNG) to capture the multi-scale dynamics of time
series adaptively. Instead of using pre-fixed multiple scales,
our model disentangles representations of different scales and
adaptively selects the most important scale for each sample at
each time step. Our experiments demonstrate that TAMS-
RNNSs outperform state-of-the-art methods on different clas-
sic time series tasks. Furthermore, the visualization analysis
on music genre recognition verifies the effectiveness of the
model. In TAMS-RNNS, we use a simple strategy (power of
2) to set the value of each scale, which may not be flexible
enough. In future work, we plan to adaptively learn appropri-
ate scale set and apply the model for more other tasks.
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