
Variational Model-based Policy Optimization

Yinlam Chow1 , Brandon Cui2 , MoonKyung Ryu1 and Mohammad Ghavamzadeh1

1Google AI
2Facebook AI Research

yinlamchow@google.com, bcui@fb.com, {mkryu, ghavamza}@google.com

Abstract
Model-based reinforcement learning (RL) algo-
rithms allow us to combine model-generated data
with those collected from interaction with the real
system in order to alleviate the data efficiency prob-
lem in RL. However, designing such algorithms
is often challenging because the bias in simulated
data may overshadow the ease of data generation.
A potential solution to this challenge is to jointly
learn and improve model and policy using a univer-
sal objective function. In this paper, we leverage
the connection between RL and probabilistic infer-
ence, and formulate such an objective function as
a variational lower-bound of a log-likelihood. This
allows us to use expectation maximization (EM)
and iteratively fix a baseline policy and learn a vari-
ational distribution, consisting of a model and a
policy (E-step), followed by improving the base-
line policy given the learned variational distribution
(M-step). We propose model-based and model-free
policy iteration (actor-critic) style algorithms for
the E-step and show how the variational distribu-
tion learned by them can be used to optimize the
M-step in a fully model-based fashion. Our experi-
ments on a number of continuous control tasks show
that our model-based (E-step) algorithm, which we
refer to as variational model-based policy optimiza-
tion (VMBPO), is more sample-efficient and robust
to hyper-parameter tuning than its model-free (E-
step) counterpart. Using the same control tasks,
we also compare VMBPO with several state-of-the-
art model-based and model-free RL algorithms and
show its sample efficiency and performance.

1 Introduction
Model-free reinforcement learning (RL) algorithms that learn
a good policy without constructing an explicit model of the
system’s dynamics have shown promising results in complex
simulated problems [Mnih et al., 2013; Mnih et al., 2015;
Schulman et al., 2015; Haarnoja et al., 2018]. However,
these methods are not sample efficient, and thus, not suit-
able for problems in which data collection is burdensome.
Model-based RL algorithms address the data efficiency issue
of the model-free methods by learning a model, and com-

bining model-generated data with those collected from in-
teraction with the real system [Sutton, 1990; Janner et al.,
2019]. However, designing model-based RL algorithms is
often challenging because the bias in model may affect the
process of learning policies and result in worse asymptotic
performance than the model-free counterparts. A potential
solution to this challenge is to incorporate the policy/value
optimization method in the process of learning the model. An
ideal case here would be to have a universal objective function
that is used to learn and improve model and policy jointly.

Casting RL as a probabilistic inference has a long history
(e.g., [Todorov, 2008; Toussaint, 2009; Kappen et al., 2012;
Rawlik et al., 2013]). This formulation has the advantage
that allows powerful tools for approximate inference to be
employed in RL. One such class of tools are variational tech-
niques that have been successfully used in RL (e.g., [Neumann,
2011; Levine and Koltun, 2013; Abdolmaleki et al., 2018]).
Another formulation of RL with strong connection to prob-
abilistic inference is the formulation of policy search as an
expectation maximization (EM) style algorithm (e.g., [Dayan
and Hinton, 1997; Peters and Schaal, 2007; Peters et al., 2010;
Chebotar et al., 2017; Abdolmaleki et al., 2018]). The main
idea here is to write the expected return of a policy as a
(pseudo)-likelihood function, and then conditioning on the suc-
cess in maximizing the return, find the policy that most likely
would have been taken. Another class of RL algorithms that
are related to the inference formulation are entropy-regularized
algorithms that add an entropy term to the reward and find
the soft-max optimal policy (e.g., [Levine and Abbeel, 2014;
Nachum et al., 2017; Haarnoja et al., 2018; Fellows et al.,
2019]). For a comprehensive tutorial on RL as probabilistic
inference, we refer readers to [Levine, 2018].

In this paper, we leverage the connection between RL and
probabilistic inference, and formulate an objective function
for jointly learning and improving model and polciy as a vari-
ational lower-bound of a log-likelihood. This allows us to
use EM: iteratively fix a baseline policy and learn a varia-
tional distribution, consisting of a model and a policy (E-step),
followed by improving the baseline policy given the learned
variational distribution (M-step). We propose model-based
and model-free policy iteration (PI) style algorithms for the
E-step and show how the variational distribution that they
learn can be used to optimize the M-step only from model-
generated samples. It is important to note that both algorithms
are model-based and only differ in using model-based and
model-free algorithms for the E-step. We call our algorithm

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2292

that uses model-based PI for the E-step, variational model-
based policy optimization (VMBPO). Our experiments on a
number of continuous control tasks show that VMBPO is more
sample-efficient and robust to hyper-parameter tuning than its
model-free counterpart. Using the same control tasks, we also
compare VMBPO with several state-of-the-art model-based
and model-free RL algorithms, including model-based pol-
icy optimization (MBPO) [Janner et al., 2019] and maximum
a posteriori policy optimization (MPO) [Abdolmaleki et al.,
2018], and show its sample efficiency and performance.

2 Preliminaries
We study the RL problem in which the agent’s interaction
with the environment is modeled as a Markov decision pro-
cess (MDP)M = 〈X ,A, r, p, p0〉, where X and A are state
and action spaces; r : X × A → R is the reward function;
p : X × A → ∆X is the transition kernel (∆X is the set
of probability distributions over X); and p0 : X → ∆X
is the initial state distribution. A stationary Markovian pol-
icy π : X → ∆A is a probabilistic mapping from states to
actions. Each policy π is evaluated by its expected return,
i.e., J(π) = E[

∑T−1
t=0 r(xt, at) | p0, p, π], where T is the

(random) time of hitting a terminal state.1 We denote by X 0

the set of all terminal states. The agent’s goal is to find a policy
with maximum expected return, i.e, π∗ ∈ arg maxπ∈∆A J(π).
We denote by ξ = (x0, a0, . . . , xT−1, aT−1, xT), a system
trajectory of length T , whose probability under a policy π
is defined as pπ(ξ) = p0(x0)

∏T−1
t=0 π(at|xt)p(xt+1|xt, at).

Finally, we define [T] := {0, . . . , T − 1}.

3 Policy Optimization as Inference
Policy search in RL can be formulated as a probabilistic
inference problem (e.g., [Todorov, 2008; Toussaint, 2009;
Kappen et al., 2012; Levine, 2018]). The goal in the con-
ventional RL formulation is to find a policy whose generated
trajectories maximize the expected return. In contrast, in the
inference formulation, we start with a prior over trajectories
and then estimate the posterior conditioned on a desired out-
come, such as reaching a goal state. In this formulation, the
notion of a desired (optimal) outcome is introduced via inde-
pendent binary random variables Ot, t ∈ [T], where Ot = 1
denotes that we acted optimally at time t. The likelihood of
Ot, given the state xt and action at, is modeled as

p(Ot = 1 | xt, at) = exp(η · r(xt, at)),

where η > 0 is a temperature parameter. This allows us to
define the log-likelihood of π being optimal as

log pπ(O0:T−1 = 1) = log

∫
ξ

pπ(O0:T−1 = 1, ξ)

= logEξ∼pπ
[
p(O0:T−1 = 1 | ξ)

]
,

(1)

where p(O0:T−1 = 1 | ξ) is the likelihood of trajectory ξ
being optimal and is defined as

1Similar to [Levine, 2018], our setting can be easily extended to
infinite-horizon γ-discounted MDPs. This can be done by modifying
the transition kernels, such that any action transitions the system to
a terminal state with probability 1 − γ, and all standard transition
probabilities are multiplied by γ.

p(O0:T−1 = 1 | ξ) =
T−1∏
t=0

p(Ot = 1 | xt, at)

= exp
(
η ·

T−1∑
t=0

r(xt, at)
)
.

(2)

As a result, finding an optimal policy in this setting would be
equivalent to maximizing the log-likelihood in (1), i.e., π∗soft ∈
arg maxπ log pπ(O0:T−1 = 1). A potential advantage of for-
mulating RL as an inference problem is the possibility of using
a wide range of approximate inference algorithms, including
variational methods. In variational inference, we approximate
a distribution p(·) with a potentially simpler (e.g., tractable
factored) distribution q(·) in order to make the whole infer-
ence process more tractable. If we approximate pπ(ξ) with
a variational distribution q(ξ), we will obtain the following
variational lower-bound for the log-likelihood in (1):

log pπ(O0:T−1 = 1) = logEξ∼pπ
[
exp

(
η ·

T−1∑
t=0

r(xt, at)
)]

= logEξ∼q(ξ)
[pπ(ξ)
q(ξ)

· exp
(
η ·

T−1∑
t=0

r(xt, at)
)]

(a)
≥ Eξ∼q(ξ)

[
log

pπ(ξ)

q(ξ)
+ η ·

T−1∑
t=0

r(xt, at)
]

= η · Eq
[T−1∑
t=0

r(xt, at)
]
− KL(q||pπ) := J (q;π), (3)

(a) is from Jensen’s inequality and J (q;π) is the evidence
lower-bound (ELBO) of the log-likelihood function. A va-
riety of algorithms have been proposed (e.g., [Peters and
Schaal, 2007; Hachiya et al., 2009; Neumann, 2011; Levine
and Koltun, 2013; Abdolmaleki et al., 2018; Fellows et al.,
2019]), whose main idea is to approximate π∗soft by maximizing
J (q;π) w.r.t. both q and π. This often results in an EM-style
algorithm in which we first fix π and maximize J (·;π) for
q (E-step), and then given the q obtained in the E-step, we
maximize J (q; ·) for π (M-step).

4 Variational Model-based Policy Optimization
In this section, we describe the ELBO objective function
used by our algorithms, study the properties of the re-
sulted optimization problem, and propose algorithms to solve
it. We propose to use the variational distribution q(ξ) =

p0(x0)
∏T−1
t=0 qc(at|xt)qd(xt+1|xt, at) to approximate pπ(ξ).

Note that q has the same initial state distribution as pπ (defined
in Section 2), but has different control strategy (policy), qc,
and dynamics, qd. Using this variational distribution, we may
write the ELBO objective (3) as

J (q;π) = Eq
[T−1∑
t=0

η · r(xt, at)− log
qc(at|xt)
π(at|xt)

− log
qd(xt+1|xt, at)
p(xt+1|xt, at)

]
, where Eq[·] := E[· | p0, qd, qc].

(4)

To maximize J (q;π) w.r.t. q and π, we first fix π and compute
the variational distribution (E-step):

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2293

q∗ = (q∗c , q
∗
d) ∈ argmax

qc∈∆A,qd∈∆X

E
[T−1∑
t=0

η · r(xt, at)

− log
qc(at|xt)
π(at|xt)

− log
qd(xt+1|xt, at)
p(xt+1|xt, at)

| p0, qd, qc
]
,

(5)

and then optimize π given q∗, i.e., arg maxπ J (q∗;π) (M-
step). Note that in (5), q∗c and q∗d are both functions of π, but
we remove π from the notation to keep it lighter.
Remark 1. In our formulation (our choice of the variational
distribution q), the M-step is independent of the true dynamics,
p, and thus, can be implemented offline (using samples gener-
ated by the model qd). Moreover, as we will see in Section 5,
we also use the model, qd, in the E-step. As discussed through-
out the paper, using simulated samples (from qd) and reducing
the need for real samples (from p) is an important feature of
our proposed model-based formulation and algorithms.
Remark 2 (relationship with MPO). There are similarities be-
tween our variational formulation and the one used in the max-
imum a posteriori policy optimization (MPO) algorithm [Ab-
dolmaleki et al., 2018]. However, MPO sets its variational
dynamics, qd, to be the dynamics of the real system, p, which
results in a model-free algorithm, while our approach is model-
based, since we learn qd and use it to generate samples in
both E-step and M-step of our algorithms.

In the rest of this section, we study the E-step optimization
(5) and propose algorithms to solve it.

4.1 Properties of the E-step Optimization
We start by defining two Bellman-like operators related to
the E-step optimization (5). For any variational policy qc :
X → ∆A and any value function V : X → R, such that
V (x) = 0, ∀x ∈ X 0, we define the qc-induced operator, Tqc ,
and the optimal operator, T , as

Tqc [V](x) := Ea∼qc(·|x)

[
η · r(x, a)− log

qc(a|x)
π(a|x)

+ max
qd∈∆X

Ex′∼qd(·|x,a)

[
V (x′)− log

qd(x
′|x, a)

p(x′|x, a)
]]
, (6)

T [V](x) := max
qc∈∆A

Tqc [V](x). (7)

We define the optimal value function of the E-step, Vπ , as

Vπ(x) := E
[T−1∑
t=0

η · r(xt, at)− log
q∗c (at|xt)
π(at|xt)

− log
q∗d(xt+1|xt, at)
p(xt+1|xt, at)

| p0, q
∗
d , q
∗
c

]
.

(8)

For any value function V , we define its associated action-value
function Q : X ×A → R as

Q(x, a) := η · r(x, a) + logEx′∼p(·|x,a)

[
exp

(
V (x′)

)]
. (9)

The following lemmas, whose proofs are reported in Appen-
dices A.1 and A.2, show properties of operators Tqc and T ,
and their relation with the (E-step) optimal value function, Vπ .
Lemma 1. The qc-induced and optimal operators, defined
by (6) and (7), can be rewritten as

Tqc [V](x) = Ea∼qc(·|x)

[
Q(x, a)− log

qc(a|x)
π(a|x)

]
, (10)

T [V](x) = logEa∼π(·|x),x′∼p(·|x,a)

[
exp

(
η · r(x, a) + V (x′)

)]
.

(11)

Lemma 2. The qc-induced and optimal operators are mono-
tonic and contractive. Moreover, the optimal value function Vπ
is the unique fixed-point of T (T [Vπ](x) = Vπ(x), ∀x ∈ X).

From the definition of Q-function in (9) and Lemma 2, we
prove (in Appendix A.3) the following proposition for the
action-value function associated with the E-step optimal value
function Vπ .
Proposition 1. The E-step optimal value function Vπ and
its associated action-value function Qπ, defined by (9), are
related as Vπ(x) = logEa∼π(·|x)

[
exp

(
Qπ(x, a)

)]
, ∀x ∈ X .

In the rest of this section, we show how to derive a closed-
form expression for the variational distribution q∗ = (q∗c , q

∗
d).

For any value function V , we define its corresponding vari-
ational dynamics, qVd , as the solution to the maximization
problem in the definition of Tqc (see Eq. 6), i.e.,

qVd (·|x, a) ∈ argmax
qd∈∆X

Ex′∼qd
[
V (x′)− log

qd(x
′|x, a)

p(x′|x, a)
]
, (12)

and its corresponding variational policy qQc (Q is the action-
value function associated with V , defined by Eq. 9), as the
solution to the maximization problem in the definition of T
(see Eqs. 7 and 10), i.e.,

qQc (·|x) ∈ argmax
qc∈∆A

Ea∼qc(·|x)

[
Q(x, a)− log

qc(a|x)
π(a|x)

]
. (13)

We now derive (proof in Appendix A.4) closed-form expres-
sions for the variational distributions qVd and qQc .
Lemma 3. The variational dynamics and policy correspond-
ing to a value function V and its associated action-value
function Q can be written in closed-form as

qVd (x
′|x, a) =

p(x′|x, a) · exp
(
V (x′)

)
Ex′∼p(·|x,a)

[
exp

(
V (x′)

)]
=

p(x′|x, a) · exp
(
V (x′)

)
exp

(
Q(x, a)− η · r(x, a)

) , ∀x, x′ ∈ X , ∀a ∈ A, (14)

qQc (a|x) =
π(a|x) · exp

(
Q(x, a)

)
Ea∼π(·|x)

[
exp

(
Q(x, a)

)] , ∀x ∈ X , ∀a ∈ A. (15)

Equations 14 and 15 show that the variational dynamics, qVd ,
and policy, qQc , can be seen as an exponential twisting of the
dynamics p and policy π with weights V and Q, respectively.
For the special case V = Vπ (the E-step optimal value func-
tion), these distributions can be written in closed-form as

q∗d(x
′|x, a) =

p(x′|x, a) · exp
(
Vπ(x

′)
)

exp
(
Qπ(x, a)− η · r(x, a)

) ,
q∗c (a|x) =

π(a|x) · exp
(
Qπ(x, a)

)
exp

(
Vπ(x)

) ,

(16)

where the denominator of q∗c is obtained by applying Proposi-
tion 1 to replace Qπ with Vπ .

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2294

4.2 Policy and Value Iteration for the E-step
Using the results of Section 4.1, we now propose model-based
and model-free dynamic programming (DP) style algorithms,
i.e., policy iteration (PI) and value iteration (VI), for solving
the E-step problem (5). The model-based algorithms com-
pute the variational dynamics, qd, at each iteration, while the
model-free counterparts compute qd only at the end (upon
convergence). Having access to qd at each iteration has the
advantage that we may generate samples from the model, qd,
when we implement the sample-based version (RL version) of
these DP algorithms in Section 5.

In the model-based PI algorithm, at each iteration k, given
the current variational policy q(k)

c , we

Policy Evaluation: Compute the q(k)
c -induced value func-

tion V
q
(k)
c

(the fixed-point of the operator T
q
(k)
c

) by
iteratively applying T

q
(k)
c

from (6), i.e., V
q
(k)
c

(x) =

limn→∞ T n
q
(k)
c

[V](x), ∀x ∈ X , where the variational model

qd in (6) is computed using (14) with V = V (n). We then
compute the corresponding Q-function Q

q
(k)
c

using (9).

Policy Improvement: Update the variational distribution
q

(k+1)
c using (15) with Q = Q

q
(k)
c

.2

Upon convergence, i.e., q(∞)
c = q∗c , we compute q∗d from (14).

The model-free PI algorithm is exactly the same, except in
its policy evaluation step, the q(k)

c -induced operator T
q
(k)
c

is
applied using (10) (without the variational dynamics qd). In
this case, the variational dynamics qd is computed only upon
convergence, q∗d , using (14).
Lemma 4. The model-based and model-free PI algorithms
converge to their optimal values, q∗c and q∗d , defined by (5),
i.e., q(∞)

c = q∗c and q(∞)
d = q∗d . (proof in Appendix ??)

We can similarly derive model-based and model-free (VI)
algorithms for the E-step. These algorithms start from an arbi-
trary value function V and iteratively apply the optimal opera-
tor T from (6) and (7) (model-based) and (11) (model-free) un-
til convergence, i.e., Vπ(x) = limn→∞ T n[V](x), ∀x ∈ X .
Given Vπ, these algorithms first compute Qπ from Proposi-
tion 1, and then compute (q∗c , q∗d) using (16). From the proper-
ties of the optimal operator T in Lemma 2, both model-based
and model-free VI algorithms converge to q∗c and q∗d .

In the rest of the paper, we focus on the PI approach, in
particular the model-based one, and only report the details of
the VI algorithms in Appendix B. In the next section, we show
how the PI algorithms can be implemented and combined with
a routine for solving the M-step, when the true MDP model
p is unknown (the RL setting) and the state and action spaces
are large that require using function approximation.

5 Variational Model-based RL Algorithm
In this section, we propose a RL algorithm, called variational
model-based policy optimization (VMBPO). It is an EM-style

2When the number of actions is large, the denominator of (15)
cannot be computed efficiently. In this case, we replace (15) in
the policy improvement step of our PI algorithms with q(k+1)

c =
argminqc KL(qc||qQc), where Q = Q

q
(k)
c

. We also prove the con-
vergence of our PI algorithms with this update in Appendix A.5.

algorithm based on the variational formulation proposed in
Section 4. The E-step of VMBPO is the sample-based im-
plementation of the model-based PI algorithm, described in
Section 4.2. We describe the E-step and M-step of VMBPO in
details in Sections 5.1 and 5.2, and report its pseudo-code in
Algorithm 1 in Appendix C. VMBPO uses 8 neural networks
to represent: policy π, variational dynamics qd, variational
policy qc, log-likelihood ratio ν = log(qd/p), value function
V , action-value function Q, target value function V ′, and tar-
get action-value function Q′, with parameters θπ, θd, θc, θν ,
θv , θq , θ′v , and θ′q , respectively.

5.1 The E-step of VMBPO
At the beginning of the E-step, we generate a number of sam-
ples (x, a, r, x′) from the current baseline policy π, i.e., a ∼
π(·|x) and r = r(x, a), and add them to the buffer D. The
E-step consists of four updates: 1) computing the variational
dynamics qd, 2) estimating the log-likelihood ratio log(qd/p),
3) computing the qc-induced value and action-value functions
Vqc and Qqc (critic update), and finally 4) computing the new
variational policy qc (actor update). We describe the details of
each step below.
Step 1. (Computing qd) We find qd as a solution to the
optimization problem (12) for V equal to the target value
network V ′. Since the qVd in (14) is the solution of (12), we
compute qd by minimizing KL(qV

′

d ||qd), which results in the
following forward KL loss (for all x ∈ X and a ∈ A):

θd = argmin
θ

KL
(
p(·|x, a) · exp(η · r(x, a) + V ′(·; θ′v)

−Q′(x, a; θ′q)) || qd(·|x, a; θ)
)

(17)
(a)
= argmax

θ
Ex′∼p(·|x,a)

[
exp(η · r(x, a) + V ′(x′; θ′v)

−Q′(x, a; θ′q)) · log(qd(·|x, a; θ))
]
, (18)

where (a) is by removing the θ-independent terms from (17).
We update θd by taking several steps in the direction of the
gradient of a sample average of the loss function (18), i.e.,

θd = argmax
θ

∑
(x,a,r,x′)∼D

exp
(
η · r + V ′(x′; θ′v)

−Q′(x, a; θ′q)
)
· log

(
qd(x

′|x, a; θ)
)
,

(19)

where (x, a, r, x′) are randomly sampled from D. The intu-
ition here is to focus on learning the dynamics model in the
regions of the state-action space that have higher temporal
difference (regions with higher anticipated future return).
Step 2. (Computing log(qd/p)) Using the duality of
f-divergence [Nguyen et al., 2008] w.r.t. the reverse KL-
divergence, the log-likelihood ratio log(qd(·|x, a; θd)/p(·|x, a))
is a solution to

log
(qd(x′|x, a; θd)

p(x′|x, a)
)
= argmax
ν:X×A×X→R

Ex′∼qd(·|x,a;θd)[ν(x
′|x, a)]

− Ex′∼p(·|x,a)

[
exp

(
ν(x′|x, a)

)]
, (20)

for all x, x′ ∈ X and a ∈ A. Note that the optimizer of (20)
is unique almost surely (at (x, a, x′) with P(x′|x, a) > 0),
because qd is absolutely continuous w.r.t. p (see the definition
of qd in Eq. 14) and the objective function of (20) is strictly
concave. The optimization problem (20) allows us to com-
pute ν(·|·; θν) as an approximation to the log-likelihood ratio

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2295

log(qd(·; θd)/p). We update θν by taking several steps in the
direction of the gradient of a sample average of (20), i.e.,

θν = argmax
θ

∑
(x,a,x′)∼E

ν(x′|x, a; θ)−
∑

(x,a,x′)∼D

exp(ν(x′|x, a; θ)), (21)

where E is the set of samples for which x′ is drawn from
the variational dynamics, i.e., x′ ∼ qd(·|x, a). Here we first
sample (x, a, x′) randomly fromD and use them in the second
sum. Then, for all (x, a) that have been sampled, we generate
x′ from qd and use the resulting samples in the first sum.
Step 3. (critic update) To compute Vqc and its action-
value Qqc , we rewrite (6) with the maximizer qd from Step 1
and the log-likelihood ratio log(qd/p) from Step 2:

Tqc [V](x) = Ea∼qc(·|x)

[
η · r(x, a)− log

qc(a|x)
π(a|x)

+ Ex′∼qd(·|x,a;θd)

[
V ′(x′; θ′v)− ν(x′|x, a; θν)

]]
.

Since Tqc can be written as both (10) and (22), we compute the
qc-induced Q-function by setting the RHS of these equations
equal to each other, i.e., for all x ∈ X and a ∼ qc(·|x; θc),

Q(x, a; θq) = η · r(x, a)+
Ex′∼qd(·|x,a;θd)

[
V ′(x′; θ′v)− ν(x′|x, a; θν)

]
.

(22)

Since the expectation in (22) is w.r.t. the variational dynamics
(model) qd, we can estimate Qqc only with samples generated
from the model. We do this by taking several steps in the
direction of the gradient of a sample average of the square-loss
obtained by setting both sides of (22) equal, i.e.,

θq = argmin
θ

∑
(x,a,r,x′)∼E

(
Q(x, a; θ)−η·r−V ′(x′; θ′v)+ν(x′|x, a; θν)

)2
.

(23)

Note that in (22), the actions are generated by qc. Thus, in (23),
we first randomly sample x, then sample a from qc(·|x; θc),
and finally draw x′ from qd(·|x, a; θd). If the reward function
is known (chosen by the designer of the system), then it is used
to generate the reward signals r = r(x, a) in (23), otherwise,
a reward model has to be learned.
After estimating Qqc , we approximate Vqc , the fixed-point
of Tqc , using Tqc definition in (10) as Tqc [V](x) ≈ V (x) ≈
Ea∼qc(·|x)

[
Q(x, a; θq)− log qc(a|x;θc)

π(a|x;θπ)

]
. This results in updat-

ing Vqc by taking several steps in the direction of the gradient
of a sample average of the square-loss obtained by setting the
two sides of the above equation equal, i.e.,

θv=argmin
θ

∑
(x,a)∼E

(
V (x; θ)−Q(x, a; θq)+log

qc(a|x; θc)
π(a|x; θπ)

)2
, (24)

where x is randomly sampled and a ∼ qc(·|x; θc) (without
sampling from the true environment).
Step 4. (actor update) We update the variational policy
qc (policy improvement) by solving the optimization prob-
lem (13) for the Q estimated by the critic in Step 3. Since the
qc that optimizes (13) can be written as (15), we update it by
minimizing KL(qc||qQc). This results in the following reverse
KL loss (for all x ∈ X):

θc = argmin
θ

KL
(
qc(·|x; θ)||

π(·|x; θπ) · exp(Q(x, ·, ; θq))
Z(x)

)
= argmin

θ
Ea∼qc

[
log(

qc(a|x; θ)
π(a|x; θπ)

)−Q(x, a, ; θq)
]
.

If we reparameterize qc using a transformation a = f(x, ε; θc),
where ε is a Gaussian noise, we can update θc by taking several
steps in the direction of the gradient of a sample average of
the above loss, i.e.,

θc = argmin
θ

∑
(x,ε)

log
(
qc(f(x, ε; θ)|x)

)
−Q(x, a, ; θq)

− log
(
π(a|x; θπ)

)
. (25)

We can also compute qc as the closed-form solution to (15), as
described in [Abdolmaleki et al., 2018]. They refer to this as
non-parametric representation of the variational distribution.

5.2 The M-step of VMBPO
As described in Section 4, the goal of the M-step is to im-
prove the baseline policy π, given the variational model
q∗ = (q∗c , q

∗
d) learned in the E-step, by solving the follow-

ing optimization problem:

π ← argmax
π∈Π

J (q∗;π) := Eq∗
[T−1∑
t=0

η · r(xt, at)

− log
q∗c (at|xt)
π(at|xt)

− log
q∗d(xt+1|xt, at)
p(xt+1|xt, at)

]
.

(26)

A nice feature of (26) is that it can be solved using only the
variational model q∗, without the need for samples from the
true environment p. However, it is easy to see that if the policy
space considered in the M-step, Π, contains the policy space
used for qc in the E-step, then we can trivially solve the M-
step by setting π = q∗c . Although this is an option, it is more
efficient in practice to solve a regularized version of (26). A
practical way to regularize (26) is to make sure that the new
baseline policy π remains close to the old one, which results
in the following optimization problem:

θπ ← argmax
θ

Eq∗
[T−1∑
t=0

log(π(at|xt; θ))

− λ · KL
(
π(·|xt; θπ)||π(·|xt; θ)

)]
.

(27)

This is equivalent to the weighted MAP formulation used in
the M-step of MPO [Abdolmaleki et al., 2018]. In MPO, they
define a prior over the parameter θ and add it as logP (θ) to
the objective function of (26). Then, they set the prior P (θ)
to a specific Gaussian and obtain an optimization problem
similar to (27) (see Section 3.3 in [Abdolmaleki et al., 2018]).
However, in the absence of a variational dynamics model (i.e.,
qd = p), they need real samples to solve their optimization
problem, while our model-based approach uses simulated
samples.

6 Experiments
To illustrate the effectiveness of VMBPO, we (i) compare
it with several state-of-the-art RL methods, and (ii) evaluate
sample efficiency of MBRL via ablation analysis.
Comparison with Baseline RL Algorithms. We compare
VMBPO with five baselines, two popular model-free algo-
rithms: MPO [Abdolmaleki et al., 2018] and SAC [Haarnoja
et al., 2018], and three recent model-based algorithms:
MBPO [Janner et al., 2019], PETS [Chua et al., 2019], and
STEVE [Buckman et al., 2018]. We also compare VMBPO
with its variant that uses a model-free PI algorithm to solve the
E-step (see Section 4.2). We refer to this variant as VMBPO-
MFE and describe it in details in Appendix D. We evaluate all

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2296

Environment VMBPO MBPO STEVE PETS VMBPO-MFE SAC MPO
Pendulum -125.8 ± 73.7 -126.0 ± 78.4 -6385.3 ± 799.7 -183.5 ± 1773.9 -125.7 ± 130.1 -124.7 ± 199.0 -131.9 ± 315.9
Hopper 2897.4 ± 630. 2403.1 ± 556. 279.0 ± 237.1 94.5 ± 114.2 1368.7 ± 184.1 2020.8 ± 954.1 1509.7 ± 756.0
Walker2D 4226.1 ± 843.0 3883.3 ± 753.5 336.3 ± 196.3 93.5 ± 134.1 3334.5 ± 122.8 3026.4 ± 888.9 2889.4 ± 712.7
HalfCheetah 13120 ± 933.1 11877 ± 997.1 482.9 ± 596.9 13272.6 ± 4926.4 4647.3 ± 505.8 9080.3 ± 1625.1 4969.2 ± 623.7
Reacher -11.4 ± 27.0 -12.6 ± 25.9 -141.8 ± 355.7 — -55.5 ± 39.0 -23.9 ± 23.8 -75.9 ± 336.7
Reacher7DoF -13.8 ± 20.5 -15.1 ± 98.8 — -45.6 ± 36.1 -33.5 ± 49.6 -27.4 ± 112.0 -38.4 ± 53.8

Table 1: The mean ± standard deviation of the final returns with the best hyper-parameter configuration for each algorithm. VMBPO
outperforms other baselines. VMBPO-MFE performs better than MPO but is sometimes unstable.

Environment VMBPO MBPO VMBPO-MFE SAC MPO
Pendulum -147.4 ± 94.1 -146.8 ± 272.6 -511.9 ± 384.4 -146.8 ± 450.6 -605.2 ± 389.6
Hopper 2292.5 ± 1256.0 1638.7 ± 881.5 485.4 ± 389.3 1262.2 ± 803.3 780.8 ± 629.6
Walker2D 3326.6 ± 1276.1 2977.8 ± 997.3 1447.1 ± 767.1 1341.6 ± 1092.6 1590.3 ± 860.7
HalfCheetah 10366.7 ± 3477.2 7586.1 ± 4814.1 2834.6 ± 1062.9 6312.0 ± 2299.7 3258.2 ± 970.1
Reacher -13.5 ± 38.7 -17.5 ± 44.8 -122.2 ± 507.0 -77.2 ± 50.6 -168.2 ± 477.1
Reacher7DoF -15.2 ± 66.4 -17.2 ± 101.6 -78.9 ± 439.1 -114.2 ± 196.9 -93.8 ± 426.9

Table 2: The mean ± standard deviation of the average of the final returns over
all hyper-parameter configurations. VMBPO is much more robust to change in
hyper-parameters than the other baselines. We do not include PETS and STEVE
because their hyper-parameters are directly adopted from their papers. Figure 1: Performance of VMBPO with different number

of samples generated from the dynamics model qd.

the algorithms on a classical control task: Pendulum, and five
MuJoCo tasks: Hopper, Walker2D, HalfCheetah, Reacher,
and Reacher7DoF. We use similar neural network architec-
tures (for the dynamics model, value functions, and policies)
for VMBPO and MBPO. The detailed description of the net-
work architectures and hyper-parameters is reported in Ap-
pendix E. Since we use a parametric representation for qc in
the E-step of VMBPO, as discussed in Section 5.2, we simply
set π = q∗c in its M-step. We set the number of training steps to
400, 000 for the difficult environments (Walker2D, HalfChee-
tah), to 150, 000 for the medium one (Hopper), and to 50, 000
for the simpler ones (Pendulum, Reacher, Reacher7DOF). We
evaluate policy performance every 1, 000 training steps. Each
measurement is an average return over 5 episodes, generated
with a separate random seed.

To illustrate the relative performance of the algorithms, we
report the average return of VMBPO, VMBPO-MFE, and the
baselines, with their best hyper-parameters, in Table 1 and
Figure 1 (see Appendix E.1). The results show that VMBPO
performs better than the baselines in most of the tasks, and
usually converges faster even when the final performances are
similar. The data-efficiency of VMBPO is mainly the result of
using synthetic data generated by the learned model, and its
extra performance can be attributed to jointly learning model
and policy using a universal objective function.

The results also show that VMBPO-MFE outperforms MPO
in 4 out of the 6 domains. However, in some cases its learning
curve degrades and results in poor final performance. This is
partly due to the instability in critic learning caused by sample
variance amplification in exponential-TD minimization (see
Eq. 39 in Sec. D.1). A way to alleviate this issue is to add a tem-
perature term τ to the exponential-TD update [Borkar, 2002],
although tuning this hyper-parameter is often non-trivial.3

To study the sensitivity of the algorithms w.r.t. the hyper-
parameters, we report their performance averaged over all
hyper-parameter/random-seed configurations in Table 2 and
Figure 2 (see Appendix E.1). These results show that VMBPO

3The variance is further amplified with a large τ , but the critic
learning is hampered by a small τ .

is much more robust to change in hyper-parameters than the
other algorithms, with the best average performance over all
the tasks.
Ablation Study. We study the dependence of the VMBPO
performance on the number of samples generated from the
dynamics model qd. Here we only experiment with two
tasks, Hopper and HalfCheetah, and with fewer training steps
100, 000. At each step, we update the actor and critic using
{128, 256, 512} synthetic samples. Figure 1 shows the learn-
ing performance averaged over all hyper-parameter/random-
seed configurations and illustrates how synthetic data can help
with policy learning. The results show that increasing the
amount of synthetic data generally improves the policy conver-
gence rate. In the early phases, when the model is inaccurate,
sampling from it may slow down learning, while in the later
phases, with an improved model, adding more synthetic data
can lead to a more significant performance boost.

7 Conclusion
We formulated the problem of jointly learning and improving
model and policy in RL as a variational lower-bound of a log-
likelihood and proposed EM-style algorithms to solve it. Our
algorithm, called variational model-based policy optimization
(VMBPO), uses model-based policy iteration for solving the E-
step. We compared our (E-step) model-based and model-free
algorithms with each other, and with a number of state-of-the-
art model-based (e.g., MBPO) and model-free (e.g., MPO) RL
algorithms, and showed its sample efficiency and performance.

We briefly discussed VMBPO algorithms in which the
E-step is solved by value iteration methods. However, full
implementation of these algorithms and studying their rela-
tionship with the existing methods requires more work that
we leave for future. Another future directions are: 1) find-
ing more efficient implementation for VMBPO, and 2) using
VMBPO style algorithms in solving control problems from
high-dimensional observations, by learning a low-dimensional
latent space and a latent dynamics, and perform control there.
This class of algorithms is referred to as learning controllable
embedding [Levine et al., 2020].

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2297

References
[Abdolmaleki et al., 2018] Abbas Abdolmaleki, Jost Tobias

Springenberg, Yuval Tassa, Remi Munos, Nicolas Heess,
and Martin Riedmiller. Maximum a posteriori policy opti-
misation. In Proceedings of the 6th International Confer-
ence on Learning Representations, 2018.

[Borkar, 2002] Vivek S. Borkar. Q-learning for risk-sensitive
control. Mathematics of operations research, 27(2):294–
311, 2002.

[Buckman et al., 2018] Jacob Buckman, Danijar Hafner,
George Tucker, Eugene Brevdo, and Honglak Lee. Sample-
efficient reinforcement learning with stochastic ensemble
value expansion. In Advances in Neural Information Pro-
cessing Systems, pages 8224–8234, 2018.

[Chebotar et al., 2017] Yevgen Chebotar, Mrinal Kalakrish-
nan, Ali Yahya, Adrian Li, Stefan Schaal, and Sergey
Levine. Path integral guided policy search. In IEEE Inter-
national Conference on Robotics and Automation, 2017.

[Chua et al., 2019] Kurtland Chua, Rowan McAllister,
Roberto Calandra, and Sergey Levine. Unsupervised
exploration with deep model-based reinforcement learning.
In International Conference on Learning Representations
(ICLR), 2019.

[Dayan and Hinton, 1997] Peter Dayan and Geoffrey E. Hin-
ton. Using expectation-maximization for reinforcement
learning. Neural Computation, 9(2):271–278, 1997.

[Fellows et al., 2019] Matthew Fellows, Anuj Mahajan, Tim
G. J. Rudner, and Shimon Whiteson. VIREL: A variational
inference framework for reinforcement learning. In Ad-
vances in Neural Information Processing Systems, pages
7120–7134, 2019.

[Haarnoja et al., 2018] Tuomas Haarnoja, Aurick Zhou,
Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with
a stochastic actor. In Proceedings of the 35th International
Conference on Machine Learning, pages 1861–1870, 2018.

[Hachiya et al., 2009] Hirotaka Hachiya, Jan Peters, and
Masashi Sugiyama. Efficient sample reuse in EM-based
policy search. In Proceedings of the European Conference
on Machine Learning, 2009.

[Janner et al., 2019] Michael Janner, Justin Fu, Marvin
Zhang, and Sergey Levine. When to trust your model:
Model-based policy optimization. In Advances in Neural
Information Processing Systems 32, pages 12519–12530,
2019.

[Kappen et al., 2012] Hilbert J. Kappen, Vicenç Gómez, and
Manfred Opper. Optimal control as a graphical model
inference problem. Machine Learning, 87(2):159–182,
2012.

[Levine and Abbeel, 2014] Sergey Levine and Pieter Abbeel.
Learning neural network policies with guided policy search
under unknown dynamics. In Advances in Neural Informa-
tion Processing Systems, 2014.

[Levine and Koltun, 2013] Sergey Levine and Vladlen
Koltun. Variational policy search via trajectory optimiza-
tion. In Advances in Neural Information Processing
Systems, 2013.

[Levine et al., 2020] Nir Levine, Yinlam Chow, Rui Shu, Ang
Li, Mohammad Ghavamzadeh, and Hung Bui. Prediction,
consistency, curvature: Representation learning for locally-
linear control. In Proceedings of the 8th International
Conference on Learning Representations, 2020.

[Levine, 2018] Sergey Levine. Reinforcement learning and
control as probabilistic inference: Tutorial and review.
arXiv:1805.00909, 2018.

[Mnih et al., 2013] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. Playing Atari with deep rein-
forcement learning. preprint arXiv:1312.5602, 2013.

[Mnih et al., 2015] Volodymyr Mnih, Koray Kavukcuoglu,
David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fid-
jeland, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan
Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529–533, 2015.

[Nachum et al., 2017] Ofir Nachum, Mohammad Norouzi,
Kelvin Xu, and Dale Schuurmans. Bridging the gap be-
tween value and policy based reinforcement learning. In
Advances in Neural Information Processing Systems, pages
2775–2785, 2017.

[Neumann, 2011] Gerhard Neumann. Variational inference
for policy search in changing situations. In Proceedings
of the 28th international conference on machine learning,
pages 817–824, 2011.

[Nguyen et al., 2008] XuanLong Nguyen, Martin J. Wain-
wright, and Michael I. Jordan. Estimating divergence func-
tionals and the likelihood ratio by penalized convex risk
minimization. In Advances in neural information process-
ing systems, pages 1089–1096, 2008.

[Peters and Schaal, 2007] Jan Peters and Stefan Schaal. Re-
inforcement learning by reward-weighted regression for
operational space control. In Proceedings of the 24th inter-
national conference on machine learning, 2007.

[Peters et al., 2010] Jan Peters, Katharina Mulling, and
Yasemin Altun. Relative entropy policy search. In Proceed-
ings of the 24th AAAI Conference on Artificial Intelligence,
2010.

[Rawlik et al., 2013] Konrad Rawlik, Marc Toussaint, and
Sethu Vijayakumar. On stochastic optimal control and
reinforcement learning by approximate inference. In Pro-
ceedings of Robotics: Science and Systems, 2013.

[Schulman et al., 2015] John Schulman, Sergey Levine,
Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust
region policy optimization. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, pages 1889–
1897, 2015.

[Sutton, 1990] Richard Sutton. Integrated architectures for
learning, planning, and reacting based on approximating
dynamic programming. In Proceedings of the 7th Interna-
tional Conference on Machine Learning, 1990.

[Todorov, 2008] Emanuel Todorov. General duality between
optimal control and estimation. In Proceedings of the 47th

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2298

IEEE Conference on Decision and Control, pages 4286–
4292, 2008.

[Toussaint, 2009] Marc Toussaint. Robot trajectory optimiza-
tion using approximate inference. In Proceedings of the
26th International Conference on Machine Learning, pages
1049–1056, 2009.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2299

	Introduction
	Preliminaries
	Policy Optimization as Inference
	Variational Model-based Policy Optimization
	Properties of the E-step Optimization
	Policy and Value Iteration for the E-step

	Variational Model-based RL Algorithm
	The E-step of VMBPO
	The M-step of VMBPO

	Experiments
	Conclusion

