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Abstract
Knowledge distillation uses both real hard labels
and soft labels predicted by teacher models as su-
pervision. Intuitively, we expect the soft labels
and hard labels to be concordant w.r.t. their or-
ders of probabilities. However, we found critical
order violations between hard labels and soft la-
bels in augmented samples. For example, for an
augmented sample x = 0.7 ∗ panda + 0.3 ∗ cat,
we expect the order of meaningful soft labels to be
Psoft(panda|x) > Psoft(cat|x) > Psoft(other|x).
But real soft labels usually violate the order, e.g.
Psoft(tiger|x) > Psoft(panda|x) > Psoft(cat|x).
We attribute this to the unsatisfactory generaliza-
tion ability of the teacher, which leads to the pre-
diction error of augmented samples. Empirically,
we found the violations are common and injure the
knowledge transfer.In this paper, we introduce or-
der restrictions to data augmentation for knowledge
distillation, which is denoted as isotonic data aug-
mentation (IDA). We use isotonic regression (IR)
– a classic technique from statistics – to elimi-
nate the order violations. We show that IDA can
be modeled as a tree-structured IR problem. We
thereby adapt the classical IRT-BIN algorithm for
optimal solutions with O(c log c) time complexity,
where c is the number of labels. In order to fur-
ther reduce the time complexity, we also propose a
GPU-friendly approximation with linear time com-
plexity. We have verified on variant datasets and
data augmentation techniques that our proposed
IDA algorithms effectively increases the accuracy
of knowledge distillation by eliminating the rank
violations.

1 Introduction
Data augmentation, as a widely used technology, is also ben-
eficial to knowledge distillation [Das et al., 2020]. For exam-
ple, [Wang et al., 2020b] use data augmentation to improve
the generalization ability of knowledge distillation. [Wang
et al., 2020a] use Mixup [Zhang et al., 2018], a widely
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(a) The Kendall’s τ coefficient
between the soft label distribu-
tion and the hard label distribu-
tion. Larger τ means higher or-
dinal association.
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Figure 1: Both 1a and 1b reveal that, the orders of soft labels and
hard labels are highly concordant for the original samples. But for
augmented samples, the order concordance is broken seriously. This
motivates us to introduce the order restrictions in data augmentation
for knowledge distillation.

applied data augmentation technique, to improve the effi-
ciency of knowledge distillation. In this paper, we focus on
the mixture-based data augmentation (e.g. Mixup and Cut-
mix [Yun et al., 2019]), arguably one of the most widely used
type of augmentation techniques.

Intuitively, we expect the order concordance between soft
labels and hard labels. In Fig. 2, for an augmented sam-
ple x̃ = 0.7 ∗ panda + 0.3 ∗ cat, the hard label distribu-
tion is Phard(panda|x̃) = 0.7 > Phard(cat|x) = 0.3 >
Phard(other|x̃) = 0. Then we expect the soft labels to
be monotonic w.r.t. the hard labels: Psoft(panda|x̃) >
Psoft(cat|x̃) > Psoft(other|x̃).

However, we found critical order violations between hard
labels and soft labels in real datasets and teacher models.
To verify this, we plot the Kendall’s τ coefficient [Kendall,
1938] between the soft labels and the hard labels of different
teacher models and different data augmentation techniques
in CIFAR-100 in Fig. 1a. We only count label pairs whose
orders are known. In other words, we ignore the orders be-
tween two “other” labels, since we do not know them. A clear
phenomenon is that, although the hard labels and soft labels
are almost completely concordant for original samples, they
are likely to be discordant for augmented samples. What’s
more surprising is that, in Fig. 1b, we find that there are a
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Figure 2: Using isotonic regression to introduce order restrictions to soft labels.

proportion of augmented samples, in which none of the orig-
inal labels are in the top 2 of the soft labels.We attribute this
to the insufficient generalization ability of the teacher, which
leads to the prediction error of the augmented sample. We
will show in Sec 5.3 that the order violations will injury the
knowledge distillation. As far as we know, the order viola-
tions between hard labels and soft labels havn’t been studied
in previous studies.

A natural direction to tackle the problem is to reduce the
order violations in soft labels. To this end, we leverage the
isotonic regression (IR) – a classic technique from statistics
– to introduce the order restrictions into the soft labels. IR
minimizes the distance from given nodes to a set defined by
some order constraints. In Fig. 2, by applying order restric-
tions to soft labels via IR, we obtain concordant soft labels
while keeping the original soft label information as much as
possible. IR has numerous important applications in statis-
tics [Barlow and Brunk, 1972], operations research [Maxwell
and Muckstadt, 1985], and signal processing [Acton and
Bovik, 1998]. To our knowledge, we are the first to introduce
IR in knowledge distillation.

Some other studies also noticed the erroneous of soft labels
in knowledge distillation and were also working on mitigating
it [Wen et al., 2019; Ding et al., 2019; Tian et al., 2019].
However, none of them revealed the order violations of soft
labels.

2 Related Work
Knowledge Distillation with Erroneous Soft Labels. In re-
cent years, knowledge distillation [Hinton et al., 2015] as a
model compression and knowledge transfer technology has
received extensive research interests. Since the teacher model
is non-optimal, how to deal with the errors of soft labels
has become an important issue. Traditional methods often
solve this problem via optimizing the teacher model or stu-
dent model.

For teacher optimization, [Cho and Hariharan, 2019] finds
that a larger network is not necessarily a better teacher, be-
cause student models may not be able to imitate a large net-
work. They proposed that early-stopping should be used for
the teacher, so that large networks can behave more like small
networks [Mahsereci et al., 2017], which is easier to imi-
tate. An important idea for teacher model optimization is
“strictness” [Yang et al., 2019], which refers to tolerating the
teacher’s probability distribution outside of hard labels.

The training optimization of the student model is mainly

to modify the loss function of distillation. [Wen et al., 2019]
proposed to assign different τs to different samples based on
their deceptiveness to teacher models. [Ding et al., 2019] pro-
posed that the label correlation represented by student should
be consistent with teacher model. They use residual labels to
add this goal to the loss function.

However, none of these studies reveal the phenomenon of
rank violations in data augmented knowledge distillation.

Data Mixing is a typical data augmentation method.
Mixup [Zhang et al., 2018] first randomly combines a pair
of samples via weighted sum of their data and labels. Some
recent studies include CutMix [Yun et al., 2019], and RI-
CAP [Takahashi et al., 2019]. The main difference among
the different mixing methods is how they mix the data.

The difference between our isotonic data augmentation and
the conventional data augmentation is that we focus on reliev-
ing the error transfer of soft labels in knowledge distillation
by introducing order restrictions. Therefore, we pay attention
to the order restrictions of the soft labels, instead of directly
using the mixed data as data augmentation. We verified in
the experiment section that our isotonic data augmentation is
more effective than directly using mixed data for knowledge
distillation.

3 Data Augmentation for Knowledge
Distillation

3.1 Standard Knowledge Distillation

In this paper, we consider the knowledge distillation for
multi-class classification. We define the teacher model as
T (x) : X → Rc, where X is the feature space, C =
{1, · · · , c} is the label space. We denote the student model
as S(x) : X → Rc. The final classification probabilities
of the two models are computed by softmax(T (x)) and
softmax(S(x)), respectively. We denote the training dataset
as Dtrain = {(x(1), y(1)), · · · , (x(n), y(n))}, where y(i) is
one-hot encoded. We denote the score of the j-th label for
y(i) as y(i)j .

The distillation has two objectives: hard loss and soft loss.
The hard loss encourages the student model to predict the su-
pervised hard label y(i). The soft loss encourages the student
model to perform similarly with the teacher model. We use
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cross entropy (CE) to measure both similarities:

Lhard(x, y) = CE(softmax(S(x)), y)

Lsoft(x, y) = CE(softmax(
S(x)
τ

), softmax(
T (x)
τ

))

(1)
where τ is a hyper-parameter denoting the temperature of the
distillation.

The overall loss of the knowledge distillation is the sum of
the hard loss and soft loss:

LKD = E(x,y)∼Dtrain
ατ2Lsoft(x, y) + (1− α)Lhard(x, y) (2)

where α is a hyper-parameter.

3.2 Knowledge Distillation with Augmented
Samples

In this subsection, we first formulate data augmentation for
knowledge distillation. We train the student model against
the augmented samples instead of the original samples from
Dtrain. This method is considered as a baseline without in-
troducing the order restrictions. We then formulate the data
augmentation techniques used in this paper.

Data Augmentation-base Knowledge Distillation. In
this paper, we consider two classic augmentations (i.e., Cut-
Mix [Yun et al., 2019] and Mixup [Zhang et al., 2018]).
Our work can be easily extended to other mixture-based data
enhancement operations (e.g. FCut [Harris et al., 2020],
Mosiac [Bochkovskiy et al., 2020]). As in Mixup and Cut-
Mix, we combine two original samples to form a new aug-
mented sample. For two original samples (x(i), y(i)) and
(x(j), y(j)), data augmentation generates a new sample (x̃, ỹ).
The knowledge distillation based on augmented samples has
the same loss function as in Eq. (2):

LKD-aug = E(x̃,ỹ)∼Dtrain
ατ2Lsoft(x̃, ỹ) + (1− α)Lhard(x̃, ỹ)

(3)
where the augmented sample (x̃, ỹ) ∼ Dtrain is sam-
pled by first randomly selecting 2 original samples
{(x(i), y(i)), (x(j), y(j))} from Dtrain, and then mixing the
samples.

We formulate the process of augmenting samples as:

x̃ = A(x(i), x(j), γ)

ỹ = γy(i) + (1− γ)y(j)
(4)

where A denotes the specific data augmentation technique.
ỹ is distributed in two labels (e.g. P (panda|ỹ) =
0.7, P (cat|ỹ) = 0.3). We will formulate different data aug-
mentation techniques below.

CutMix augments samples by cutting and pasting patches
for a pair of original images. For x(i) and x(j), CutMix sam-
ples a patchB = (rx, ry, rw, rh) for both of them. Then Cut-
Mix removes the region B in x(i) and fills it with the patch
cropped from B of x(j). We formulate CutMix as:

ACutMix(x
(i), x(j), γ) =M � x(i) + (1−M)� x(j) (5)

where M ∈ {0, 1}W×H indicates whether the coordinates
are inside (0) or outside (1) the patch. We follow the settings
in [Yun et al., 2019] to uniformly sample rx and ry and keep

the aspect ratio of B to be proportional to the original image:

rx ∼ Unif(0,W ), rw =W
√
1− γ

ry ∼ Unif(0, H), rh =W
√
1− γ

(6)

Mixup augments a pair of sample by a weighted sum of
their input features:

AMixup = γx(i) + (1− γ)x(j) (7)

where each γ ∼ Beta(a, a) for a ∈ (0, inf).

4 Isotonic Data Augmentation
In this section, we introduce the order restrictions in data aug-
mentation for knowledge distillation, which is denoted as iso-
tonic data augmentation. In Sec 4.1, we analyze the partial
order restrictions of soft labels. We propose the new objec-
tive of knowledge distillation subjected to the partial order
restrictions in Sec 4.2. Since the partial order is a special
directed tree, we propose a more efficient Adapted IRT algo-
rithm based on IRT-BIN [Pardalos and Xue, 1999] to calibrate
the original soft labels. In Sec 4.3, we directly impose partial
order restrictions on the student model. We propose a more
efficient approximation objective based on penalty methods.

4.1 Analysis of the Partial Order Restrictions
We hope that the soft label distribution by isotonic data aug-
mentation and the hard label distribution have no order vio-
lations. We perform isotonic regression on the original soft
labels T (x̃) to obtain new soft labels that satisfy the order
restrictions. We denote the new soft labels as the order re-
stricted soft labels m(T (x̃)) ∈ Rc. For simplicity, we will
use m to denote m(T (x̃)). We use mi to denote the score of
the i-th label.

To elaborate how we compute m, without loss of general-
ity, we assume the indices of the two original labels of the
augmented sample (x̃, ỹ) are 1, 2 respectively with γ > 0.5.
So ỹ is monotonically decreasing, i.e. ỹ1 = γ > ỹ2 = 1−γ >
· · · > ỹc.

We consider two types of order restrictions: (1) the order
between two original labels (i.e., m1 ≥ m2); (2) The order
between an original label and a non-original label (i.e. ∀i ∈
{1, 2}, j ∈ {3, · · · , c},mi ≥ mj). For example, in Fig. 2,
we expect the probability of panda is greater than that of cat.
And the probability of cat is greater than other labels. We do
not consider the order between two non-original labels.

We use G(V,E) to denote the partial order restrictions,
where each vertex i = 1 · · · c represents mi, an edge (i, j) ∈
E represents the restriction of mi ≥ mj . E is formulated in
Eq. (8). We visualize the partial order restrictions in Fig. 3.

E = {(1, 2)} ∪ {(2, i)|i = 3 · · · c} (8)

1

3 4

2

c

Figure 3: The partial order restrictions is a directed tree.

Lemma 1. E is a directed tree.
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4.2 Knowledge Distillation via Order Restricted
Soft Labels

For an augmented sample (x̃, ỹ), we first use the teacher
model to predict its soft labels. Then, we calibrate the soft la-
bels to meet the order restrictions. We use the order-restricted
soft label distribution m to supervise the knowledge distilla-
tion. We formulate this process below.

Objective with Order Restricted Soft Labels. Given the
hard label distribution ỹ and soft label distribution T (x̃) of an
augmented sample (x̃, ỹ), the objective of knowledge distil-
lation with isotonic data augmentation is:

LKD-i = LKD-aug + βE(x̃,ỹ)∼Dtrain
CE(ỹ, m̂) (9)

where m̂ denotes the optimal calibrated soft label distribu-
tion.

To compute m̂, we calibrate the original soft label T (x̃) to
meet the order restrictions. There are multiple choices for m̂
to meet the restrictions. Besides order restrictions, we also
hope that the distance between the original soft label distri-
bution T (x̃) and the calibrated label distribution m is mini-
mized. Intuitively, the original soft labels contain the knowl-
edge of the teacher model. So we want this knowledge to be
retained as much as possible. We formulate the calibration
below.

We compute m̂which satisfies the order restrictionE while
preserving most knowledge by minimizing the mean square
error to the original soft labels:

m̂ = argmin
m

mean square error(T (x̃),m) (10a)

subject to ∀(i, j) ∈ E, m̂i ≥ m̂j (10b)
Eq. (10b) denotes the order restrictions. Eq. (10a) denotes
the objective of preserving most original information. The
goal of computing m̂ can be reduced to the classical isotonic
regression in statistics.

Here we analyze the difference between isotonic data
augmentation and probability calibration in machine learn-
ing [Niculescu-Mizil and Caruana, 2005]. Isotonic regres-
sion is also applied in probability calibration. While both the
proposed isotonic data augmentation and probability calibra-
tion try to rectify the erroneous predicted by models, our pro-
posed isotonic data augmentation only happens in the training
phase when the groundtruth distribution (i.e. the hard labels)
is known. We use the isotonic soft labels m̂ as the extra super-
vision for model training. In contrast, the probability calibra-
tion needs to learn an isotonic function and uses it to predict
the probability of unlabeled samples.

Algorithm. To optimize LKD-i, we need to compute m̂
first. According to lemma 1, finding the optimal m̂ can be re-
duced to the tree-structured IR problem, which can be solved
by IRT-BIN [Pardalos and Xue, 1999] with binomial heap in
O(c log c) time complexity. We notice that the tree structure
in our problem is special: a star (nodes 2 · · · c) and an ex-
tra edge (1, 2). So we give a more efficient implementation
compared to IRT-BIN with only one sort in algorithm 1.

The core idea of the algorithm is to iteratively reduce the
number of violations by merging node blocks until no order
violation exists. Specifically, we divide the nodes into several

Algorithm 1 Adapted IRT.
Data: T (x̃);

1: Initialize mi ← T (x̃)i, Bi ← {i} for i = 1 · · · c
2: Sort mi for i = 3 · · · c in descending order
3: i← 3
4: while i ≤ c AND m2 < mi do
5: m2 ← m2×|B2|+mi

|B2|+1

6: B2 ← B2 ∪ {i}
7: i← i+ 1
8: end while
9: if m1 < m2 then

10: m1 ← m1+m2×|B2|
|B2|+1

11: B1 ← B1 ∪B2

12: while i ≤ c AND m1 < mi do
13: m1 ← m1×|B1|+mi

|B1|+1

14: B1 ← B1 ∪ {i}
15: i← i+ 1
16: end while
17: end if
18: Recover m̂ from m according to B
19: Return m̂

blocks, and use Bi to denote the block for node i. At initial-
ization, each Bi only contains node i itself. Since all nodes
except 1 and 2 are leaf nodes with a common parent 2, we
first consider the violations between 2 and i = 3 · · · c (line 4-
7). Note that nodes i = 3 · · · c are sorted according to their
soft probabilities T (x̃)i. We enumerate i = 3 · · · c and itera-
tively determine whether there is a violation between node 2
and node i. If so, we absorb node i into B2. This absorption
will set all nodes in B2 to their average value. In this way, we
ensure that there are no violations among nodes 2 · · · c. Then,
we consider the order between 1 and 2. If they are discordant
(i.e. m1 < m2), we similarly absorb B2 into B1 to eliminate
this violation (line 9-11). If this absorption causes further vi-
olations between 2 and a leaf node, we similarly absorb the
violated node as above (line 12-15). Finally, we recover m̂
from m according to the final block divisions.

Theorem 1. [Pardalos and Xue, 1999] The Adapted IRT al-
gorithm terminates with the optimal solution to m̂.

The correctness of the algorithm is due to the strictly con-
vex function of isotonic data augmentation subject to convex
constraints. Therefore it has a unique local minimizer which
is also the global minimizer [Bazaraa et al., 2013]. Its time
complexity is O(c log c).

4.3 Efficient Approximation via Penalty Methods
We found two drawbacks of the proposed order restricted data
augmentation in Sec 4.2: (1) although the time complexity
is O(c log c), the algorithm is hard to compute in parallel in
GPU; (2) The order restrictions are too harsh, which overly
distorts information of the original soft labels. For example,
if the probability of original labels are very low, then almost
all nodes will be absorbed and averaged. This will loss all
valid knowledge from the original soft labels. In this sub-
section, we loose the order restrictions and propose a more
GPU-friendly algorithm.

Note that, the partial order E in Eq. (10b) introduces the
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restrictions to the soft labels, and then uses the isotonic soft
labels to limit the student model. If we directly use the partial
order to limit the student model instead, the restrictions can
be rewritten as:
∀(i, j) ∈ E,S(x̃)i ≥ S(x̃)j

⇔S(x̃)1 ≥ S(x̃)2 AND min(S(x̃)1,2) ≥ max(S(x̃)3···c)
(11)

Note that we can replace min(S(x̃)1,2) ≥ max(S(x̃)3···c)
with a simpler term S(x̃)2 ≥ max(S(x̃)3···c) without
changing the actual restriction. We use min(S(x̃)1,2) ≥
max(S(x̃)3···c) because we want to ensure the loss below is
equally sensitive to both S(x̃)1 and S(x̃)2.

Objective with Order Restricted Student. We convert
the optimization problem subjected to Eq. (11) to the uncon-
straint case in Eq. (12) via penalty methods. The idea is to
add the restrictions in the loss function.
LKD-p = LKD-aug + σE(x̃,ỹ)∼Dtrain

[max(0,S(x̃)2 − S(x̃)1)
+max(0,max(S(x̃)3 · · · S(x̃)c)−min(S(x̃)1,S(x̃)2))]

(12)
where σ is the penalty coefficients. The penalty-based loss
LKD-p can be computed inO(c) time and is GPU-friendly (via
the max function).

5 Experiments
5.1 Setup

Models. We use teacher models and the student mod-
els of different architectures to test the effect of our pro-
posed isotonic data augmentation algorithms for knowledge
distillation. We tested the knowledge transfer of the same
architecture (e.g. from ResNet101 to ResNet18), and the
knowledge transfer between different architectures (e.g. from
GoogLeNet to ResNet).

Competitors. We compare the isotonic data
augmentation-based knowledge distillation with stan-
dard knowledge distillation [Hinton et al., 2015]. We also
compare with the baseline of directly distilling with aug-
mented samples without introducing the order restrictions.
We use this baseline to verify the effectiveness of the order
restrictions.

Datasets. We use CIFAR-100 [Krizhevsky et al., 2009],
which contains 50k training images with 500 images per class
and 10k test images. We also use ImageNet, which contains
1.2 million images from 1K classes for training and 50K for
validation, to evaluate the scalability of our proposed algo-
rithms.

Implementation Details. For CIFAR-100, we train the
teacher model for 200 epochs and select the model with the
best accuracy on the validation set. The knowledge distil-
lation is also trained for 200 epochs. We use SGD as the
optimizer. We initialize the learning rate as 0.1, and de-
cay it by 0.2 at epoch 60, 120, and 160. By default, we
set β = 3, σ = 2, which are derived from grid search in
{0.5, 1, 2, 3, 4, 5}. We set τ = 4.5, α = 0.95 from common
practice. For ImageNet, we train the student model for 100
epochs. We use SGD as the optimizer with initial learning
rate is 0.1. We decay the learning rate by 0.1 at epoch 30, 60,
90. We also set β = 3, σ = 2. We follow [Matsubara, 2021]
to set τ = 1.0, α = 0.5. Models for ImageNet were trained

on 4 Nvidia Tesla V100 GPUs. Models for CIFAR-100 were
trained on a single Nvidia Tesla V100 GPU.

5.2 Main Results
Results on CIFAR-100. We show the classification accura-
cies of the standard knowledge distillation and our proposed
isotonic data augmentation in Table 1. Our proposed algo-
rithms effectively improve the accuracies compared to the
standard knowledge distillation. This finding is applicable
to different data augmentation techniques (i.e. CutMix and
Mixup) and different network structures. In particular, the
accuracy of our algorithms even outperform the teacher mod-
els. This shows that by introducing the order restriction, our
algorithms effectively calibrate the soft labels and reduce the
error from the teacher model. As Mixup usually performs
better than CutMix, we only use Mixup as data augmentation
in the rest experiments.

Results on ImageNet. We display the experimental results
on ImageNet in Table 2. We use the same settings as [Tian
et al., 2019], namely using ResNet-34 as the teacher and
ResNet-18 as the student. The results show that isotonic data
augmentation algorithms are more effective than the original
data augmentation technology. This validates the scalability
of the isotonic data augmentation.

We found that KD-p is better on CIFAR-100, while KD-
i is better on ImageNet. We think this is because ImageNet
has more categories (i.e. 1000), which makes order violations
more likely to appear. Therefore, strict isotonic regression in
KD-i is required to eliminate order violations. On the other
hand, since CIFAR-100 has fewer categories, the original soft
labels are more accurate. Therefore, introducing loose restric-
tions through KD-i is enough. As a result, we suggest to use
KD-i if severe order violation occurs.

Ablation. In Table 1, we also compare with the conven-
tional data augmentation without introducing order restric-
tions (i.e. KD-aug). It can be seen that by introducing the
order restriction, our proposed isotonic data augmentation
consistently outperforms the conventional data augmentation.
This verifies the advantages of our isotonic data augmentation
over the original data augmentation.

5.3 Effect of Order Restrictions
Our basic intuition of this paper is that, order violations of
soft labels will injure the knowledge distillation. In order
to verify this intuition more directly, we evaluated the per-
formance of knowledge distillation under different levels of
order violations. Specifically, we use the Adapted IRT al-
gorithm to eliminate the order violations of soft labels for
0%, 25%, · · · , 100% augmented samples, respectively. We
show in Fig. 4 the effectiveness of eliminating different pro-
portions of order violations in CIFAR-100. As more viola-
tions are calibrated, the accuracy of knowledge distillation
continues to increase. This verifies that the order violations
injure the knowledge distillation.

5.4 Efficiency of Isotonic Data Augmentation
We mentioned that KD-p based on penalty methods is more
efficient and GPU-friendly than KD-i. In this subsection, we
verified the efficiency of different algorithms. We selected
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ResNet101 ResNet50 ResNext50 GoogleNet DenseNet121 SeResNet101 SeResNet101 DenseNet121
ResNet18 ResNet18 ResNet18 ResNet18 ResNet18 ResNet18 SeResNet18 SeResNet18 Avg.

Teacher 78.28 78.85 78.98 78.31 78.84 78.08 78.08 78.84
Student 77.55 77.55 77.55 77.55 77.55 77.55 77.21 77.21
KD 79.78 79.41 79.88 79.33 79.84 79.41 77.45 79.65 79.34
(KD Mixup)KD-aug 79.39 79.75 80.14 80.15 79.75 78.35 78.94 79.52 79.50
(KD Mixup)KD-i 79.75 80.13 80.35 80.25 80.38 79.73 78.83 80.01 79.93
(KD Mixup)KD-p 80.56 80.45 80.67 80.35 80.36 80.11 79.25 80.49 80.28
(KD CutMix)KD-aug 79.73 80.02 80.19 79.71 79.77 79.19 78.55 80.23 79.67
(KD CutMix)KD-i 79.95 80.02 80.67 79.98 80.27 79.51 79.05 80.45 79.99
(KD CutMix)KD-p 79.93 80.51 80.34 79.96 79.98 79.57 79.13 80.83 80.03
CRD 79.76 79.75 79.59 79.74 79.74 79.22 79.35 79.86 79.63
(CRD Mixup)CRD-aug 79.52 79.38 80.03 79.92 80.05 79.69 79.41 80.43 79.81
(CRD Mixup)CRD-i 79.97 79.84 80.49 80.01 80.15 79.45 79.77 80.47 80.01
(CRD Mixup)CRD-p 79.91 79.82 80.04 80.16 81.03 79.93 80.19 80.65 80.21
(CRD CutMix)CRD-aug 79.77 79.63 79.96 80.13 80.18 79.17 79.49 80.37 79.84
(CRD CutMix)CRD-i 80.04 80.14 80.62 80.37 80.59 79.56 79.51 80.52 80.17
(CRD CutMix)CRD-p 79.91 80.19 80.11 80.28 80.59 79.77 80.01 80.48 80.17

Table 1: Results of CIFAR-100. KD means standard knowledge distillation [Hinton et al., 2015] and CRD means contrastive representation
distillation [Tian et al., 2019]. ∗−aug means knowledge distillation using mixup-based data augmentation without calibrating the soft labels,
∗ − i means soft labels by isotonic regression and ∗ − p means soft labels by the efficient approximation.

KD-aug KD-i KD-p
top-1/top-5 68.79/88.24 69.71/89.85 69.04/88.93

Table 2: Results of ImageNet.
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Figure 4: Effect of introducing
order restrictions to different ra-
tios of samples. Average over 5
runs. Restricting more samples
will improve the effect.
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Figure 5: Effect of different σs.
σ = 2 is a recommended value
as it outperforms other values in
most cases.

KD KD-aug KD-i KD-p
Mixup 1.00x 1.02x 3.33x 1.02x
CutMix 1.00x 1.01x 3.05x 1.01x

Table 3: Time costs for different data augmentation algorithms.

models from Table 1 and counted their average training time
of one epoch. In Table 3, taking the time required for standard
KD as the unit 1, we show the time of different data augmen-
tation algorithms. It can be seen that KD-p based on penalty
methods require almost no additional time. This shows that
KD-p is more suitable for large scale data in terms of effi-
ciency.

5.5 Effect of the Looseness of Order Restrictions
The coefficient σ in the Eq. (12) is the key hyper-parameter
that controls the looseness of KD-p. It can be found that for
most models, the model performs best when σ = 2.0. There-
fore, σ = 2 is a recommended value for real tasks.

SST TREC DBPedia
KD-aug 97.35 99.72 98.54
KD-i 97.85 99.78 98.95
KD-p 98.24 99.95 99.01

Table 4: Results on several NLP tasks.

5.6 Effect on NLP Tasks
Our proposed algorithm can also be extended to NLP tasks
and Table 4 shows the results on several NLP tasks including
SST [Socher et al., 2013], TREC [Li and Roth, 2002] and
DBPedia[Auer et al., 2007]. We use Bert[Devlin et al., 2019]
as the teacher and DistilBert[Sanh et al., 2019] as the student.
We leverage the mixup method in Mixup-Transformer[Sun et
al., 2020], and the results indicate that comparing to KD-aug,
KD-i and KD-p will improve student models’ accuracy.

6 Conclusion
We reveal that the conventional data augmentation techniques
for knowledge distillation have critical order violations. In
this paper, we use isotonic regression (IR) - a classic statisti-
cal algorithm - to eliminate the rank violations. We adapt the
traditional IRT-BIN algorithm to the adapted IRT algorithm to
generate concordant soft labels for augmented samples. We
further propose a GPU-friendly penalty-based algorithm. We
have conducted a variety of experiments in different datasets
with different data augmentation techniques and verified the
effectiveness of our proposed isotonic data augmentation al-
gorithms. We also directly verified the effect of introducing
rank restrictions on data augmentation-based knowledge dis-
tillation.
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Bennett Jonathon Hare. Fmix: Enhancing mixed sample
data augmentation. arXiv preprint arXiv:2002.12047,
2(3):4, 2020.

[Hinton et al., 2015] Geoffrey Hinton, Oriol Vinyals, and
Jeff Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[Kendall, 1938] M. G. Kendall. A new measure of rank cor-
relation. Biometrika, 30(1/2):81–93, 1938.

[Krizhevsky et al., 2009] Alex Krizhevsky, Geoffrey Hinton,
et al. Learning multiple layers of features from tiny im-
ages. 2009.

[Li and Roth, 2002] Xin Li and Dan Roth. Learning question
classifiers. In COLING, 2002.

[Mahsereci et al., 2017] Maren Mahsereci, Lukas Balles,
Christoph Lassner, and Philipp Hennig. Early stopping
without a validation set. arXiv preprint arXiv:1703.09580,
2017.

[Matsubara, 2021] Yoshitomo Matsubara. torchdistill: A
modular, configuration-driven framework for knowledge

distillation. In International Workshop on Reproducible
Research in Pattern Recognition, pages 24–44, 2021.

[Maxwell and Muckstadt, 1985] William L Maxwell and
John A Muckstadt. Establishing consistent and realistic
reorder intervals in production-distribution systems. OR,
33(6):1316–1341, 1985.

[Niculescu-Mizil and Caruana, 2005] Alexandru Niculescu-
Mizil and Rich Caruana. Predicting good probabilities
with supervised learning. In ICML, pages 625–632, 2005.

[Pardalos and Xue, 1999] Panos M Pardalos and Guoliang
Xue. Algorithms for a class of isotonic regression prob-
lems. Algorithmica, 23(3):211–222, 1999.

[Sanh et al., 2019] Victor Sanh, Lysandre Debut, Julien
Chaumond, and Thomas Wolf. Distilbert, a distilled ver-
sion of bert: smaller, faster, cheaper and lighter. arXiv
preprint arXiv:1910.01108, 2019.

[Socher et al., 2013] Richard Socher, Alex Perelygin, Jean
Wu, Jason Chuang, Christopher D Manning, Andrew Y
Ng, and Christopher Potts. Recursive deep models for
semantic compositionality over a sentiment treebank. In
EMNLP, pages 1631–1642, 2013.

[Sun et al., 2020] Lichao Sun, Congying Xia, Wenpeng Yin,
Tingting Liang, Philip S Yu, and Lifang He. Mixup-
transfomer: Dynamic data augmentation for nlp tasks.
arXiv preprint arXiv:2010.02394, 2020.

[Takahashi et al., 2019] Ryo Takahashi, Takashi Matsubara,
and Kuniaki Uehara. Data augmentation using random im-
age cropping and patching for deep cnns. TCSVT, 2019.

[Tian et al., 2019] Yonglong Tian, Dilip Krishnan, and
Phillip Isola. Contrastive representation distillation. In
ICLR, 2019.

[Wang et al., 2020a] Dongdong Wang, Yandong Li, Liqiang
Wang, and Boqing Gong. Neural networks are more pro-
ductive teachers than human raters: Active mixup for data-
efficient knowledge distillation from a blackbox model. In
CVPR, pages 1498–1507, 2020.

[Wang et al., 2020b] Huan Wang, Suhas Lohit, Michael
Jones, and Yun Fu. Knowledge distillation thrives on data
augmentation. arXiv preprint arXiv:2012.02909, 2020.

[Wen et al., 2019] Tiancheng Wen, Shenqi Lai, and Xuem-
ing Qian. Preparing lessons: Improve knowledge
distillation with better supervision. arXiv preprint
arXiv:1911.07471, 2019.

[Yang et al., 2019] Chenglin Yang, Lingxi Xie, Siyuan Qiao,
and Alan L Yuille. Training deep neural networks in gen-
erations: A more tolerant teacher educates better students.
In AAAI, volume 33, pages 5628–5635, 2019.

[Yun et al., 2019] Sangdoo Yun, Dongyoon Han, Seong Joon
Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
Cutmix: Regularization strategy to train strong classifiers
with localizable features. In ICCV, pages 6023–6032,
2019.

[Zhang et al., 2018] Hongyi Zhang, Moustapha Cisse,
Yann N Dauphin, and David Lopez-Paz. mixup: Beyond
empirical risk minimization. In ICLR, 2018.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2320


	Introduction
	Related Work
	Data Augmentation for Knowledge Distillation
	Standard Knowledge Distillation
	Knowledge Distillation with Augmented Samples

	Isotonic Data Augmentation
	Analysis of the Partial Order Restrictions
	Knowledge Distillation via Order Restricted Soft Labels
	Efficient Approximation via Penalty Methods

	Experiments
	Setup
	Main Results
	Effect of Order Restrictions
	Efficiency of Isotonic Data Augmentation
	Effect of the Looseness of Order Restrictions
	Effect on NLP Tasks

	Conclusion

