Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Automatic Translation of Music-to-Dance for In-Game Characters

Yinglin Duan'*, Tianyang Shi'*, Zhipeng Hu'?>, Zhengxia Zou?®,
Changjie Fan', Yi Yuan'f, Xi Li?
INetEase Fuxi Al Lab,
2Zhejiang University ,
3University of Michigan, Ann Arbor
{duanyinglin, shitianyang, huzhipeng} @corp.netease.com, zzhengxi @umich.edu,
{fanchangjie, yuanyi} @corp.netease.com, xilizju@zju.edu.cn

Abstract

Music-to-dance translation is an emerging and
powerful feature in recent role-playing games. Pre-
vious works of this topic consider music-to-dance
as a supervised motion generation problem based
on time-series data. However, these methods re-
quire a large amount of training data pairs and may
suffer from the degradation of movements. This pa-
per provides a new solution to this task where we
re-formulate the translation as a piece-wise dance
phrase retrieval problem based on the choreogra-
phy theory. With such a design, players are al-
lowed to optionally edit the dance movements on
top of our generation while other regression-based
methods ignore such user interactivity. Consider-
ing that the dance motion capture is expensive that
requires the assistance of professional dancers, we
train our method under a semi-supervised learn-
ing fashion with a large unlabeled music dataset
(20x than our labeled one) and also introduce self-
supervised pre-training to improve the training sta-
bility and generalization performance. Experimen-
tal results suggest that our method not only gen-
eralizes well over various styles of music but also
succeeds in choreography for game players. Our
project including the large-scale dataset and sup-
plemental materials is available at https://github.
com/FuxiCV/music-to-dance.

1 Introduction

The music-dance is a very popular feature in many Role-
Playing Games (RPGs), where players can control their char-
acters to dance with the music (e.g. “Just Dance'” and “FI-
NAL FANTASY XIV?”). Recent games like “Heaven mo-
bile 3” further enriched this feature, where various instru-
ments and pre-defined dance movements are provided. Play-
ers can edit vivid music-dance videos and can even share

*These authors contributed equally to this work.
TCorresponding author.
"https://www.ubisoft.com/en-us/game/just-dance-2020/
“https://www.finalfantasyxiv.com/
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Figure 1: We propose a new method for in-game music-to-dance
translation that can be applied in RPGs and generate high-quality
and player-friendly dance videos according to the uploaded music.

them on social networks. However, the editing and cus-
tomization of music and dance require a lot of expertise. For
those players without experience in such area, choreography
for game characters would be a very difficult task. Even
for a very experienced team in music-dance, from the early
capture of dance movements to the final software synthesis,
it usually takes several days to complete the entire produc-
tion. In this paper, we investigate an interesting problem
called “Music-to-dance translation” which aims to automati-
cally generate dance movements for game characters accord-
ing to the player-uploaded music.

Recently, music-to-dance translation has drawn increasing
research attention due to its wide applications in the game
industry and virtual reality. Deep learning based methods
have shown great potential in this task [Alemi et al., 2017,
Tang et al., 2018; Lee et al., 2019; Ren et al., 2020]. How-
ever, these methods are difficult to apply to in-game music-
to-dance applications. The reason is threefold: 1. Quality.
Previous regression-based models may suffer from a degra-
dation of movements, which makes them difficult to gener-
ate Mocap-level dances and difficult to apply to recent RPGs.
2. Generalization. Players may upload various music, while
previous methods trained under a fully supervised manner are
difficult to generalize to unseen music styles. 3. Interactivity.
Rich interactivity is crucial for RPGs. However, the dance
movements generated by regression-based models are not ed-
itable, which seriously limits their interactivity.
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To solve the above problems, we propose a novel method
for generating high quality and player-friendly music-dances
for RPGs. We symbolize the dance movements and re-
formulate the music-to-dance translation as a phrase-wise
dance phrase retrieval problem. Different from the dance
generative models that directly generate the dance move-
ments from the input music, we consider the dance move-
ments as a set of semantic fragments, and then arrange these
phrases according to the choreography theory [Humphrey,
1959]. To map music phrases to dance movements, we build
an encoder-decoder network that takes in the Mel Spectro-
gram of a music phrase and then predicts the index-code of
the dance phrase. As a temporal prediction problem, we intro-
duce “transition priors” of the dance phrases based on a first-
order Markov model to integrate context reasoning, where the
transition matrices are used to re-scale the probability of pre-
dicted results and so that to produce a smoother and more
consistent generation result.

Considering the high cost of building large-scale dance
movements datasets, we take advantages of the semi-
supervised learning [Joachims, 1999; Bengio et al., 2006;
Oliver et al., 2018], to improve the robustness and general-
ization ability of our method [Tarvainen and Valpola, 2017;
Pereyra et al., 2017]. We extend our method on a large unla-
beled music dataset (20x larger than our labeled one). We first
train our method on this unlabeled dataset with a set of self-
supervised pretext tasks and enforce the network to recon-
struct the music phrases as well as their melody and rhythm
from the latent representations. The model can be thus pre-
trained to learn a good representation of the music phrases
from the pretext tasks we designed without human annota-
tions. After the pre-training, we fine-tune the model on a la-
beled dataset. Since the transition matrices initially learned
on the labeled data are half-baked, we propose a co-ascent
mechanism to jointly refine the transition priors of move-
ments and improve the accuracy of the prediction.

With the help of semi-supervised learning, our method can
better generalize to in-the-wild music data. Such scalability
is not considered and supported in previous methods.

Our contributions are summarized as follows:

e We propose a novel music-to-dance translation method
that can be applied in game environments with high-
quality, good-generalization and rich interactivity. Play-
ers can thus optionally and easily edit the dance moves
on top of our translation results. Such interactivity was
rarely considered in previous methods.

e We symbolize the dance movements based on chore-
ography theory [Humphrey, 1959] and re-formulate the
music-to-dance translation as a phrase-wise music-to-
dance retrieval problem that prevents the motion degra-
dation problem of previous methods.

e We extend our method to a large unlabeled music dataset
and propose a self-supervised pre-training method that
can greatly improve the accuracy of the downstream
music-to-dance translation task. A co-ascent boosting
method is also designed to further improve the accuracy.
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2 Related Works

Music-to-dance translation, as a cross-modality generation
problem, is an emerging research topic in recent years. Early
methods of this field are mostly based on statistical mod-
els [Shiratori et al., 2006; Ofli et al., 2011; Lee et al., 20131,
while most recent methods are based on supervised deep
learning models [Tang er al., 2018; Lee et al., 2019; Ren
et al., 2020] and show impressive results. The GrooveNet
proposed by Alemi et al. is the first method that achieves
real-time music-driven dance movements generation [Alemi
et al., 2017]. In this method, the Factored Conditional Re-
stricted Boltzmann Machine (FCRBM) is used under a re-
current movements prediction framework that considers both
current music features and historical states. Tang et al. further
propose an LSTM based Auto-Encoder model named “Anid-
ance” to predict motions from acoustic features [Tang et al.,
2018]. Lee et al. propose a decomposition-to-composition
framework [Lee et al., 2019], that uses a VAE and GAN
model to represent and organize the dance units based on
input music. Ren et al. use adversarial training to generate
coherent dance sequences and then use pose-to-appearance
mapping to generate human dance videos [Ren er al., 2020].
Recently, transformer-based methods draw a lot of atten-
tions [Huang er al., 2020; Li et al., 20211, e.g., Huang et
al. introduce curriculum learning during transformer training
for long-term dance generation [Huang et al., 2020]. How-
ever, all the above methods directly generate the dance move-
ments from music, which inevitably leads to a problem of mo-
tion degradation. In this paper, different from previous meth-
ods, we symbolize the dance movements and re-formulate
the music-to-dance generation as a retrieval problem to avoid
such a problem. The players can therefore obtain high-quality
dance movements arranged by their input music and at the
same time, the interactivity can be also preserved.

3 Methodology

We frame the music-to-dance translation as a retrieval prob-
lem. Our method consists of a music feature encoder, a
dance phrase predictor, and several decoders. Fig. 2 shows
an overview of our method. The encoder is a ResNet50-
based [He et al., 2016] convolutional network which is
trained to encode the Mel Spectrogram of music phrases into
music embeddings. The predictor is an attention-based fully
connected network which takes in the embeddings and pre-
dicts the index-code of dance phrases. The decoders are de-
signed for the pre-training task and will not be used during
the inference stage.

3.1 Music Phrase Segmentation

Given a piece of music (e.g., a pop song), we first segment
the music into several phrases. In music theory, music phrase
is defined as a separate musical entity within the melodic
line [Kndsche ef al., 2005]. We thus define a music phrase
as our basic processing unit in our retrieval model.

We design the following three steps for segmenting music
phrases from a piece of music (Please refer to our supp. for
the detailed algorithm):
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Figure 2: An overview of our method. Our method consists of a music encoder £ and a dance phrase predictor P. We also introduce three
decoders for self-supervised pre-training. In the pre-training stage, we train our encoder on a large unlabeled music dataset with three pretext
losses - a spectrogram reconstruction loss Lspe, a melody prediction loss L4, and a thythm prediction loss Ly . In the fine-tuning stage,
we train the predictor P on a labeled dance-music dataset so that to translate the input music phrases to dance phrases. Finally, players can
optionally replace the predicted phrases by preferred ones chosen from the dance library.

Step 1: Coarse segmentation. We analyze the music struc-
ture by using spectral clustering and segment music into long
fragments [McFee et al., 2015].

Step 2: Rhythm detection. We detect beats by librosa and
extract main-melody by a deep learning method [Hsieh ef al.,
2019].

Step 3: Phrase detection: For each phrase, we start from
the end of the last one, merge at least 6 detected beats, and
end at a breaking point of a long fragment (from step 1) or a
music rest (from step 2) [Jehan, 2005].

3.2 Self-Supervised Pre-Training

The training of our method consists of two stages. In the first
stage, we pre-train the encoder on a large unlabeled dataset
(music without dance movements) with self-supervised pre-
text losses. In the second stage, we fix the encoder and fine-
tune the predictor on a labeled dataset (music phrases and
corresponding dance movements).

Considering that choreography requires the concordance
of music-dance on rhythm and melody, we design three pre-
text tasks for the pre-training - a spectrogram reconstruction
tasks, a melody prediction task, and a rhythm prediction task.
The pre-training is performed solely on the music data with-
out any human annotations.

Spectrogram Reconstruction We compute the Mel Spec-
trogram for an input music phrase and convert the 1d music
signal to a 2D “image” by using librosa [McFee er al., 2015].
We then feed the spectrogram to our ResNet encoder E' to
produce a set of low dimensional feature embeddings. Be-
cause we expect the embeddings containing all information
of the input music phrase, we introduce a decoder D1, to up-
sample the features and restore the spectrogram. We force
the Mel Spectrogram before the encoder and after the decoder
unchanged. We define the reconstruction loss as follows:

Lipe(E, D1) = |[Di(E(Mel(x))) — Mel(z)|;, (1)

where 2 is the music phrase and Mel(z) is its Mel Spectro-
gram. The decoder D; has a similar structure as the gener-
ative network DCGAN [Radford et al., 2015], with 8 trans-
posed 2D-convolution layers.

Melody Prediction Main-melody defines the pitch con-
tours of polyphonic music. Different from the previous
method [Tang et al., 2018] that uses vanilla melody, we use
the Main-Melody extracted by deep learning method [Hsieh
et al., 2019] to improve the robustness. We define the predic-
tion loss as follows:

Lma(E, Ds) = [[D2(E(Mel(x))) — Melody ()|, (2)

where Do is a decoder with 5 transposed 1D-convolution
layers for regressing the melody from the embeddings.
Melody(z) is the pre-computed target melody from the music
phrase z.

Rhythm We define another prediction head to predict the
rhythm from the music embeddings. The prediction loss is
defined as follows:

Lyym(E,Ds) = BCELoss(Ds(E(Mel(x))), Rythm(x))
3)
where BCELoss denotes the Binary-Cross-Entropy-Loss, D3
is a thythm decoder which has a similar structure as Dy but
produces binary output, and Rythm(z) is the target rhythm
from the music phrase x, which is pre-computed based on
librosa [McFee et al., 2015] and main-melody.

Final Pre-Training Loss By combining the loss term (1),

(2) and (3), we define the final pre-training loss as follows:

EpTeftT(E7D17D27D3) (4)

:51£spe + B2£mld + 53£ryma

where 31, (2, and 53 are the weights to balance the loss terms.
We train the encoder F and the decoders (D¢, D2, D3) to
minimize the above loss function. After the pre-training, we

remove the decoders and only keep the weights of the encoder
for a further fine-tuning on music-dance data pairs.

2346



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

3.3 Dance Phrase Prediction

We build an attention-based multilayer perceptron as our
dance phrase predictor P. The P consists of three residual at-
tention blocks and two Fully Connected (FC) layers. In each
of the block, we make a simple modification of the squeeze
and excitation block in SENet [Hu ez al., 2018] to apply it to
an FC layer (the global pooling layer thus is removed).

The P is trained to predicts the index of a proper dance
phrase. For each music phrase, we define the prediction loss
as the cross-entropy loss between the predicted probability
distribution and the K possible dance phrases captured in the
dance library:

K
Lorea ==Y 35 log(Fyrea(u) ), ©)
i=1
~(1) A (K) 5 )
where [§p , ..., §p | represent the one-hot ground truth vec

tor of the prediction. Fpred(u)(i) represents the predicted
probability for the ith kind of dance phrase. u = E(Mel(z))
is the music embedding from the encoder E. We train the en-
coder and predictor from the self-supervised pre-trained ini-
tialization. During the training, we fix the encoder E and only
update the predictor P for a faster convergence.

3.4 Co-Ascent Learning

Semi-supervised learning forms a challenging but important
foundation of machine learning methods [Bengio et al., 2006]
that combines a small amount of labeled data with a large
amount of unlabeled one during training to improve the pre-
diction, and now it has been widely used in various tasks in
the multimedia field [Song et al., 2007; Poria et al., 2013;
Li et al., 2019]. Considering that building a large scale dance
phrase dataset is very expensive, we introduce the co-ascent
learning mechanism to migrate our learning process to unla-
beled data. This method also improves the prediction with
context reasoning.

Transition Matrix Inspired by the N-gram [Brown et al.,
1992] that has been widely used in the field of Natural Lan-
guage Processing, we introduce a dance phrase transition ma-
trix Ml € RE XK to capture the probability transition between
the two adjacent dance phrases. This matrix can be seen as
having a similar meaning to the probability transition matrix
in the first-order Markov process. During the inference stage,
we use this matrix to re-scale the prediction results of the cur-
rent phrase (based on the history predictions). The re-scale of
the predicted class probability can be written as follows:

P(dt|ut;dt71) = P(dt|ut)P(dt‘dt71)

6
= pred(ut)M(dtfl — dt)7 ( )

where d; is the dance phrase at the time step ¢, P(d;|us, di—1)
is the re-scaling results, Fj,;q(u¢) is the raw prediction re-
sults of the prediction head Fj,eq, and M (d;—1 — dy) is
the transition probability between two dance phrases from the
stept — 1tot.

Co-Ascent Learning Pseudo-labeling [Lee, 2013] is a
simple but effective strategy that has been widely used in
semi-supervised learning methods. In our method, we first
train the networks on a small labeled dataset and then apply
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Figure 3: The pipeline of the proposed co-ascent learning. We train
our predictor in a semi-supervised manner. A transition matrix is
integrated to correct the pseudo-labels and is jointly updated with
the predictor during training.

the weak model to all unlabeled data (music without dances)
to predict the corresponding labels. The dataset with both true
labels and pseudo labels is again used to train the network to
enhance the decision boundary. During the pseudo-labeling
process, we also apply the transition matrix M to correct the
predictions of our network, and the corrected labels are fur-
ther used to update the transition matrix. The update of the
transfer matrix is performed based on the product of the con-
fidences of two pseudo-labeled music phrases:

M1 (d—y — dy) = My(de—1 — dy)+P(di—1)P(dy) (7)

where M., 1 is the transition matrix after kth updates by us-
ing the pseudo-labels. P(d;) is the prediction confidence on
the dance phrase at the time step ¢. Since the transition matrix
and the networks can be mutually improved based on Eq. 6
and Eq. 7, we refer to this mechanism as co-ascent learning.

3.5 Implementation Details

Training Details In our method, we adopt Mel Spectrogram
as the input music feature. We do not use Mel-frequency cep-
stral coefficients (MFCCs) since the Mel Spectrogram con-
tains more original music information, and we aim to learn a
better representation of music to replace manual features (i.e.
MFCCs [Logan and others, 2000]). The input Mel Spectro-
gram is resized to 128 x 128 before fed into the encoder F, the
melody and rhythm are also resized to 1 x 128. The dimen-
sion of music embeddings produced by the encoder is set to
512. For a detailed network configuration and the co-ascent
learning pipeline, Please refer to our supp.

In the pre-training stage, we use Adam optimizer [Kingma
and Ba, 2014] to train our model with the learning rate of
10~* and stop at 200 epochs. The learning rate decay is set
to 0.1 per 50 epochs. We set the loss coefficient 51 = 2 =1
and B3 = 10. In the supervised fine-tuning stage, we train our
translator by SGD with the learning rate of 10~2, momentum
0.9, weight decay 5 x 10~* and the max-epoch number of
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Group . Ablations Index
Self-Supervised  Attention Balance Co-Ascent Topl Top5 Top10
I X X X X 12.3% 20.5% 23.6%
il v X X X 14.5% 19.3% 22.3%
111 v v X X 19.1% 23.7% 25.5%
v v v v X 19.3% 25.0% 27.2%
v v v v v 19.8% 24.8% 26.8%

Table 1: Results of our controlled experiment (A higher score indicates better performance).
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Figure 4: Comparisons between our method (last 3 rows) and pre-
vious methods (first 2 rows) on the music “Sorry”. Our method can
generate choreography directly for the in-game application (the last
Tow).

500. In the co-ascent stage, we set the learning rate to 1073,
update pseudo labels every 5 epochs, initialize the transition
matrix M based on the style of dance phrases (i.e. the simi-
lar dance moves are allowed to transfer) and further clip the
range of M within [0.01, 1] to improve stability. Other con-
figurations are kept the same as our fine-tuning stage.

Blending of Dance Phrases Considering that the dance
moves in adjacent phrases are not always able to transit
smoothly [Harvey et al., 2020], we use a common tech-
nique called blending* to smooth the movements between two
dance phrases.

*https://docs.unity3d.com/Packages/com.unity.timeline @ 1.6/
manual/clp_blend.html

4 Experiments

4.1 Dataset and Experimental Setup

We test our method on the music-dance creation platform of a
role-playing game named ‘“Heaven mobile” and also generate
both 2D and 3D animation for experiments. We built two
datasets for our task.

Labeled Dance-Music Dataset In this dataset, we first
recorded 1,101 different dance phrases (~2.3 hours) by using
motion capturing devices (Vicon V16 cameras). Five profes-
sional dancers took part in the motion capture for one month.
We then collected about 600 songs (~33 hours) with differ-
ent genres that are suitable for choreography. We segment
these songs into about 16773 music phrases and invite six
experts to arrange the dance phrases for each of the music
phrases (multiple music phrases may correspond to the same
kind of dance phrases). For performance evaluation, we split
this dataset into a training set (90 %) and a test set (10 %).

Unlabeled Music Dataset In addition to the labeled
dataset, we also collected an unlabeled dataset which is 20x
larger than the labeled one. The dataset consists of about 10k
songs in various styles (~686 hours). We segment each song
of this dataset into music phrases and finally 293,579 music
phrases are extracted and orderly packaged.

Evaluation Metrics We evaluate the performance of dif-
ferent music-to-dance translation models qualitatively (sub-
jective evaluation by the expert jury). We also adopt quan-
titative indicators proposed by Lee et al. [Lee et al., 2019]
to evaluate the rhythm of the generated dance, such as beat
coverage, beat hit rate, etc.

4.2 Music-to-Dance Translation Results

Fig. 4 shows a group of translation results by using our
method and previous state-of-the-art methods on the music
“Sorry” (also used in the previous work [Ren ef al., 2020]).
The music-dance video generated by our method not only
accurately captures the rhythm in the song, but also con-
tains rich musical feelings and movement strength. Be-
sides, since our method generates the entire dance phrase-
by-phrase, players can easily replace any dance phrase by se-
lecting the preferred one from the dance library, while the
previous methods lack such interactivity in the game environ-
ment.

4.3 Controlled Experiment

Controlled experiments are conducted to verify the impor-
tance of each component in our network. We evaluate five
configurations of our method, including:
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Method | Groupl Rating ~ Group2 Rating ~ Group3 Rating | Overall Rating
Dancing to music [Lee er al., 2019] 2.11 +0.68 2.14 +0.59 2.234+0.79 2.16 +0.69
Dance Video Synthesis [Ren ef al., 2020] | 3.41 +0.54 3.394+0.49 3.36 +0.48 3.39 4+ 0.50
Ours 4.02+0.75 4.09 £0.63 4.00 £0.60 4.04 £ 0.67

Table 2: The experimental results of the subjective evaluation (A higher score indicates better performance).

Method | Beat Coverage Beat Hit Rate | Music Hit Rate Beat Overlap
Dancing to music* [Lee et al., 2019] 39.4% 65.1% 25.6% 0.226
Dance Revolution*' [Huang e al., 2020] 21.8% 68.4% 14.9% 0.140
Dancing to music [Lee et al., 2019] 78.7% 56.5% 44.5% 0.315
Dance Video Synthesis [Ren et al., 2020] 94.8% 55.5% 52.6% 0.365
Ours** 87.4% 63.2% 55.2% 0.417

* Beat Coverage and Beat Hit Rate in these rows are reported by the original papers [Lee ef al., 2019; Huang er al., 2020].
1 The pre-trained model of this work has not yet been released, thus we report the original results only for reference.
** Our dance beat detection algorithm is designed to track both strong and weak dance beats for better evaluation.

Table 3: The experimental results of the quantitative evaluation. (A higher score indicates better performance)

Group I: A ResNet-50 encoder is only adopted and is ini-
tialized by ImageNet pre-trained weights.

Group II: A ResNet-50 encoder is adopted and is initialized
with the proposed self-supervised training method.

Group III: We fix the encoder trained by self-supervised
losses and fine-tuning the attention-based predictor on the la-
beled dataset.

Group IV: We further balance the labeled dataset on top of
Group III to ensure that each type of dance movement has an
equivalent sampling frequency during the training.

Group V: We apply co-ascent learning on top of Group I'V.

The results are listed in Table 1. We can see that our full
implementation (Group V) achieves significant improvement
than baselines, the self-supervised learning (Group III) brings
a noticeable improvement on our results (+6.8% on top1 than
Group I), but using self-supervised pre-trained weights may
lead to an overfitting problem (+2.2% on top1 than Group I).
Besides, the co-ascent learning also shows improvements on
topl (+0.5%) - although the scores are somewhat incremen-
tal, we find that co-ascent learning provides prediction results
with a much more consistent style.

4.4 Subjective Evaluation

Since the predictor faces to a 1000-classification problem and
the choreography can be very flexible, dance phrases can of-
ten be exchangeable. In other words, a higher retrieval ac-
curacy in this task may not necessarily indicate better perfor-
mance (even may indicate overfitting on the proxy task).

To better evaluate the quality of the generated dance
phrases, subjective evaluations are further conducted. In this
experiment, we first collect three groups of music: 1) mu-
sic used in the previous method [Ren et al., 20201, 2) music
from our unlabeled test set, 3) unseen style music outside of
our dataset (e.g. popular songs on youtube). Note that all
these musics are not shown in our training dataset. Then we
compare the dance videos generated by our full-implemented

method with two previous state of the art methods [Ren et al.,
2020; Lee et al., 2019].

For each group of the result, we invite nine certified dance
teachers (with more than 10 years of dancing experience) and
twelve professional dancers (with 5 ~ 10 years of danc-
ing experience) to evaluate the results of the three methods,
where 5 points represent the senior dancer level while 1 point
is at the beginner level. The result videos are randomly seg-
mented into a set of 30s clips. As shown in the first three
rows of Fig.4, we only show 2D animations of all three meth-
ods to the expert jury for a fairness evaluation. The statistics
of the rating for different video groups are listed in Table 2.
The experts agree our method generates high-quality dance
movements in terms of both fluency and strength of the move-
ments.

4.5 Quantitative Evaluation

We also quantitatively evaluate our method by using indica-
tors recommended by Lee et al. [Lee et al., 2019], where the
beat coverage and beat hit rate are evaluated. To calculate the
above indicators, for each music-dance animation, we count
its dance beat number (/N;), music beat number (/V,,) and
beat hit number (IN},) respectively. Then, the Beat Coverage
and the Beat Hit Rate are defined as ]]VVZ and %—Z We fur-
ther derive extra two indicators for a better evaluation, which
are Music Hit Rate (]]\\,’—Z, similar to Recall) and Beat Overlap

(5= similar to IOU).

Similar to Lee et al. ’s work [Lee et al., 2019], we im-
plement a self-adaptive dance beat detection algorithm across
different comparison methods on 2D animations mentioned
in Sec 4.4 (Please refer to our supp. for more details). The
evaluation results are shown in Table 3. Although our method
is retrieval-based, we can still accurately assign dance phrases
for music phrases with the highest rhythmic consistency. This
is mainly owing to the good representation of rhythm learned
by our model in our self-supervised learning stage.
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5 Limitation

Our method has two limitations. One limitation is that our
method is difficult to generalize on very smooth music since
the rhythm of this kind of music is difficult to be captured by
our encoder. Another limitation is that games usually adopt
the linear blending method to transit between dance move-
ments, which may cause model clipping on the large move-
ment changes. We will focus on these problems in the future.

6 Conclusion

In this paper, we propose a novel method for automatic
music-to-dance translation. We re-formulate the music-to-
dance translation as a semi-supervised dance movement re-
trieval problem based on the choreography theory. We also
build a new music-dance dataset which consists of over 16k
music phrases labeled with dance movements and also 300k
unlabeled ones. We design a self-supervised pre-training and
a co-ascent learning pipeline to make full use of the unla-
beled music dataset. Our experimental results in our dataset
suggest that our methods can generate high-quality music-
dances. The ablation studies also suggest the effectiveness of
the core design in our method.

Acknowledgments

We would like to thank Mr. Wei Zhang, Mr. Yuntao Xu, Mrs.
Ziyou Liu, Mr. Kaihua Yu from the development group of the
game “Heaven mobile” for their excellent music-dance plat-
form and kindly support. We would like to thank Mr. Tianyao
Bai, Mr. Yangfan Xu, Mr. Han Yin, Mrs. Yuxia Wu, Mr.
Ziguang She from the Ray-Force Sound Team of NetEase for
their professional guidance in music. We would like to thank
Mr. Rui Hu and Mr. Zilei Huang from NetEase Fuxi Al Lab
for their great help. We would also like to thank Mr. Yenan
Lin for his art-related help.

This work is supported in part by National Key Re-
search and Development Program of China under Grant
2020AAA0107400, National Natural Science Foundation of
China under Grant U20A20222, Zhejiang Provincial Natu-
ral Science Foundation of China under Grant LR19F020004,
and key scientific technological innovation research project
by Ministry of Education.

References

[Alemi et al., 2017] Omid Alemi, Jules Francoise, and
Philippe Pasquier. Groovenet: Real-time music-driven
dance movement generation using artificial neural net-
works. networks, 8(17):26, 2017.

[Bengio et al., 2006] Yoshua Bengio, Olivier Delalleau, and
Nicolas Le Roux. Label propagation and quadratic crite-
rion. Book Chapter in Semi-Supervised Learning, 2006.

[Brown et al., 1992] Peter F Brown, Peter V Desouza,
Robert L Mercer, Vincent J Della Pietra, and Jenifer C Lai.
Class-based n-gram models of natural language. Compu-
tational linguistics, 18(4):467—479, 1992.

[Harvey et al., 2020] Félix G Harvey, Mike Yurick, Derek
Nowrouzezahrai, and Christopher Pal. Robust motion

2350

in-betweening. ACM Transactions on Graphics (TOG),
39(4):60-1, 2020.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoging
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 770-778, 2016.

[Hsieh et al., 2019] Tsung-Han Hsieh, Li Su, and Yi-Hsuan
Yang. A streamlined encoder/decoder architecture for
melody extraction. In ICASSP 2019-2019 IEEE Interna-
tional Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), pages 156-160. IEEE, 2019.

[Hu er al., 2018] Jie Hu, Li Shen, and Gang Sun. Squeeze-
and-excitation networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 7132-7141, 2018.

[Huang et al., 2020] Ruozi Huang, Huang Hu, Wei Wu, Kei
Sawada, Mi Zhang, and Daxin Jiang. Dance revolution:
Long-term dance generation with music via curriculum
learning. arXiv preprint arXiv:2006.06119, 2020.

[Humphrey, 1959] Doris Humphrey.
dances. Dance Horizons, 1959.

[Jehan, 2005] Tristan Jehan. Creating Music by Listening.
PhD thesis, Massachusetts Institute of Technology, 2005.

[Joachims, 1999] Thorsten Joachims. Transductive inference
for text classification using support vector machines. In
Ieml, volume 99, pages 200-209, 1999.

[Kingma and Ba, 2014] Diederik P Kingma and Jimmy Ba.

The art of making

Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.
[Knosche et al., 2005] Thomas R Knosche, Christiane

Neuhaus, Jens Haueisen, Kai Alter, Burkhard Maess,
Otto W Witte, and Angela D Friederici. Perception
of phrase structure in music. Human Brain Mapping,
24(4):259-273, 2005.

[Lee et al., 2013] Minho Lee, Kyogu Lee, and Jacheung
Park. Music similarity-based approach to generating dance
motion sequence. Multimedia tools and applications,
62(3):895-912, 2013.

[Lee er al., 2019] Hsin-Ying Lee, Xiaodong Yang, Ming-Yu
Liu, Ting-Chun Wang, Yu-Ding Lu, Ming-Hsuan Yang,
and Jan Kautz. Dancing to music. In Advances in Neural
Information Processing Systems, pages 3586-3596, 2019.

[Lee, 2013] Dong-Hyun Lee. Pseudo-label: The simple and
efficient semi-supervised learning method for deep neural
networks. In Workshop on challenges in representation
learning, ICML, volume 3, page 2, 2013.

[Li et al., 2019] Xinzhe Li, Qianru Sun, Yaoyao Liu, Qin
Zhou, Shibao Zheng, Tat-Seng Chua, and Bernt Schiele.
Learning to self-train for semi-supervised few-shot clas-
sification. In Advances in Neural Information Processing

Systems, pages 10276-10286, 2019.
[Li et al., 2021] Ruilong Li, Shan Yang, David A Ross, and
Angjoo Kanazawa. Learn to dance with aist++: Mu-

sic conditioned 3d dance generation. arXiv preprint
arXiv:2101.08779, 2021.



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

[Logan and others, 2000] Beth Logan et al. Mel frequency
cepstral coefficients for music modeling. In Ismir, volume
270, pages 1-11, 2000.

[McFee et al., 2015] Brian McFee, Colin Raffel, Dawen
Liang, Daniel PW Ellis, Matt McVicar, Eric Battenberg,
and Oriol Nieto. librosa: Audio and music signal analysis
in python. In Proceedings of the 14th python in science
conference, volume 8, 2015.

[Ofli et al., 2011] Ferda Ofli, Engin Erzin, Yiicel Yemez, and
A Murat Tekalp. Learn2dance: Learning statistical music-
to-dance mappings for choreography synthesis. IEEE
Transactions on Multimedia, 14(3):747-759, 2011.

[Oliver et al., 2018] Avital Oliver, Augustus Odena, Colin A
Raffel, Ekin Dogus Cubuk, and Ian Goodfellow. Realistic
evaluation of deep semi-supervised learning algorithms.

In Advances in Neural Information Processing Systems,
pages 3235-3246, 2018.

[Pereyra et al., 2017] Gabriel Pereyra, George Tucker, Jan
Chorowski, Lukasz Kaiser, and Geoffrey Hinton. Reg-
ularizing neural networks by penalizing confident output
distributions. arXiv preprint arXiv:1701.06548, 2017.

[Poria et al., 2013] Soujanya Poria, Alexander Gelbukh,
Amir Hussain, Sivaji Bandyopadhyay, and Newton
Howard. Music genre classification: A semi-supervised

approach. In Mexican Conference on Pattern Recognition,
pages 254-263. Springer, 2013.

[Radford et al., 2015] Alec Radford, Luke Metz, and
Soumith Chintala. Unsupervised representation learning
with deep convolutional generative adversarial networks.
arXiv preprint arXiv:1511.06434, 2015.

[Ren et al., 2020] Xuanchi Ren, Haoran Li, Zijian Huang,
and Qifeng Chen. Self-supervised dance video synthesis
conditioned on music, 2020.

[Shiratori et al., 2006] Takaaki Shiratori, Atsushi Nakazawa,
and Katsushi Ikeuchi. Dancing-to-music character anima-
tion. In Computer Graphics Forum, volume 25, pages
449-458. Wiley Online Library, 2006.

[Song et al., 2007] Yangqiu Song, Changshui Zhang, and
Shiming Xiang. Semi-supervised music genre classifica-
tion. In 2007 IEEE International Conference on Acous-
tics, Speech and Signal Processing-ICASSP’07, volume 2,
pages 11-729. IEEE, 2007.

[Tang et al., 2018] Taoran Tang, Hanyang Mao, and Jia Jia.
Anidance: Real-time dance motion synthesize to the song.
In Proceedings of the 26th ACM international conference
on Multimedia, pages 1237-1239, 2018.

[Tarvainen and Valpola, 2017] Antti Tarvainen and Harri
Valpola. Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised
deep learning results. In Advances in neural information
processing systems, pages 1195-1204, 2017.

2351



	Introduction
	Related Works
	Methodology
	Music Phrase Segmentation
	Self-Supervised Pre-Training
	Dance Phrase Prediction
	Co-Ascent Learning
	Implementation Details

	Experiments
	Dataset and Experimental Setup
	Music-to-Dance Translation Results
	Controlled Experiment
	Subjective Evaluation
	Quantitative Evaluation

	Limitation
	Conclusion

