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Abstract
Legged locomotion in a complex environment re-
quires careful planning of the footholds of legged
robots. In this paper, a novel Deep Reinforce-
ment Learning (DRL) method is proposed to im-
plement multi-contact motion planning for hexa-
pod robots moving on uneven plum-blossom piles.
First, the motion of hexapod robots is formulat-
ed as a Markov Decision Process (MDP) with a
specified reward function. Second, a transition
feasibility model is proposed for hexapod robots,
which describes the feasibility of the state transi-
tion under the condition of satisfying kinematics
and dynamics, and in turn determines the rewards.
Third, the footholds and Center-of-Mass (CoM) se-
quences are sampled from a diagonal Gaussian dis-
tribution and the sequences are optimized through
learning the optimal policies using the designed
DRL algorithm. Both of the simulation and experi-
mental results on physical systems demonstrate the
feasibility and efficiency of the proposed method.
Videos are shown at https://videoviewpage.wixsite.
com/mcrl.

1 Introduction
Legged robots have redundant degrees of freedom and multi-
ple footholds for passing through challenging environments,
and have wide application prospects in disaster rescue, mate-
rial transportation, planet exploration and other fields [Lee
et al., 2020]. However, it is still a challenging task to
improve the motion efficiency of the legged robots in un-
structured environments. Traditional methods focus on the
single-step optimization using kinematic criteria and ignore
the global footstep planning, which always leads to a poor
passibility in complex environments [Belter et al., 2016;
Hwangbo et al., 2019]. Discrete environments are a special
case of the unstructured environment which need more effi-
cient and reliable planning methods. These kind of environ-
ments can characterize any unstructured environment for the
motion planning of legged robots.

∗Contact Author

Figure 1: The plum-blossom piles. (a) Plum-blossom piles used
in the real environment. (b) Plum-blossom piles in Chinese kung
fu. (c) Plum-blossom piles used in the training process with the ini-
tial policy (left) and the trained policy (right). The green block is
the initial point, the red circle is the target area, yellow dots repre-
sent plum-blossom piles, red dots represent footholds and CoM se-
quences, blue wireframes represent the body of the hexapod robot.

Trajectory optimization (TO) [Betts, 1998] has been
proved to be effective for legged locomotion. This TO
method generates a motion trajectory that minimizes some
measure of performance with a set of constraints. For the
multi-contact motion planning problem in discrete environ-
ments, such as plum-blossom piles shown in Fig.1, TO is dif-
ficult to solve directly and usually needs to be combined with
some traditional planning methods, such as A*, Probabilistic
Roadmap (PRM) planner, Rapidly-exploring Random Tree
(RRT). These methods can plan a feasible trajectory quick-
ly when the dimension of the state and action space are low,
but often face the curse of dimensionality problem in the high
dimensional or continuous state and action space.

Reinforcement Learning (RL) [Sutton and Barto, 2018]
is a machine learning methodology that has witnessed great
progress in the artificial intelligence community. Recen-
t breakthroughs of Deep Reinforcement Learning (DRL) al-
gorithms have proved RL to be one of the state-of-the-art
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technologies for complex learning and control tasks [Mni-
h et al., 2015; Silver et al., 2016]. Based on the frame-
work of Markov Decision Processes (MDP), RL addresses
the problem that how an autonomous active agent learns the
optimal policies while interacting with an initially unknown
environment. The self-learning property from unknown envi-
ronments makes RL a promising candidate for the optimiza-
tion and control of real systems [Arulkumaran et al., 2017].
Nevertheless, to the best of our knowledge, the DRL-based
multi-contact motion planning for hexapod robots on plum-
blossom piles has not been well addressed yet.

In this paper, we develop an integrated DRL-based method
for multi-contact motion planning of hexapod robots moving
on uneven and randomly generated plum-blossom piles. Our
main contributions are threefold.

• We formulate the motion of hexapod robots as a discrete-
time finite MDP problem with a specified reward func-
tion. The motion policies are optimized using the de-
signed DRL algorithm.

• We build a multi-contact centroid dynamics model for
hexapod robots, and formulate the transition feasibility
of the state transition using the TO method, which in
turn determines the rewards.

• We test the trained policies on different settings of plum-
blossom piles, and both of the simulation and experi-
mental results demonstrate the feasibility and efficiency
of the proposed method.

2 Related Work
Multi-contact motion planning. Multi-contact motion
planning is an important subject in robotics and there have
been a variety of planning strategies for legged system-
s. Some focus on simply choosing the next best reach-
able footholds ignoring the global footstep planning [Rebu-
la et al., 2007], while others consider the optimal footstep
sequence from the start to the goal [Zucker et al., 2011;
Mastalli et al., 2015]. Recently, [Ding et al., 2020] used
the Monte Carlo tree search algorithm to generate reliable
gait and foothold sequences for hexapod robots in a sparse
foothold environment. But most of the above methods only
consider the kinematic criteria to select footholds. In recen-
t years, the multi-contact TO method has attracted extensive
attention in the field of legged locomotion. [Winkler, 2018]
used the simplified centroid dynamics and TO to generate a
motion trajectory with rich possible behaviors. [Mastalli et
al., 2017] searched in the elevation map for legged locomo-
tion on rough terrains using TO.

Transition feasibility. The transition feasibility describes
whether the robot can transfer from the current state to the
target state. [Tonneau et al., 2018] solved the problem from
the perspective of kinematics and dynamics. They first con-
sidered a conservative but exact formulation of the dynamics,
and then relaxed while preserving the kinematic constraints
of the motion. [Fernbach et al., 2018] proposed an efficient
dynamic feasibility check based on a conservative and convex
reformulation of the problem, and then solved the problem

with a Linear Program (LP). Different from the former, [K-
lamt and Behnke, 2019] used a CNN to output the feasibility
and costs values and generated an abstract representation of a
detailed planning problem.
RL for legged motion planning. RL has been proved to
be effective for legged motion planning on rough terrain-
s [Rivlin et al., 2020]. Unlike traditional planning meth-
ods, DRL can deal with complex tasks in high-dimensional
continuous state and action spaces. [Shahriari and Khayyat,
2013] proposed a gait generation strategy based on RL and
fuzzy reward, and planned the motion strategy on discontin-
uous terrain through iterative updating. [Peng et al., 2017]
separated the responsibilities for planning footholds and exe-
cuting swing-leg motions and uses the hierarchical DRL to
learn locomotion skills. [Tsounis et al., 2020] combined
DRL with the model-based motion planning method, and for-
mulated the MDP using the evaluation of dynamic feasibility
criteria in place of physical simulation, so as to realize the
motion planning on challenging terrains.

3 DRL for Multi-contact Motion Planning of
Hexapod Robots

In this section, the integrated DRL-based multi-contact mo-
tion planning method is presented for hexapod robots mov-
ing on uneven plum-blossom piles. First, we introduce the
overall control structure of our method. Second, the motion
of hexapod robots is mathematically formulated as an MDP
with a specified reward function. Third, a transition feasibil-
ity model is proposed, which describes the feasibility of the
state transition under the condition of satisfying kinematics
and dynamics, and in turn determines the rewards. Finally,
using the defined MDP, we propose a DRL-based algorithm
for multi-contact motion planning of hexapod robots.

3.1 Overall Control Structure
The task of hexapod robots is to move from the initial point
to the target area on uneven plum-blossom piles. We formu-
late this process as a discrete-time finite MDP. The overall
control structure are shown as in Fig. 2. The current state
st, containing the proprioceptive information Φt, the exte-
roceptive information Mp and the target ptarget, is first input
into a policy network πθ. We parameterize πθ as a diagonal
Gaussian distribution, the mean of which is output by a Neu-
ral Network (NN). First, the coordinates of all plum-blossom
piles, which are randomly distributed in the environment, are
input into a Graph Attention Network (GAT) [Veličković et
al., 2018] with sparse matrix operations. The resulting latent
output from the coordinates is concatenated with the remain-
ing part of the state, then fed into a Multilayer Perceptron
(MLP). The action at is sampled from the diagonal Gaussian
distribution and next input into the environment.

According to the input of the action at, the environmen-
t outputs the undetermined next state s′t+1, which contains
both target Center-of-Mass (CoM) and footholds positions,
where the target footholds are found by the K-nearest Neigh-
bors (KNN) algorithm according to at. We propose a tran-
sition feasibility model for hexapod robots, which describes
the feasibility of the state transition under the condition of
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Figure 2: Overview of the proposed control structure.

satisfying kinematics and dynamics, and in turn determines
the rewards. The input of the transition feasibility model is st
and s′t+1, and the output is the next state st+1 and the reward
rt. If the the hexapod robot can transform form st to s′t+1
according the transition feasibility model, then st+1 = s′t+1
and rt is positive, otherwise st+1 = st and rt is negative. The
optimal footholds and CoM sequences are obtained using the
optimized policy π∗θ , which is trained by the designed DRL
algorithm. Finally, the hexapod robot follows the optimal se-
quences by inverse kinematics.

3.2 MDP Formulation
The motion of hexapod robots on plum-blossom piles can
be described as a discrete-time infinite MDP of a 4-tuple
〈S,A, P,R〉, where S is the state space, A is the action s-
pace, P is the state transition probability and R is the reward
function. In a RL process, an agent interacts with the environ-
ment to maximize the cumulative discounted future rewards:
Rt =

∑T−t
k=0 γ

krt+k, where γ ∈ [0, 1] is a discount factor and
T is the terminate time.

State Space
The state space contains both exteroceptive and propriocep-
tive measurements. The hexapod robot moves forward with
the tripod gait on plum-blossom piles, and there are three legs
in contact and others in swing at each time-step t. The state
st can be expressed as

st := 〈Mp,Φt,ptarget 〉 ,

Φt := 〈rBt,θt,pct , ct〉 ,
(1)

where Mp ∈ R3×Np is the coordinates of all the plum-
blossom piles in the environment, Np is the number of plum-
blossom piles, Φt is the proprioceptive information which
contains the CoM position of the hexapod robot rBt, the Euler
angles of the body θt, the foothold position of the ith contact
leg pct and the state of each leg ct ∈ {0, 1}. If ct = 0, legs
1, 3 and 5, as shown in Fig. 3, are in contact. If ct = 1, legs
2, 4 and 6 are in contact. ptarget is the center coordinate of
the target area. At each moment when the swing legs and the
support legs switched, we constrain the linear velocities ṙBt
and the angular velocities ωt of the hexapod robot to zero.

Action Space
The action at time-step t can be expressed as

at := 〈∆rBt,∆θt,kt〉 , (2)

where ∆rBt ∈ R3 is the increment of coordinates of the CoM
in the world frame, ∆θt ∈ R2 is the roll angle and pitch angle
increment of the body, and the yaw angle increment of the
body is zero. kt ∈ (−1, 1) is the selection parameters for
the landing points of the swing legs. Specifically, when the
state of the CoM gets the next desired state at time-step t+ 1,
according to the simplified kinematic model of the hexapod
robot as shown in Fig. 3, we can determine the center of the
kinematic cube p̄i for the ith swing leg. Then we can find the
np nearest plum-blossom piles to p̄i in the environment using
KNN. The piles are then arranged in the ascending order from
near to far. Finally, the kp-th plum-blossom pile is selected
as the target landing point psi of the ith swing leg at the next
time-step t+ 1.

kp =

⌊
np ·

kit + 1

2

⌋
, (3)

where b∗c denotes the rounding down operation.

Reward Function
The goal of the hexapod robot moving on plum-blossom piles
is to reach the target area from the initial point with the short-
est path while satisfying all the kinematic and dynamic con-
straints. We design the reward function as follows:

rt = rbt + rkt + rft + rdt + rgt, (4)

where rbt is the boundary reward penalizing the CoM mov-
ing beyond the boundary of the environment, rkt penalizes
the state transition violating the kinematic constraint, rft pe-
nalizes the unfeasible state transition calculated by the tran-
sition feasibility model. The distance reward forces the robot
to move to the target area with the shortest path and is defined
as

rdt = −
‖rBt − ptarget ‖2

‖pinitial − ptarget ‖2
, (5)

where pinitial is the initial point. The hexapod robot gets the
reward rgt when arriving the target area.
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Figure 3: The hexapod robot model used in the transition feasibility.
i ∈ {1, ..., 6} is leg number. The kinematic model of the hexapod
robot is conservatively approximated by keeping the foot pi inside
the blue cube Ri. The dynamics are approximated by a single rigid-
body with mass m and inertia I. The external force includes the
thrust on the ith foot fi and the gravity on the CoM mg.

3.3 Transition Feasibility
We employ the TO technique to determine the transition fea-
sibility of the state transition, and in turn determine the re-
wards. In this subsection, we first introduce the formulation
of the multi-contact transition feasibility. Then, we give the
hexapod robot model and the multi-contact model used in the
transition feasibility.

Multi-contact Transition Feasibility Formulation
The multi-contact transition feasibility model determines
whether the state transition of the hexapod robot is feasible
given the current state x0 and the target state xT . The state x
includes the CoM position rBt, the linear velocities ṙBt, the
Euler angles θt and the angular velocities ωt.

We formulate the transition feasibility as a nonlinear con-
strained optimization problem using the direct multiple shoot-
ing method and solve it by Nonlinear Programming (NLP).
The initial state x0, the desired final state xT , the foothold
position of the ith contact leg pci , the target foothold position
of the ith swing leg psi , and the total duration T are provided,
where i from 1 to ni is the ith contact leg. On plum-blossom
piles, the hexapod robot takes the tripod gait as the default
gait to complete the state transition, therefore the number of
contact legs ni = 3.

The hexapod robot model used in the transition feasibility
is shown in Fig. 3. The decision variables of the problem
include the contact force ft and the state xt. The constrains
include the initial state xt0 = x0, the target state xtF = xT ,
the dynamic model, the kinematic model, the pushing force
and the friction cone. The optimizer uses the provided infor-
mation to find a trajectory for the state x and the contact force
f , and makes the objective function

J =

∫ T

0

ni∑
i=1

f2i dt (6)

meet the local minimum. We use Ftf ∈ {0, 1} to describe
the state transition. If the trajectory satisfies all the given con-
straints, then the transition is feasible and Ftf = 1, otherwise
the transition is unfeasible and Ftf = 0.

Name Body Coxa Femur Tibia
Length/mm 238 60 120 130
Range 1/o - [-45, 45] [0, 45] [-135, -90]
Range 2/o - [-45, 45] [-45, 0] [-90, -45]

Table 1: Dimension parameters and joint rotation ranges of the hexa-
pod robot.

Kinematic Model
The kinematic model describes the workspace of the body
and foots, which avoids the behavior of the hexapod robot
violating its own mechanical structure constraints. Since the
original kinematic model of the hexapod robot is highly non-
linear, we conservatively approximate it by keeping the ith
foot pi inside the blue cubeRi in Fig. 3.

In order to get the cubes, based on the dimension parame-
ters of the hexapod robot and the rotation range of each joint
shown in Table 1, we randomly sample within the rotation
range to generate the point cloud of the foots. According to
the point cloud, we can conservatively find the side length of
the cube. The workspace of each foot i can be expressed as

pi ∈ Ri (rB ,θ)

⇔
∣∣RZ (αi)

[
B
WR [pi − rB ]− pi

]∣∣ < b,
(7)

where B
WR is the rotation matrix from the world frame to

the body frame, RZ(αi) is the rotation matrix for rotations
around the z-axis, αi is the deflection angle of the ith coxa
relative to the x-axis in the body frame, p̄i is the center of the
ith cube, b is half the side length of the cube. For the three
contact legs, the kinematic constraints need to be met in the
whole state transition process. For the three swing legs, the
kinematic constraints are only verified at the final time T .

Dynamic Model
The dynamic model represents the time-dependent aspects
of a system, and we approximate it by Single Rigid Body
Dynamics (SRBD) [Winkler, 2018]. Then, we can get the
Newton-Euler equations of the hexapod robot, which is de-
fined as the SRBD:

mr̈B =

ni∑
i=1

fi +mg, (8)

d

dt
(Iω) =

ni∑
i=1

fi × (rB − pci ) , (9)

where m is the mass of the hexapod robot, g is the accel-
eration of gravity, r̈B is the linear acceleration of the CoM.
I ∈ R3×3 is the moment of inertia.

The dynamic model of the hexapod robot can be modeled
by an ordinary differential equation ẋ = F(x, f). The rates
of the Euler angles θ̇ can be calculated by the optimized Euler
angles θ and the angular velocities ω̇:

θ̇ = C(θ)ω̇ =

[
1 0 − sin θy
0 cos θx sin θx cos θy
0 − sin θx cos θx cos θy

]
ω̇. (10)

Based on the SRBD, the dynamic model of the hexapod
robot is independent of its joint state, but only related to the
external forces on the contact legs.
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Pushing Force
According to the physics, the force provided by the environ-
ment to the hexapod robot can only be thrust, and we set up
the following constraint:

fi · n (pci ) ≥ 0, (11)

where n (pci ) is the normal vector of the environmental sur-
face at coordinate pci .

Friction Cone
The friction follows from Coulomb’s law pushing stronger
into a surface allows exerting larger side-ways forces with-
out slipping. Therefore, the resultant force on each contact
leg is always in the interior of the friction cone. The linear
approximation is as follows:∣∣fi · t{1,2} (pci )

∣∣ < µ · fi · n (pci ) , (12)

where t{1,2} (pci ) is the tangential vector of the environment
at coordinate pci and µ is the friction coefficient.

3.4 DRL-based Multi-contact Motion Planning
Based on the proposed transition feasibility model and the
formulated MDP, an integrated DRL algorithm for multi-
contact motion planning of hexapod robots moving on uneven
plum-blossom piles is shown as in Algorithm 1.

Given the current state st of the hexapod robot, we de-
sign a policy network πθ to map the state st to the action
at. The architecture of πθ is shown in Fig. 2. This policy
network is parameterized as a diagonal Gaussian distribution
πθ (at | st) := N (at | µθ (st) , σ), while the mean µθ (st)
is output by a neural network and the standard-deviation pa-
rameters σ are standalone parameters. The coordinates of all
the plum-blossom piles Mp are input into a Graph Attention
Network (GAT) [Veličković et al., 2018] with a multi-head
attention:

~hi
′

= σ

 1

K

K∑
k=1

∑
j∈Ni

αkijW
k~hj

 , (13)

where ~h is the input node feature. For the plum-blossom
piles, the feature is its own normalized coordinate, ~h′ is the
output node feature, σ is an activation function,K is the num-
ber of the independent attention mechanisms, Wk is the cor-
responding input linear transformation’s weight matrix,Ni is
the neighborhood of node i in the graph. In our work,Ni rep-
resents the 5 points closest to node i. αij is the normalized
attention coefficient:

αij = softmaxj (eij) =
exp (eij)∑

k∈Ni
exp (eik)

. (14)

The attention coefficient eij can be calculated as

eij = LeakyReLU
(
~aT
[
W~hi‖W~hj

])
, (15)

where ~aT is the weight vector and ‖ represents concatenation.
We use the sparse matrix operations in GAT to reduce the
storage complexity.

Algorithm 1 DRL for Multi-contact Motion Planning

1: Initialize policy parameters θ0 and value function param-
eters φ0.

2: for episod k = 0, 1, 2, ...,M do
3: Randomly initialize s0 and ptarget.
4: for step t = 0, 1, 2, ..., T do
5: Run policy π(θk), get action at.
6: Take at, observe s′t+1
7: Input st, s′t+1 to the transition feasibility model and

get Ftf .
8: if Ftf = 1 then
9: Get positive reward rt, st+1 = s′t+1.

10: else
11: Get negative reward rt, st+1 = st.
12: end if
13: Store experience (st, at, rt, st+1) in Dk.
14: end for
15: Compute rewards-to-go R̂t.
16: Compute Ât using GAE based on value function Vφk

.
17: Update policy: θk+1 = arg maxθ La(θ).
18: Fit value function: φk+1 = arg minφ Lc(φ).
19: end for

The output of GAT is concatenated with the remaining
part of the state st and subsequently input into the Fully-
Connected Layer 1 (FC1). Since the posture of the hexapod
robot at the next moment will affect the selection of the target
foothold positions, we divide the output action into two parts.
The action ∆rBt and ∆θt are output by the Output Layer 1
(O1) and then input into the FC4 with the output of FC3. And
the action kt is output by O2. The hexapod robot executes the
complete action at , and then observes the next state st+1 and
the immediate reward rt.

To train the policy πθ, a variant of Proximal Policy Op-
timization (PPO) [Schulman et al., 2017] using clipped
loss and a Generalized Advantage Estimation (GAE) critic
is used. We compute the policy update via stochastic gradient
ascent with Adam and we have

θk+1 = arg max
θ
La(θ), (16)

where

La(θ) = E
[
min

(
rt(θ)Ât, clip (rt(θ), 1− ε, 1 + ε) Ât

)]
,

(17)
and rt(θ) is the probability ration defined as

rt(θ) =
πθ (at | st)
πθk (at | st)

. (18)

The value function is update by regression on the mean-
squared error:

φk+1 = arg min
φ
Lc(φ), (19)

where
Lc(φ) = E

(
Vφ(st)− R̂t

)
. (20)
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Figure 4: Different types of plum-blossom pile environments. (a)
Random plane plum-blossom piles E1. (b) Random height plum-
blossom piles E2. (c) Random stair plum-blossom piles E3. (d)
Simplified version of E3 in real world E4.

4 Experiments
In this section, the multi-contact motion policies of the hexa-
pod robot is trained based on the proposed DRL algorithm,
and the policies are tested in both simulation and real plum-
blossom pile environments. We assessed the performance of
the trained policies through the Average Episode Reward-
s (AER), the Average Episode Steps (AES) and the Aver-
age Success Rate (ASR) in different environment settings.
To illustrate the effect of the transition feasibility model, we
trained two kinds of policies, one is trained with the proposed
transition feasibility model and the other is trained with a nor-
mal kinematic model. We use the Average Transferable Rate
(ATR) to assess the performance of the later policy.

4.1 Experimental Setup
In order to test our method, we build three different types
of simulation plum-blossom pile environments E1, E2, E3

and a real plum-blossom pile environment E4 as shown in
Fig. 4. All the simulation environments present a 1200 ×
1200 mm2 square area consisting of Np plum-blossom piles,
and the E4 is a simplified version of E3 in real world. In E1,
we set plum-blossom piles with the same height but random
coordinates in the x-axis and the y-axis, and limit the distance
between piles to more than 300 mm. In E2, the height of the
plum-blossom piles is sampled between−30mm and 30mm
randomly on the basis of which inE1. And the plum-blossom
piles in E3 are set as random stairs. In order to generate E3,
we first set up a standard stair environment. Each step of the
stair is 140 mm wide and 25 mm high. Then we project the
plum-blossom piles in E1 onto the surface of the stair in the
z-axis direction, and the height of the plum-blossom piles are
the same as that of each step of the stair.

4.2 Training Setup
For a training process, we first set a random initial point and
a random target area with radius of 100 mm. The goal of the

hexapod robot is to move successfully from the initial point
to the target area with the shortest path. At the beginning of
the training process, we first reset the CoM of the hexapod
robot to the initial point. Then, the plum-blossom pile near-
est to the center of the ith cube pi is selected as the initial
position of the ith contact leg. If the three initial contact legs
violate the kinematic constraints, the initial point and the tar-
get area are resampled. The initial angle θ of the body is
parallel to the plane formed by the three initial contact legs.
So far, the reset of the hexapod robot is completed. Then, for
each time-step t, the hexapod robot obtains the current state
st, executes the action at from the policy network, receives
a reward rt and obtains the next state st+1. When the CoM
of the hexapod robot reaches the target area or the maximum
number of steps in the current episode reaches 300, the cur-
rent episode is terminated and a new episode is started. We
repeat the above process until the end of the training.

To illustrate the effect of the transition feasibility model,
we trained two kinds of policies, one is trained with the pro-
posed transition feasibility model and the other is trained with
a normal kinematic model. For the training process of the
latter policy, we only check the kinematic constraints of the
initial position and the target position at each time-step t, as
is done in [Ding et al., 2020]. Moreover, we use a simplified
kinematic model in three-dimensional space as described in
subsection 3.3.

We train our policy network on a computer with an i7-7700
CPU and a Nvidia GTX 1060ti GPU. The RL algorithm is im-
plemented using Pytorch1, and the transition feasibility model
used in the training process is solved using CasADi2.

4.3 Experimental Results

According to the learning curve, as shown in Fig. 5, a total of
1 million time-steps are set for training and the whole train-
ing process takes about 12 hours in each environment. We
tested the trained policies in E1, E2, E3 and E4 and we as-
sumed that the environment information and the position of
the robot are known quantities. We assessed the performance
of our method through AER, AES and ASR in different envi-
ronments as shown in Table 2. The fully trained policies can
generate valid footholds and CoM sequences which lead the
robot to the random target area with a ASR between 90% and
100%. The policies that trained without transition feasibility
model can get a even higher ASR, but the ATR is low, which
may results in a poor passibility in the real system. Since the
algorithm verifies the transition feasibility at each time-step t
in the training process, it can be observed in Fig. 6 that the ro-
tation angles of coxae, which are constrained between −45◦

and +45◦, always satisfy the kinematic constraints (Take E3
as an example). Another important observation is about the
distribution of the legs in different environments. In cases of
E1 and E2, the legs are relatively evenly distributed around
the CoM. However, in the cases of E3 and E4, leg 2 and leg 5
are placed to the rear for better stability due to the transition
feasibility model.

1https://pytorch.org/
2https://web.casadi.org/
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Figure 5: Learning curves for E1, E2 and E3. (a) The average episode reward. (b) Average episode steps which represent the quotient of the
steps in a episode and the distance between the initial point and the center of the target area.

Np Metric E1 E2 E3
With TFM Without TFM With TFM Without TFM With TFM Without TFM

600

AER 2.085 8.285 1.137 7.213 0.466 6.592
AES 0.035 0.009 0.041 0.052 0.081 0.092
ASR 100% 100% 100% 100% 99% 100%
ATR - 42% - 36% - 37%

500

AER 1.723 7.982 1.077 6.514 -0.890 6.558
AES 0.047 0.010 0.061 0.093 0.148 0.114
ASR 100% 100% 100% 100% 95% 99%
ATR - 35% - 29% - 31%

400

AER 0.683 7.234 -0.103 6.125 -2.358 5.918
AES 0.112 0.031 0.174 0.104 0.270 0.113
ASR 99% 100% 97% 99% 92% 98%
ATR - 28% - 30% - 26%

Table 2: The performance of the learned policies in different types of environments with 100 random initial points and 100 random target
areas. There are two kinds of policies, one is trained with the Transition Feasibility Model (TFM) and the other is trained without TFM. The
metrics include Average Episode Rewards (AER), Average Episode Steps (AES), Average Success Rate (ASR) and the Average Transferable
Rate (ATR). Np is the number of plum-blossom piles in each environment.

Figure 6: The rotation angles of coxae in E3.

5 Conclusion
In this paper, we presented an integrated DRL method for
hexapod robots moving on uneven plum-blossom piles. The
multi-contact motion planning problem is mathematically
formulated as an MDP with the specified reward function.
The promising properties of DRL enable the motion plan-

ning algorithm to be implemented in a high dimensional s-
tate and action space. The proposed transition feasibility
model for hexapod robots ensures that the planned footholds
and CoM sequences satisfy the kinematic and dynamic con-
straints. Both of the simulation and experimental results on
physical systems demonstrate the feasibility and efficiency of
the proposed method. Our future work will focus on obtain-
ing more robust motion planning policies for dynamic envi-
ronments and extending the proposed method to more com-
plex real environments.
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