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Abstract
Topic models are characterized by a latent class
variable that represents the different topics. Tradi-
tionally, their observable variables are modeled as
discrete variables like, for instance, in the prototyp-
ical latent Dirichlet allocation (LDA) topic model.
In LDA, words in text documents are encoded by
discrete count vectors with respect to some dic-
tionary. The classical approach for learning topic
models optimizes a likelihood function that is non-
concave due to the presence of the latent variable.
Hence, this approach mostly boils down to using
search heuristics like the EM algorithm for param-
eter estimation. Recently, it was shown that topic
models can be learned with strong algorithmic and
statistical guarantees through Pearson’s method of
moments. Here, we extend this line of work to topic
models that feature discrete as well as continuous
observable variables (features). Moving beyond
discrete variables as in LDA allows for more so-
phisticated features and a natural extension of topic
models to other modalities than text, like, for in-
stance, images. We provide algorithmic and statis-
tical guarantees for the method of moments applied
to the extended topic model that we corroborate ex-
perimentally on synthetic data. We also demon-
strate the applicability of our model on real-world
document data with embedded images that we pre-
process into continuous state-of-the-art feature vec-
tors.

1 Introduction
Multimodal topic models have applications in many fields,
including computer vision [Zheng et al., 2014], natural lan-
guage processing [Roller and im Walde, 2013], bioinformat-
ics [Liu et al., 2016], and the social sciences [Wang et al.,
2019]. Here, we focus on efficient parameter learning for a
multimodal extension of the latent Dirichlet allocation (LDA)
topic model [Blei et al., 2001] by the method of moments.
The method of moments was first used by [Pearson, 1894]
for estimating the parameters of a mixture of two univariate
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Gaussians x ∼ w ·N (µ1, σ
2
1)+(1−w) ·N (µ2, σ

2
2). Pearson

estimated the parameters of this model by matching expected
moments of the variable x with empirical moments computed
from data. Since the expected moments are polynomials in
the five parameters µ1, µ2, σ1, σ2, and w, the method of mo-
ments amounts to solving a system of polynomial equations.
At his time, Pearson’s approach was considered an impres-
sive feat, but deemed too complex to be of further practical
use, see [McLachlan and Peel, 2004, Page 3].

The skepticism towards the method of moments was not
completely unjustified since solving systems of polynomial
equations is, in general, a hard problem. The running times of
state-of-the-art algorithms for solving systems of polynomial
equations by Gröbner bases [Buchberger, 1976] grows expo-
nentially in the number of variables in the zero-dimensional
case, that is, when the system has only a finite number of solu-
tions, see [Hashemi and Lazard, 2011]. Note that in the poly-
nomial system that is derived from the method of moments,
the variables are the parameters that need to be estimated.

However, [Hsu and Kakade, 2012] [2013] were able to
show that the polynomial system resulting from the method
of moments for multivariate mixtures of Gaussians can be
solved efficiently, that is, in polynomial time, by spectral
methods. Furthermore, they proved that parameter estima-
tion by the method of moments is consistent, that is, true
model parameters can be recovered with high probability with
a growing number of data samples. Such a statistical guar-
antee is not known for the alternative maximum likelihood
approach. The log-likelihood function for Gaussian mixture
models can have arbitrarily many critical points, see [Cerón,
2017]. This poses not only statistical, but also algorithmic
challenges. For instance, theoretical guarantees are lacking
for solutions computed by search heuristics like the popular
EM algorithm [Dempster et al., 1977].

The spectral approach towards the method of moments
does not only work for mixture models but also for several
discrete mixed membership models, see [Anandkumar et al.,
2014a], among them the LDA topic model [Anandkumar et
al., 2015]. The difference between mixture models and mixed
membership models is subtle. Both families of models have a
finite latent class variable. The difference is that every obser-
vation in a mixture model is from a single component (topic)
of the model, while it is a mixture itself (admixture) in mixed
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membership models. Here, we extend the LDA topic model,
which is a mixed membership model, such that it can also
accommodate continuous observed features. This enables a
smooth transition from the text-only modality to multimodal
documents, for instance, text documents with embedded im-
ages or images with captions.

LDA has been used directly for topic models on multi-
modal documents, where images are represented by bags of
visual words, that is, by converting continuous visual features
into discrete features [Feng and Lapata, 2010]. However,
state-of-the art feature representations are continuous, see for
instance [He et al., 2016]. This motivates our extension of
LDA into a topic model for mixed discrete and continuous
features. We keep the discrete part as in standard LDA, espe-
cially the Dirichlet prior, and add a Gaussian mixed member-
ship component for the continuous features. Our model mixes
t topics by the following generative process for a multi-topic
text document and embedded image:

1. Draw the topic proportions h ∼ Dir(α1, . . . , αt)

2. Draw a document with l words:

(a) Draw the number of words per topic
(l1, . . . , lt) ∼ Mult(l,h) (multinomial distrib.)

(b) For i = 1, . . . , t do: Draw the word count vector
for the i-th topic as xi ∼ Mult(li,pi)

3. Create a single count vector x =
∑t
i=1 xi

4. For i = 1, . . . , t do: Draw an image feature vector for
the i-th topic as yi ∼ N (µi, σ

2
i I)

5. Create a single feature vector y =
∑t
i=1 hiyi

6. Output (x,y)

A sample from this model consists of a discrete count vec-
tor x for words from a given dictionary and a continuous
image feature vector y. The word count vector is as in the
classical LDA topic model, while the image feature vector is
a convex combination of topic-specific normal distributions.
The discrete and the continuous components are drawn inde-
pendently from each other, but both are governed by the mix-
ing proportions drawn from the Dirichlet prior. Our model is
similar to the Corr-LDA model of [Blei and Jordan, 2003],
where the continuous components are drawn from a mixture
of Gaussians. The Gaussian mixed membership model that
we employ here for the continuous part contains a mixture
of Gaussians as special case when all the αi of the Dirichlet
prior are much smaller than 1. This allows us to empirically
compare the mixture and the mixed membership approach on
state-of-the-art image features in Section 5. But before we do
so, we focus on our main contribution, namely, deriving the
method-of-moments system of equations for our model and
proving algorithmic and statistical guarantees for its solution.

2 Method of Moments
The method of moments is a general method for estimat-
ing the parameters of probabilistic models. Still, for each
model, the expected moments have to be computed in terms
of the model parameters, and the system of equations that

equates expected moments and their corresponding empiri-
cal moments has to be solved. Both are typically non-trivial
tasks. Deriving the system of equations for our model re-
quires tedious but standard calculations, which we skip here.
In this section, we only summarize the key characteristics of
the resulting system of equations. In the following section,
we show how to solve the system efficiently.

For the method of moments to succeed, there must be at
least as many equations as there are model parameters. As-
suming d discrete features (size of the dictionary) andm con-
tinuous features, our model has t ·(d+m+2)−1 parameters,
namely, t(d + m) parameters from the t topic-specific mean
vectors θi = (pi,µi) ∈ Rd+m in addition to t parameters
for the topic-specific variances σ2

i and t − 1 parameters for
the Dirichlet prior (given that the αi add up to α0, which we
assume to be a hyperparameter). Hence, in total there are
t(m + d + 2) − 1 model parameters. The second-moment
matrix

M2 = E[(x,y)⊗ (x,y)],

where ⊗ denotes the outer product, yields (d+m)(d+m+
1)/2 equations by symmetry, which exceeds the number of
model parameters provided that the number of topics is not
larger than (d+m)/2.

If t ≤ m, we can reduce the system of equations from
the second moment to T2 =

∑t
i=1 λiθi ⊗ θi, where T2 is

a transformed second-moment matrix that can be computed
from moments up to the second order. In principle, the trans-
formed equation system can be solved by a matrix decom-
position. However, since the parameter vectors θi are not
orthogonal, the solution is not unique. Therefore, we also use
the third-moment tensor

M3 = E[(x,y)⊗ (x,y)⊗ (x,y)].

Here, we can also derive a transformed third-moment ten-
sor that has a tensor decomposition with rank-1 components
formed by the parameter vectors θi. The following proposi-
tion shows how the decompositions of the transformed mo-
ments relate to the model parameters.
Proposition 1. If t ≤ m, then there exist transformed mo-
ments T2 and T3 that can be computed from the observed
first, second, and third moments and satisfy the following:

T2 =
t∑
i=1

λiθi ⊗ θi and T3 =
t∑
i=1

cλiθi ⊗ θi ⊗ θi,

where λi = αi/[α0(α0 + 1)] and c = 2/(α0 + 2). �

The proof of Proposition 1 requires technical algebraic ma-
nipulations that we skip here.

Proposition 1 suggests to retrieve the model parameters by
performing matrix and tensor decompositions on the trans-
formed moments, or rather their empirical versions. The CP
decomposition (decomposition into rank-1 components as in
Proposition 1) on tensors is unique under mild conditions
[Kruskal, 1977]. Unfortunately, calculating the CP decompo-
sition of a general tensor is NP hard [Hillar and Lim, 2013].
We can bypass this computational difficulty by using T2 to
derive a whitening matrix that orthogonalizes the rank-1 com-
ponents of T3. We describe the exact algorithm for learning
the model parameters in the next section.
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3 Decomposition Algorithm
Assuming linear independence of the parameter vectors θi,
the matrix T2 from Proposition 1 is a real positive semidef-
inite symmetric matrix of rank t. Hence, there exists a
rank-t decomposition T2 = U diag(γ)U> with a matrix
U ∈ R(d+m)×t that has orthonormal columns and a vector
γ ∈ Rt of positive eigenvalues. The whitening matrix for T2

is given by

W = U diag(γ−1/2)

since it holds thatW>T2W = I . Next, set

νi = W>λ
1/2
i θi, i = 1, . . . , t.

It can be shown that the vectors νi are orthogonal. Conse-
quently, the tensor

T3(W ,W ,W ) =
t∑
i=1

cλi(W
>θi)⊗ (W>θi)⊗ (W>θi)

=
t∑
i=1

ρi νi ⊗ νi ⊗ νi

has orthonormal eigenvectors νi along with scaled eigenval-
ues ρi = c · λ−1/2i . Using the whitened transformed third
moment T3(W ,W ,W ), the NP-hard problem of decom-
posing a general tensor reduces to the decomposition of an
orthogonal tensor. Decompositions of orthogonal tensors can
be efficiently computed [Ge et al., 2015]. The original pa-
rameters can be retrieved by un-whitening using the pseudo-
inverseW † = U diag(γ1/2) ofW>:

λi = c2/ρ2i and θi = ρiW
†νi/c.

The practical algorithm is outlined in Algorithm 1 and also
displayed as a flowchart in Figure 1. Here, we have to rely
on empirical quantities, which we denote with hats. First,
the transformed empirical moments T̂2 and T̂3 are derived,
for which the empirical raw moments are used. Second, the
rank-1 components of T̂3 are orthogonalized using the empir-
ical whitening matrix Ŵ , which is obtained from T̂2. Third,
we use the robust tensor power method from [Anandkumar et
al., 2014b] to compute the t largest rank-1 components of the
empirical whitened tensor T̂3(Ŵ , Ŵ , Ŵ ). In the last step,
we use the un-whitening operator to obtain the final estimated
model parameters. Moreover, the topic-specific variances σ̂2

i
can be calculated by solving a linear system of equations.

Importantly, Algorithm 1 runs in polynomial time: The
computation of the first two steps requiresO((d+m)3) time,
the robust tensor power method is a polynomial time algo-
rithm, and the linear system of equations can be solved and
set up in polynomial time as well.

Note that the robust tensor power method finds the largest
components of the whitened tensor only with high proba-
bility. Moreover, the empirical inputs of Algorithm 1 lead
to errors in the estimation process. In the next section, we
show that our method-of-moments estimator enjoys consis-
tency properties nevertheless.

Algorithm 1 Method of moments for mixed topic models

Input: observed feature vectors in Rd+m

Output: model parameters (θ̂i, α̂i, σ̂
2
i ), i = 1, . . . , t

1: Compute the transformed empirical moments T̂2 and T̂3.
2: Compute rank-t SVD T̂2 = Û diag(γ̂)Û> and set

Ŵ = Û diag(γ̂−1/2) and Ŵ † = Û diag(γ̂1/2).
3: Compute the t largest eigenvalues ρ̂i and corresponding

eigenvectors ν̂i of the whitened tensor T̂3(Ŵ , Ŵ , Ŵ ).
4: For i = 1, . . . , t set

θ̂i = ρ̂iŴ
†ν̂i/c, λ̂i = c2/ρ̂2i , and

α̂i = α0(α0 + 1)λ̂i.
Compute σ̂2

i by solving a linear system of equations.

Data

T̂ 3 T̂ 3(Ŵ , Ŵ , Ŵ )

T̂ 2

ν̂i, ρ̂i θ̂i, α̂i, σ̂
2
i

Ŵ

1: 2: 3: 4:

1

Figure 1: A flowchart visualizing the four steps of Algorithm 1.

4 Consistency
In this section, we investigate when an assumed true model
can be recovered from data using the proposed method-of-
moments estimator. There are two main sources of error in
the estimation process. The first source are errors in the em-
pirical moments. These errors propagate through the calcu-
lations of the transformed empirical moments as well as the
whitening and un-whitening operators. The second source of
error stems from performing the tensor decomposition on the
empirical whitened tensor. To control the errors, we begin
with a result that shows that small errors on the transformed
empirical moments also imply a small error on the empirical
whitened tensor.
Lemma 1. Suppose that the true matrix T2 and tensor T3

are as in Proposition 1 with linearly independent param-
eter vectors θi. Moreover, assume that the errors of the
noisy/perturbed versions of the transformed moments satisfy

‖E2‖ ≤ ε2 and ‖E3‖ ≤ ε3,

where T̂2 = T2 + E2 and T̂3 = T3 + E3. Let σmin(T2) be
the smallest nonzero singular value of T2 and suppose that
ε2 ≤ σmin(T2)/4. Then, it holds that

‖T3(W ,W ,W )− T̂3(Ŵ , Ŵ , Ŵ )‖ ≤ ε,
where for a universal constant C1 we define

ε = C1

(
ε3

σmin(T2)3/2
+ ρmax

ε2
σmin(T2)

)
with ρmax = maxi ρi = ‖T3(W ,W ,W )‖. �
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This lemma can be proven using results from matrix per-
turbation theory as in [Janzamin et al., 2019]. It becomes ap-
parent from the definition of ε that the error of the whitened
tensor stems from both the estimation error of T3 (first term)
and the error of the whitening procedure (second term). The
next theorem, which is based on [Janzamin et al., 2019, The-
orem 3.5], states that the error of the parameters (θ̂i, λ̂i) as
estimated by Algorithm 1 are small provided that the error on
the whitened tensor is small.
Theorem 1. In addition to the assumptions of Lemma 1, sup-
pose that

ε ≤ min

{
C2ρmin

t
,
ρmin

10

}
,

where ρmin = mini ρi and C2 is a universal constant (the
same ε as in Lemma 1 is used here). Moreover, pick any
η ∈ (0, 1) and assume that the robust tensor power method
performs Ω(log(t) + log log(ρmax/ε)) power updates and
assume that it is restarted poly(t) log(1/η) times for each
eigenvalue/eigenvector pair. Under these assumptions, Algo-
rithm 1 estimates pairs (θ̂1, λ̂1), . . . , (θ̂t, λ̂t) in polynomial
time such that with probability at least 1 − η there exists a
permutation π on [t] = {1, . . . , t} for which it holds for all
i ∈ [t] that∣∣∣λπ(i) − λ̂i∣∣∣ ≤ 4λ2π(i)

c2

(
25ε+ 10cλ

−1/2
π(i)

)
ε and∥∥∥θπ(i) − θ̂i∥∥∥ ≤ 1

c

(
45λ

1/2
π(i)ε+ 14

)
‖T2‖1/2 ε. �

The error bounds of Theorem 1 can be understood as rela-
tive error bounds. For example, the error bound for the esti-
mation error of λ̂i is given relative to the size of the matching
eigenvalue λπ(i). Similarly, the spectral norm ‖T2‖ can be
seen as an upper estimate of the scale of the parameters θ̂i.
Moreover, we point out that the error bounds become arbi-
trarily close to zero as ε2 → 0 and ε3 → 0 in Lemma 1 since
then also ε → 0. Observe that Theorem 1 immediately im-
plies that the errors on the Dirichlet parameters αi are also
small since by Proposition 1 they differ from λi only by the
constant factor α0(α0 + 1).

At this point, we briefly discuss some of the assumptions
of Theorem 1 and why they are necessary. First, ε is required
to be small in terms of ρmin to ensure success of the orthog-
onal tensor decomposition of the whitened tensor. Here, in-
tuitively, the perturbation may not exceed the smallest com-
ponent with eigenvalue ρmin of the whitened tensor because
otherwise recovery becomes impossible. The required bound
on ε becomes slightly stronger when more topic components
need to be recovered.

The next assumptions concern the robust tensor power
method. The power method iteratively generates pairs of
eigenvalues and corresponding eigenvectors. The restarts
guarantee that at each step the largest eigenvalue is found
with high probability. The lower bound on the number of
power iteration updates ensures convergence to an eigen-
value/eigenvector pair.

Based on the previous results, the next theorem shows that
the method of moments is a consistent method for estimating
the model parameters.

Theorem 2. Assume that Algorithm 1 is provided with data
drawn from a mixed-domain topic model with parameters
(θi, αi, σ

2
i ), i ∈ [t] (for given α0 and number of words l).

Then, Algorithm 1 yields consistent parameter estimates
(θ̂i, α̂i, σ̂

2
i ), i = 1, . . . , t. More precisely, the estimated pa-

rameters converge in probability to the true model parame-
ters, that is, for any δ > 0 the probabilities of the events

‖θπ(i) − θ̂i‖ > δ, |απ(i) − α̂i| > δ, and |σ2
π(i) − σ̂

2
i | > δ

converge to zero as the sample size grows to infinity. �

The proof of Theorem 2 proceeds by first showing that the
transformed moments T̂2 and T̂3 converge in probability to
T2 and T3, respectively. In conjunction with Lemma 1 and
Theorem 1, this leads to convergence in probability of λ̂i and
θ̂i. The convergence in probability of the remaining model
parameters can then be easily shown. In the next section, we
verify the consistency properties of our method-of-moments
estimator experimentally.

5 Experiments
First, we conduct experiments on synthetic data to corrobo-
rate our theoretical findings. Then, we show on real-world
data how adding images to word topic models changes the
learned topics. All experiments were run on a machine with
an Intel Core i9-10980XE processor with 18 cores, 128GB
RAM using Python 3.8 and PyTorch 1.6.

5.1 Synthetic Data
By performing experiments on synthetic data, we want to
show that the proposed method of moments can recover true
model parameters effectively and efficiently. For this we de-
fine models and respectively try to recover the true known
model parameters from generated samples.

Setup. In our experiments, a model configuration is de-
fined by the number of topics t, the hyperparameter α0 =∑t
i=1 αi that controls the Dirichlet prior, the numbers of dis-

crete and continuous features d and m, and the number l of
words per document. Here, we can only sample the five-
dimensional configuration space. For our experiments with
synthetic data, we consider models with t ∈ {5, 10, 20} top-
ics. Apart from that, we choose a base configuration with val-
ues α0 = 5, m = 128, d = 500, and l = 50 for the remaining
parameters. Starting from this base configuration, we respec-
tively vary one of the parameters α0,m, d, or l, while keeping
the other parameters fixed.

For each configuration, we sample ten random models.
Dirichlet parameters αi ∈ R+ are drawn from the uniform
distribution U(0, 1) and scaled to sum up to α0. Feature
mean vectors µi ∈ Rm are drawn from the uniform distri-
bution U(−10, 10) while it is made sure that these vectors
are pairwise independent. Corresponding variances σ2

i ∈ R+

are drawn from U(0, 2). For natural language topics, the fre-
quency of any word is typically inversely proportional to its
rank in the frequency table [Cohen et al., 1997], which is
known as ”Zipf’s law”. Hence, we sample word probability
vectors pi ∈ Rd+ that adhere to Zipf’s law.
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Figure 2: Synthetic Experiment for base configuration. The plots
show the MSE on the different parameters that are estimated along
with a 95% confidence interval over ten different models. From left
to right: MSEα, MSEθ and MSEσ2 .

Effectiveness. We consider Algorithm 1 effective if it
successfully estimates the true model parameters, where as
a consequence of Theorem 2 in Section 4 we expect better
recovery as the number of samples increases. For quantify-
ing the estimation quality in our experiments, we use mean
squared errors (MSEs). For the variances and parameters of
the Dirichlet distribution, we use the MSEs of the vectors
(σ2
i )i∈[t] and (αi)i∈[t], respectively comparing them against

their estimated counterparts. For the parameter vectors θi,
we use 1/t ·

∑t
i=1 MSE(θi, θ̂i), where θ̂i is the estimate of

θi. We denote the different MSEs with MSEσ2 , MSEα, and
MSEθ. As the estimated model parameters are permuted over
the topics, we match estimated parameters and true param-
eters using the Kuhn-Munkres algorithm [Munkres, 1957]
with matching cost MSEθ.

To confirm the consistency claims of Theorem 2, we track
the MSEs for an increasing number of samples. The exper-
imental results for the base configuration with respectively
t = 5, 10, 20 topics are shown in Figure 2. All plots in
Figure 2 show the mean MSEs with 95% confidence inter-
vals computed from the respective populations of ten sam-
pled models for each configuration. The results show that
the MSEs quickly decrease towards zero as more samples are
used, confirming the theoretical consistency result from The-
orem 2. The same can be observed for all experimental con-
figurations, which indicates the robustness of these results.

Efficiency. A second theoretical claim from Theorem 1
is that the method-of-moments system of equations can be
solved efficiently by Algorithm 1 from Section 3. To vali-
date this claim, we recorded the training times for different
model configurations. For each configuration, we tracked the
median running time of Algorithm 1 over a population of ten
models. It turns out that the computation time mainly de-
pends on the number of topics t, that is, it is almost inde-
pendent from all other parameters. For instance, the running
times for the base configuration and t = 10 topics are 5.1s
and 6.9s for 10 000 and 25 000 samples, respectively. For
t = 20 topics, the running times are 19.6s and 22.4s, respec-
tively. Hence, training can be done efficiently.

5.2 Real-World Data
In order to show the real-world applicability of our model, we
use a data set proposed by [Krause et al., 2017], which con-

tains 19 511 RGB images along with single paragraphs of text
describing their content. In our experiments, first, we exam-
ine the quality of the learned topics. Second, we compare the
learned topics of a purely discrete (LDA) model with the top-
ics from our mixed-domain extension. Third, we shed light
on the significance of the hyperparameters t and α0. Finally,
we briefly evaluate the computational performance. However,
before we can learn models, some preprocessing of the data
set is necessary.

Setup. For the discrete part, the text paragraphs were lem-
matized and stop words as well as words that occur in less
than ten documents or in more than 50% of the documents
were removed. Each paragraph was then translated into a
count vector over the remaining dictionary with d = 2 237
words, resulting in on average 21.18 remaining words per
paragraph. For the continuous part, the images were pre-
processed using the first 17 layers of a pretrained ResNet18
torchvision model [He et al., 2016], yielding continuous fea-
ture vectors with m = 512 dimensions.

We tested the proposed method of moments (Algorithm 1)
on the data set by learning models with t ∈ {10, 15} topics
and hyperparameter values α0 ∈ {1, 50}. For each combi-
nation of α0 and t, we trained a purely discrete (LDA) topic
model and our extended mixed-domain topic model.

Quality of the topics. The quality of topics is still best
evaluated by human inspection. Hence, we validate the dis-
crete part by showing the words corresponding to the seven
highest word probabilities for each topic. Examples are
shown in Tables 1 and 2. Representing the continuous part
is a little more involved. Samples from the continuous part of
our model are mixtures of Gaussians: The i-th topic/mixture
component has mean vector µi and mixing proportion given
by the i-th entry hi of the vector h. Hence, for representing
the continuous part of the topics, we solve the inference prob-
lem arg maxh p(h|y) for each image feature vector y in the
data set. Then, for each topic i, we show the five images for
which the inference problem yields the highest mixing pro-
portions hi, see Figure 3.

Topic Most likely words (discrete topic model)

1 black, woman, wear, dog, person, cat, stand
2 man, wear, shirt, black, stand, blue, hold
3 table, plate, sit, pizza, food, glass, bowl
4 train, track, yellow, red, platform, blue, tree
5 giraffe, tree, grass, stand, field, zebra, elephant
6 water, boat, wave, people, sky, blue, small
7 wall, toilet, sit, cat, black, bed, room
8 plane, sky, blue, airplane, cloud, fly, red
9 building, clock, tower, large, sign, street, window

10 street, bus, sign, building, car, red, road

Table 1: The seven most likely words for each topic of the learned
purely discrete topic model with t = 10 topics and hyperparameter
α0 = 1 (topics are permuted to ease comparison with Table 2).

The results shown in Table 1, Table 2, and Figure 3 have
been obtained for t = 10 topics and α0 = 1. It can be seen
that for each topic, by human judgement, the corresponding
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Topic Most likely words (mixed topic model)

1 snow, ski, black, wear, man, person, tree
2 man, wear, black, tennis, shirt, baseball, blue
3 plate, table, sit, pizza, food, brown, red
4 train, bus, track, street, red, building, car
5 elephant, tree, grass, stand, brown, giraffe, zebra
6 water, blue, man, sky, wave, plane, boat
7 wall, sit, black, toilet, room, table, bed
8 plane, black, blue, sky, red, airplane, motorcycle
9 building, sign, street, tree, clock, sky, red

10 man, wear, black, people, woman, stand, elephant

Table 2: The seven most likely words for each topic of the learned
mixed topic model with t = 10 topics and hyperparameter α0 = 1.

most probable words are from the same domain–both for the
purely discrete and our extended mixed model. Moreover, for
the mixed model, the word topics match the most representa-
tive images well.

Effect of the multimodal extension. Next, we briefly dis-
cuss the differences between the purely discrete (LDA) model
and our mixed-domain model extension. For our learned
models, it can be observed that many topics remain similar,
compare the words from Topics 2 to 8 in Tables 1 and 2. On
the other hand, the visual information from the images can
also lead to new topics, such as, Topic 1. The images for
Topic 1 in Figure 3, which all show skiing people in snow
environments, demonstrate that this new topic makes sense.
Hence, adding the image modality to LDA models can lead
to new insights.

Robustness. We also probed the influence of the choices
for the hyperparameters t and α0 on the learned topics. Here,
we can only report high-level trends due to space constraints,

Increasing t for the mixed model does not seem to remove
topics: For instance, increasing the number of topics from t =
10 to t = 15, while keeping α0 = 50 fixed, did not remove
any topics. The five additional topics are either completely
new or result from splitting existing topics. This indicates
a certain robustness of our model under the choice of t for
real-world data, where the true number of topics is unknown.

The choice of the hyperparameter α0 impacts the nature
of our model. If we set α0 to a small value in comparison
to t, then we force most of the values of αi to be smaller than
one. In this case, our model gets close to an ordinary mixture
model, where each sample mostly belongs to one topic. For
instance, setting α0 = 1 with t = 15 leads to unspecific
topics. There are fewer unspecific topics for α0 = 50 with
t = 15. In general, the mixed membership model performs
better (in terms of human judgment) on our continuous deep
learning features than the mixture model.

Computational aspects. Finally, we briefly touch on com-
putational performance. As we have already observed on syn-
thetic data, also here the running times hardly depend on α0

as well. The dependency on the number of topics t can be
seen in Table 3.

Figure 3: The five most representative images for the first five topics
learned for the mixed topic model with α0 = 1, t = 10. Each
row represents a topic. For each topic, the images with the highest
mixing proportions for the topic are shown.

t 2 5 10 15 20 25

discrete 2.66 3.86 6.53 9.09 20.24 27.7
mixed 7.65 12.49 22.69 30.92 47.02 59.47

Table 3: Running times (in seconds) of Algorithm 1 on the real-
world data with α0 = 50 and different numbers of topics t for esti-
mating discrete (LDA) and mixed topic models.

6 Conclusions
We have extended the classical LDA topic model such that
it also accommodates continuous features. The continuous
features are modeled by mixed membership Gaussians. The
parameters of the extended model can be learned in polyno-
mial time and with statistical consistency guarantees. Such
a combination of guarantees is not known for the compet-
ing maximum likelihood approach. We used synthetic data
to experimentally corroborate the theoretical guarantees. Ad-
ditionally, experiments on a mixed real-world data set with
text and images, which we processed into continuous state-
of-the-art image features, show that the mixed membership
model gives qualitatively better results than a standard mix-
ture model.
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Dimensional Gröbner Bases and Polynomial System Solv-
ing. Algebra and Computation, 21(5):703–713, 2011.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), pages 770–
778, 2016.

[Hillar and Lim, 2013] Christopher J. Hillar and Lek-Heng
Lim. Most Tensor Problems Are NP-Hard. Journal of the
ACM, 60(6):45:1–45:39, 2013.

[Hsu and Kakade, 2012] Daniel J. Hsu and Sham M.
Kakade. Learning mixtures of spherical Gaussians:
moment methods and spectral decompositions. CoRR,
abs/1206.5766, 2012.

[Hsu and Kakade, 2013] Daniel J. Hsu and Sham M.
Kakade. Learning mixtures of spherical Gaussians: mo-
ment methods and spectral decompositions. In Pro-
ceedings of Innovations in Theoretical Computer Science
(ITCS), pages 11–20, 2013.

[Janzamin et al., 2019] Majid Janzamin, Rong Ge, Jean Kos-
saifi, and Anima Anandkumar. Spectral learning on ma-
trices and tensors. Foundations and Trends in Machine
Learning, 12(5-6):393–536, 2019.

[Krause et al., 2017] Jonathan Krause, Justin Johnson, Ran-
jay Krishna, and Li Fei-Fei. A Hierarchical Approach
for Generating Descriptive Image Paragraphs. In IEEE
Conference on Computer Vision and Pattern Recognition,
(CVPR), pages 3337–3345, 2017.

[Kruskal, 1977] Joseph B. Kruskal. Three-way arrays: rank
and uniqueness of trilinear decompositions, with applica-
tion to arithmetic complexity and statistics. Linear Alge-
bra and its Applications, 18(2):95–138, 1977.

[Liu et al., 2016] Lin Liu, Lin Tang, Wen Dong, and Wei
Zhou. An overview of topic modeling and its current ap-
plications in bioinformatics. SpringerPlus, 5:1608, 2016.

[McLachlan and Peel, 2004] Geoffrey McLachlan and
David Peel. Finite mixture models. John Wiley & Sons,
2004.

[Munkres, 1957] James Munkres. Algorithms for the assign-
ment and transportation problems. Journal of The Soci-
ety for Industrial and Applied Mathematics, 10:196–210,
1957.

[Pearson, 1894] Karl Pearson. Contributions to the mathe-
matical theory of evolution. Philosophical Transactions of
the Royal Society of London, 185:71–110, 1894.

[Roller and im Walde, 2013] Stephen Roller and
Sabine Schulte im Walde. A Multimodal LDA Model
integrating Textual, Cognitive and Visual Modalities.
In Proceedings of the Conference on Empirical Meth-
ods in Natural Language Processing (EMNLP), pages
1146–1157, 2013.

[Wang et al., 2019] Kai Wang, Weiyi Meng, Shijun Li, and
Sha Yang. Multi-Modal Mention Topic Model for men-
tionee recommendation. Neurocomputing, 325:190–199,
2019.

[Zheng et al., 2014] Yin Zheng, Yu-Jin Zhang, and Hugo
Larochelle. Topic Modeling of Multimodal Data: An Au-
toregressive Approach. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 1370–
1377, 2014.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2424


	Introduction
	Method of Moments
	Decomposition Algorithm
	Consistency
	Experiments
	Synthetic Data
	Real-World Data

	Conclusions

