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Abstract

Learning from Demonstrations (LfD) is a power-
ful approach for incorporating advice from experts
in the form of demonstrations. However, demon-
strations often come from multiple sub-optimal ex-
perts with conflicting goals, rendering them dif-
ficult to incorporate effectively in online settings.
To address this, we formulate a quadratic program
whose solution yields an adaptive weighting over
experts, that can be used to sample experts with rel-
evant goals. In order to compare different source
and target task goals safely, we model their uncer-
tainty using normal-inverse-gamma priors, whose
posteriors are learned from demonstrations using
Bayesian neural networks with a shared encoder.
Our resulting approach, which we call Bayesian
Experience Reuse, can be applied for LfD in static
and dynamic decision-making settings. We demon-
strate its effectiveness for minimizing multi-modal
functions, and optimizing a high-dimensional sup-
ply chain with cost uncertainty, where it is also
shown to improve upon the performance of the
demonstrators’ policies.

1 Introduction

Learning from demonstrations (LfD) is a powerful approach
for incorporating advice from experts in the form of demon-
strations to accelerate the learning of new skills. However,
existing work in LfD often assume that demonstrations are
generated from a single agent with a single goal [Argall et
al., 2009]. In practice, data can be available from multiple
sub-optimal agents with conflicting goals. For example, when
learning to operate a vehicle autonomously from demonstra-
tors [Bojarski et al., 2016], different drivers can have different
goals (destinations), needs (safety) and experience levels. Re-
lying on demonstrators whose goals are misaligned with the
new target task can lead to unintended or dangerous behav-
iors, and can be minimized by actively learning to trust the
most relevant demonstrators.

In this paper, we focus on LfD with multiple conflict-
ing demonstrators for solving static and dynamic optimiza-

* Affiliate to Vector Institute, Toronto, Canada.

2425

tion problems. Following existing work [Gao et al., 2018],
demonstrations in our setting also contain immediate rewards,
e.g. (s,a,r,s’), an instance of L{D referred to as reinforce-
ment learning from demonstrations (RLfD). Our setting also
differs from traditional work in LfD, in that the goal is to
improve upon the demonstrator rather than simply mimic its
behaviors. In order to measure the similarity between demon-
strators’ reward functions, we parameterize them as linear
functions in a common feature space. Furthermore, we take
a Bayesian approach by modeling their uncertainty using
Normal-Inverse-Gamma priors. These quantities are mod-
eled as Bayesian neural networks with a shared encoder, and
trained end-to-end from demonstrations in an online manner.
We then formulate a quadratic program whose solution yields
a probability distribution over the demonstrators. This allows
demonstrators to be sampled directly, while incorporating un-
certainty in the estimates of their reward functions. Further-
more, being Bayesian allows us to avoid premature conver-
gence, be more robust to non-stationary, sparse or limited data
[Bishop, 2006], and trade off the mean and variance of the re-
ward estimates in a principled way (Theorem 1).

In order to transfer demonstrations to new tasks in LfD, one
approach is to pre-train the learner directly on the source data
[Cruz Jr et al., 2017], or learn and reuse auxiliary representa-
tions from the source data such as policies [Ferndndez er al.,
2010]. However, the former can be ineffective when demon-
strations assume conflicting goals, while meaningful policies
can be difficult to solicit from the latter when demonstrators
are limited, sub-optimal or exploratory in nature [Nicolescu
and Mataric, 2003]. On the other hand, experience collected
from a failed or inexperienced demonstrator can be just as
valuable as an experienced one [Grollman and Billard, 2011].
We present an algorithm called Bayesian Experience Reuse
(BERS), for directly reusing multiple demonstrations in a
way that is consistent with the learned weighting over the
source and target task goals (Algorithm 1). While tailored
for LfD, our approach is quite general and can be applied in
other areas such as multi-task learning.

2 Background

2.1 Reinforcement Learning

Decision-making in this paper can be summarized in a
Markov decision process (MDP), formally defined as a five-
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tuple (S, A, P,R,~), where: S is a set of states, A(s)
is a set of possible actions in state s, P(:|s,a) gives the
next-state s’ distribution upon taking action a in state s,
R(s,a,s’) is the corresponding reward, and v € [0,1] is a
discount factor. The objective of an agent is to find a pol-
icy p : § — A that maximizes the long-run expected re-
turn Q¥ (s, a) = E[3 .2 V' R(s¢, ar, Se41) | s0 = s, a0 = al,
where a; = u(sy) and g1 ~ P(-|s¢, ar).

In the reinforcement learning (RL) setting, neither P nor R
are known. Instead, the agent interacts with the environment
using a randomized exploration policy ¢, collecting rewards
and observing state transitions. In order to learn optimal poli-
cies, temporal difference methods first learn Q(s, a) and use
it to recover an optimal policy, while policy gradient meth-
ods parameterize and recover an optimal policy p* directly.
Actor-critic methods learn a critic Q(s,a) and actor policy
u(s) simultaneously [Sutton and Barto, 2018].

2.2 Common Feature Representations

In our problem setting, each task is associated with an un-
known function y : X — R on some domain X. In the RL
setting for example, y(x) = R(s,a, s’) are reward functions.
Given a feature map ¢ : X — R?, a function y can be ex-
pressed as a linear combination y(x) = ¢(x)'w, Vz € X,
where w € R? is a fixed vector.

We are interested in the problem of transferring demonstra-
tions (s, a,r,s’) between tasks in a domain M% on a com-
mon X,

M®={y: IweR st yx) =¢(x) w,¥x € X}.
)]
In the RL setting, M® could include all MDPs with shared
dynamics and different rewards R;. In (1), we have explic-
itly assumed that the (unknown) state features ¢ are shared
among tasks. This is not a restrictive assumption in practice,
as given a set of tasks 71,75 ... T,, € M®, we may trivially
define ¢y (x) = yr, (x), Vx € X foreach k = 1,2...n. In
practice, however, different rewards may share common fea-
tures. Pooling different sets of basis functions into a common
basis in this way will also allow us to represent, and thus com-
pare, conflicting goals consistently. The challenge is to learn
suitable common embeddings ¢ and posterior distributions
for y(x), and leverage them for measuring task similarity.

3 Bayesian Experience Reuse

The agent is presented with sets of demonstrations
Di1,Dy,... Dy sampled from respective source tasks
T, Ts,... Ty € M@, that are represented as collections of
labeled pairs (x¢, y:). The agent would like to leverage these
demonstrations to solve a new task, Tiqrget € M@, for which
a limited but gradually growing set of demonstrations D;grget
is available.

In order to make optimal use of the source tasks during
training, the agent should learn to favor demonstrators whose
underlying reward representation is closest to the target task
reward. By actively learning to trust relevant demonstra-
tors and avoiding the irrelevant ones, an agent can maximize
the benefit associated with pre-training on the correspond-
ing demonstrations. Furthermore, reward representations are
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more natural and more robust for measuring task similarity
than discounted value functions, because values are more sen-
sitive to small changes in rewards. For instance, given a con-
stant perturbation in rewards of AR, the corresponding value
function will change by that is considerably greater than

AR in the non-myopic settlng.

3.1 Bayesian Regression with Common Features

In order to facilitate the learning of reward representations,
we learn a shared feature space ¢, together with Bayesian
regressions P(w;|D;) and P(Warget|Drarget) for the source
and target tasks respectively, such that y! ~ ¢(x!) " w; for
all i and (x},9}) € Dy and y, """ =~ d(x;"I") T Wiarger
for all (x t”gd,yfarget) € Diarget- As we will show, the
shared feature representation ¢ is critical in order to allow
meaningful comparisons between source w; and target w.

In order to tractably learn the features ¢ as well as the cor-
responding posterior distributions, we parameterize ¢(x) =
¢e(x) using a deep neural network (encoder) with weight pa-
rameters @, and model W1, ... Wy, Wqrget Using the normal-
inverse-gamma conjugate prior:

yi(x) = ¢9(X)Twi +&i, &~ N(Oa 012)
w; w/\/(,u,i,afAi_l)7 o? ~ InvGamma(a;, ;).

We note that a Gaussian prior on the rewards is quite rea-
sonable, and has been successfully applied in other areas
such as exploration [Janz er al., 2019]. The joint posterior
P(w;, 02| D;) now factors as

P(wi,07|D;) o< P(wilo?, D;) P07 D), 3)

where w;lo?,D; ~ N(m;,0?A;") and o?D; ~
InvGamma(«;, §;), where:

2

Ai - A? + (I);r(blv i = A (Az I“Lz + QTYl) )

1
ai=a?+*\7?il, )
Bi =B+ (yz yi+ (1) A ) — pf Aips)

and where ®; is the matrix of state features ¢ (x}) and y; is
the vector of observations ! in D; [Bishop, 2006]. We have
also assumed that, conditioned on data D;, the weights w;
and variances o2 are mutually independent between tasks, a
very mild assumption in practice. Adapting the neural-linear
approach of [Ober and Rasmussen, 2019; Snoek et al., 2015],
we update @ by gradient ascent on the marginal log-likelihood
function for each head 7,

log P(y;|D;) = |D;|m +log I'(a)) — af 10g50

log T'(cv;) + a; log B; — log det A;,

&)
where the key quantities are provided by (4) and depend im-
plicitly on 6 through ®,.

Now, parameter sharing allows ¢ to be learned, refined and
transferred seamlessly from source to target tasks, and pro-
vides a form of transfer in its own right. However, our main
contribution is to use the posterior distributions over experts’
goals, w; and Wy4,.ge¢, to transfer demonstrations.

1
+ 3 log det AY —
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3.2 Expert Selection via Quadratic Programming

In order to derive a Bayesian decision rule for source task se-
lection, we first observe that source tasks that are most similar
to the target task — and hence those that lead to better trans-
fer — should have w; closest to the true target Wigrget. In
our setting, we instead have uncertain estimates for w; and
Wiarget Mmodelled as random variables. We therefore look for

a weighting Zf\; a;w; that is closest t0 Wyqyget, While fac-
toring in the uncertainty in these estimates.

More specifically, suppose that the posterior distributions
of w; for each i = 1,2... N and wW;,,4.; have been esti-
mated from past data. Our goal is to weight the w; in such
a way that the weighted sum, ZZ a;w;, is closest t0 Wiqrget
in expectation. In other words, we seek a that minimizes the
following optimization problem:

N
min £(a) = E | [Wiarger — ;aiwiuz 2], ®©
i=
where 9 = U,L. D; U Dygrget is the union of all source and
target demonstrations, and P is a convex polyhedron. Specif-
ically, our goal is to sample source tasks according to a, so
we restrict a to a discrete probability distribution by setting
P ={acRY¥:17a =1,a > 0}. In other applications,
such as regression problems [Pardoe and Stone, 2010], we
may set P = R, or incorporate other constraints on expert
selection depending on the problem.
The following result will facilitate the optimization of (6)
under our previous assumptions.

Theorem 1. Suppose w1 ... Wy and Wyqrger are defined by
the posterior (3). Then, for every a € RY,

N N
Bi
£(a) X ||Ntarget - Zaiﬂng + Z(IZQ (Oél tr(Ei),
i=1 i=1 ?
(7

with equivalence up to terms constant in a.

Hence, we have shown that optimizing the expected er-
ror (6) is equivalent to optimizing the error in the posterior
means plus a penalty equal to the product of the noise and
posterior variances. The penalty term prevents the poste-
rior a from concentrating all its probability mass on a single
demonstrator, whose benefit is demonstrated experimentally.

To simplify (7) further, we define M = [u1 ...un] €
R¥>N and S € RN*N the diagonal matrix with entries
%tr(zi), i1 = 1,2...N. Rewriting (7) in this new no-
tation and invoking Theorem 1, we obtain the following
quadratic program (QP):

1
min — p'"Ma + iaT(MTM +8S)a ®
subject to 1'a=1, a>0.

Here, MTM +8S is positive definite, since it is the sum of the
positive semi-definite matrix M " M and the positive definite
matrix S. Hence, the above QP can be formulated and solved
exactly using an off-the-shelf solver in polynomial time in NV,
independent of the dimension d and the number of demon-
strations |D;|. Hence, (8) remains tractable when the do-
main complexity is high or the number of demonstrations is

2427

ay, B 1, 21
. y ~
Ulzk “Wl%yl(x)
ay, By - .

(%) [UN; 2
1 o\ gy i)

02 o, B T

by 2z
. A N
—Vylog P(y,|X;) o-tzm'get/\ “Wf”"y‘ffao_'ytarget(x)

. ]
min — p' Ma + éaT(MTM +S)a
st. 1Ta= 1,a>0.

—a

Figure 1: Bayesian multi-headed neural-linear model with shared
encoder (MLP) and aggregated QP decision layer.

large. This is no longer the case when the second order term
S is omitted, since (8) can become rank-deficient and lack a
unique solution.

In the case of very large N, warm starts could be effec-
tive since the posterior changes smoothly over time (as we
demonstrate experimentally), to use neural networks [Amos
and Kolter, 2017], or optimize (8) directly via gradient de-
scent. Our framework is agnostic to how (8) is solved, so we
leave these investigations for future work.

The full architecture is summarized conceptually in
Figure 1. Here, Bayesian heads with parameters
{(pis Aiy e, Bi) Y, and (p, A, «,3) are maintained for
source and target tasks respectively, while sharing the encoder
parameters 6. Periodically, these estimates are used to con-
struct and solve (8). The outputs ¢; and $qrger can also be
used for making predictions, such as in regression problems.
In this paper, our goal instead is to use the posterior distribu-
tions over task goals, and the corresponding QP solution, to
rank and transfer the most relevant source demonstrations.

3.3 Bayesian Experience Reuse

A simple, yet effective, approach for transferring demonstra-
tions from a single source is to pre-train the learning agent on
the demonstrations [Cruz Jr et al., 2017]. However, when data
originates from multiple demonstrators with differing goals,
some interaction or prior knowledge about the target environ-
ment is necessary in order to determine which data to use for
pre-training. Without assuming any prior knowledge about
the target environment, we train the agent on the source data
in an offline manner while concurrently learning the target
task online. Thus, the source demonstrations provide an ef-
fective exploration bonus, by enriching the agent’s training
data with novel experiences that might otherwise never be ob-
served in the target task.

More specifically, in each episode of target task learning
m, we sample a source task 7; € M® according to a ob-
tained from (8), and train the agent on experiences drawn
from the corresponding data D;. In order for the target agent
to improve beyond the demonstrator and generalize correctly
to the target task, the agent must eventually learn from tar-
get demonstrations rather than source data. So, we adapt the
sample annealing idea in [Ferndndez et al., 2010], by grad-
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Algorithm 1 Bayesian Experience Reuse (BERS)

Reqllil‘e: {Di}i]\;p TN+1 = Ttarget S M¢v Obases

DN+1 - Dtarget - (Z) 0 {IJ'Z» Au Q) ﬂz}iv 11, Pm,a
pre-train 0, {p;, A;, oy, Bi} N on {D;} N, using (4), (5)
for episode m =1,2,... do
for step ¢t =1, 2, e T of episode m do
explore Tiqrger USing Opqse and collect d = (x, y)
Dtarget = Dtarget ud
sample train_on_source_data ~ Bernoulli(p,,)
if train_on_source_data = true then
sample ¢; ~ a and experience B C D;,
else
sample experience B C Diqrget
end if
train Opgse ON B
end for
train 0, {p;, Ay, i, B} on {D; 14 using (5)
solve QP (8) to obtain the solutlon a
end for
return Op,

ually decreasing the fraction of time p,, € [0,1] that the
agent trains on source data. The resulting approach, which
we call Bayesian Experience Reuse (BERS), is outlined in
Algorithm 1.

In particular, we define Opqs. as a learning algorithm for
solving the target task, assumed to be a static or dynamic op-
timization problem in this work. Hence, Opqse is either a
static optimization algorithm or an reinforcement learning al-
gorithm. We first pre-train the NV source heads on the source
demonstrations to learn ¢ and the posteriors for wy ... wy.
In each episode, we explore the target task and collect data,
putting them in Dygrger. At each time step, the agent either
trains on a batch of source demonstrations from task ¢ ~ a
with probability p,,,, or a batch of target demonstrations with
probability 1 — p,,. At the end of each episode, we refine
¢ and the posterior distributions for all tasks and recompute
a. With simple modifications, BERS can be applied in multi-
task settings by maintaining a separate QP solution per task.

4 Empirical Evaluation

In order to demonstrate the effectiveness of BERS, we con-
sider two problems: (1) the search for the minimum of
static but high-dimensional multi-modal functions, and (2)
the dynamic control of a complex supply chain network with
stochastic demand!.

4.1 Static Optimization of Multi-Modal Functions

We first consider the problem of finding the minimum of a
smooth but highly complex multi-modal function. LfD can
be useful in this setting because the known solution of one
function can be used as an initial “guess” when starting the
search for the minimum of another similar function.

'The appendix can be found at https:/github.com/mike-
gimelfarb/bayesian-experience-reuse.
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Figure 2: Supply chain source and target task configurations.

More specifically, we use the 10-dimensional Rosenbrock,
Ackley and sphere functions as source tasks, and the Rastri-
gin function as the target task (please see appendix for defi-
nitions and processing). We also consider the simpler setting
in which one of the source functions is the ground truth. As
the base learning agent Oy, We use Differential Evolution
(DE) (please see appendix for details)®>. The search is lim-
ited to x; € [—4,4] for all ¢ = 1,2...10. The global mini-
mums of the functions are: 2% .cbrock = 1s xzckley =0,
TSphere = —2 and Thogyi0:, = —2. Since the sphere
and Rastrigin functions are locally similar around the min-
imum point, a successful LfD experiment should exploit the
structure of the functions when optimizing the Rastrigin func-
tion. We also consider the multi-task setting by optimizing
the Rastrigin function simultaneously with the other source
functions, to demonstrate the versatility of BERS. In the lat-
ter setting, we maintain a separate QP solution per task. In
both cases, the best solution found for each source task to
date is transferred directly to Opqs. (the appendix details how
the solutions are transferred).

We consider the following set of baselines in order to com-
pare the performance of BERS (Ours): (1) the UCB algo-
rithm [Auer, 2002] with asymptotically optimal convergence
(UCB), in which the reward is the improvement in the func-
tion value after transferring a solution from one of the source
functions, (2) the equally-weighted prior a = [+,... &
(Equal), (3) individual demonstrators (S1, S2...), and (4)
standard DE without transfer (None). Figure 3 illustrates the
function value of the best solution found to date, and the value
of a, after each iteration.

4.2 Dynamic Control of a Supply Chain

A supply chain network for the production and distribution
of a single product consists of a central factory and K = 6
warehouses, denoted A, B ...F. The factory can manufacture
up to 35 units of inventory per day, and the factory and the
warehouses can each store up to 50 units of inventory at any
given time. A very large fleet of trucks is available to move
inventory between points in the network. Each truck can de-
liver up to 4 units of inventory between any two points in the
network, and takes a single day regardless of location.
Demand for each warehouse A, B ...F, in units per day,
is Poisson-distributed with respective means {7,6,6,5,5,5}.
Demand that cannot be fulfilled is lost forever. The selling
price per unit of inventory is 0.6, the production cost is 0.1,

2 Another option is to use Bayesian optimization (BO). How-
ever, this is more suitable for expensive functions with relatively low
numbers of local optima, such as for hyper-parameter optimization.
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Figure 3: Best function values (top row) and weights a (bottom row) in the transfer (T) and multi-task (MT) learning settings for static
function optimization, with each source and target task as ground truth. Averaged over 20 trials with shaded standard error bars.

and the storage cost per unit per day is 0.03 for the factory and
each warehouse. However, the cost of dispatching a truck is
not fixed, but depends on the source and destination node.

There are two kind of routes: cheap routes are easy to nav-
igate and incur a cost of 0.03 per truck, whereas expensive
routes have difficult terrain and tariffs and cost 1.50 or 3.00,
depending on source or destination. The company does not
know the cost of each route in advance, but has identified
three likely scenarios, summarized in Figure 2. Here, cheap
routes are indicated with lighter arrows, while more expen-
sive routes are indicated with darker arrows. As before, we
will take the company’s estimates as source tasks and as the
ground truth, and also consider the setting where the target
task is different from any of the source tasks. Please note that
this problem is quite similar to the one in [Kemmer et al.,
2018], but our version is considerably more challenging.

We solve this problem using reinforcement learning, where
the state is the current stock in the factory and warehouses,
and actions are modelled as follows: (1) one continuous ac-
tion for production as a proportion of the maximum; (2) K +1
actions for proportions of factory stock to ship to each ware-
house (including to keep at the factory); and (3) K actions
per warehouse, for proportions of warehouse stocks to ship
to all other warehouses (including itself). This leads to a
2 + K + K? = 44-dimensional continuous action space. In
order to tractably solve this problem, we use the actor-critic
algorithm DDPG [Lillicrap et al., 2016] as Oy, (further de-
tails are provided in the appendix).

We evaluate BERS (Ours) against: (1) prioritized experi-
ence replay initialized with demonstrations from all source
tasks [Hou et al., 2017] (PER), and (2) a state-of-the-art pol-
icy reuse algorithm [Li and Zhang, 2018] (PPR). In the latter
choice, a source policy is trained using the same architecture
as the actor network for DDPG for 50 epochs using the cross-
entropy loss, and used for exploration. Figure 4 illustrates the

total profit achieved during each episode of testing using the
greedy policy, and the corresponding QP weights.

4.3 Discussion

On the static optimization task, BERS performs compara-
tively similar to the single best demonstrator, because it is
able to identity the most suitable source task after observing
a small number of target demonstrations (Figure 3). While
UCB is a strong baseline, BERS finds the solution in less it-
erations while incurring less variability. As postulated, the
solution to (8) favours the Sphere function when solving the
Rastrigin function, because they are structurally the most sim-
ilar, and this leads to a quicker identification of the global
minimum for the Rastrigin function.

On the supply chain task, BERS also achieves results simi-
lar to the single best expert, and does slightly better than PPR.
While their asymptotic performance on Scenario 1 is similar,
BERS achieves better jump-start performance on Scenario 1
and better asymptotic performance on Scenarios 2 and 3. One
reason for this is that PPR, despite being trained on the same
data as BERS, must learn a policy from noisy observations.
Despite this, both BERS and PPR are able to quickly surpass
the performance of the policy that originally generated the
source data (horizontal line in Figure 4). On the other hand,
PER was not able to obtain satisfactory performance, because
PER prioritizes experiences by TD error that is not suitable
for ranking demonstrations with different rewards. On the
other hand, BERS learns a common feature embedding that
allows for consistent comparison between tasks (Appendix).

Finally, on the target scenario, we can see that the weights
assigned to Scenarios 1 and 2 are roughly equal, which makes
sense as the target task shares some similarities with both
of the aforementioned scenarios (Figure 2). By mixing two
source tasks, BERS is able to perform substantially better on
the target task than the two source tasks (S2 and S3) in isola-
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Figure 4: Total testing reward per episode (left) and weights assigned to source tasks (right) over epochs using DDPG for the Supply Chain
problem, with each source and target task as ground truth. Averaged over 5 trials with shaded standard error bars.

tion. Also, by adopting a Bayesian treatment, it enjoys stable
convergence of the task weights a on all experiments.

5 Related Work

Most work in LfD incorporates demonstrations from a single
expert [Argall et al., 2009]. Some papers in the area of RLfD
relax this assumption to a single sub-optimal demonstrator
and use pre-training [Gao et al., 2018; Hester et al., 2018],
reward shaping [Suay et al., 2016], ranking [Wang and Tay-
lor, 20171, or other approaches. However, these papers can-
not learn from multiple demonstrators with conflicting goals.
Papers on this topic typically assume multiple near-optimal
demonstrators, so that recovering policies [Barreto et al.,
2017; Fernandez et al., 2010; Madarasz and Behrens, 2019] is
possible. While our paper shares some similarities with these,
it is fundamentally different. First, this stream of literature
studies policy transfer, whereas we study LfD. BERS does
not learn auxiliary representations for source demonstrators’
behaviors (e.g. value functions or policies), allowing it to in-
corporate sub-optimal exploration data. Furthermore, BERS
learns a latent representation of the task goals in an online
setting not studied in prior work.

More generally, our approach is related to multi-modal
learning, in which a common representation of multiple het-
erogeneous data sources is learned [Hausman er al., 2017;
Tsai et al., 2019]. However, to our knowledge, papers on
this topic have not been applied to our problem setting. Fur-
thermore, our learned weightings over demonstrators could
be seen as a form of attention [Zadeh et al., 2018]. The idea
of learning shared features is inspired by both encoder sharing
[Flet-Berliac and Preux, 2019] and uncertainty quantification
[Azizsoltani et al., 2019; Brown et al., 2020]. Finally, our
approach shares some of the similarities of Bayesian policy

reuse [Rosman et al., 2016], by formulating the problem of
policy selection as a Bayesian choice problem. However, our
work differs in that we apply Bayesian inference for LfD in-
stead of policy transfer. Our work is the first to apply these
ideas towards LfD from multiple demonstrators.

6 Conclusion

We studied the problem of LfD with multiple sub-optimal
demonstrators with different goals in a Bayesian setting. We
proposed a multi-headed Bayesian neural network to effi-
ciently learn consistent representations of the source and
target reward functions from the demonstrations. Reward
functions were parameterized as linear models, whose un-
certainty was modeled using Normal-Inverse-Gamma priors
and updated using Bayes’ rule. A QP formulation ranked
the demonstrators while trading off the mean and variance
of the uncertainty in the learned reward representations, and
Bayesian Experience Reuse (BERS) was proposed to incor-
porate demonstrations directly when learning new tasks. Em-
pirical results show that BERS can successfully transfer ex-
perience from conflicting demonstrators.
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