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Abstract
Embedding approaches have become one of the
most pervasive techniques for multi-label classifi-
cation. However, the training process of embed-
ding methods usually involves a complex quadratic
or semidefinite programming problem, or the mod-
el may even involve an NP-hard problem. Thus,
such methods are prohibitive on large-scale appli-
cations. More importantly, much of the literature
has already shown that the binary relevance (BR)
method is usually good enough for some applica-
tions. Unfortunately, BR runs slowly due to its lin-
ear dependence on the size of the input data. The
goal of this paper is to provide a simple method,
yet with provable guarantees, which can achieve
competitive performance without a complex train-
ing process. To achieve our goal, we provide a sim-
ple stochastic sketch strategy for multi-label classi-
fication and present theoretical results from both al-
gorithmic and statistical learning perspectives. Our
comprehensive empirical studies corroborate our
theoretical findings and demonstrate the superior-
ity of the proposed methods.

1 Introduction
Multi-label classification [Prabhu and Varma, 2014; Yen et
al., 2016; Liu et al., 2019; Gong et al., 2020], in which
each instance can belong to multiple labels simultaneously,
has significantly attracted the attention of researchers as a re-
sult of its wide range of applications, which range from doc-
ument classification and automatic image annotation to video
annotation. For example, when classifying documents, one
may need to classify them into different groups, such as Sci-
ence, Finance and Sports. In automatic image annotation,
one needs to automatically predict relevant keywords, such
as beach, sky and tree, to describe a natural scene image.

A popular strategy in multi-label learning is binary rel-
evance (BR)[Tsoumakas et al., 2010], which independent-
ly trains a linear regression model for each label indepen-
dently. Recently, some sophisticated models are develope-
d to improve the performance of BR. For example, embed-
ding approaches [Hsu et al., 2009; Chen and Lin, 2012;
Yu et al., 2014; Liu and Tsang, 2017; Liu et al., 2017] have

become popular techniques. Even though embedding meth-
ods improve the prediction performance of BR to some exten-
t, their training process usually involves a complex quadrat-
ic or semidefinite programming problem, as in [Zhang and
Schneider, 2012], or their model may involve an NP-hard
problem, as in [Yu et al., 2014] and [Bhatia et al., 2015].
Thus, these kinds of methods are prohibitive on large-scale
applications. Much of the literature, such as [Luaces et al.,
2012], [Madjarov et al., 2012] and [Taha and Tiun, 2016], has
already shown that BR with appropriate base learner is usu-
ally good enough for some applications, such as document
classification [Taha and Tiun, 2016]. Unfortunately, BR runs
slowly due to its linear dependence on the size of the input
data. The question is how to overcome these computational
obstacles yet obtain comparable results with BR.

To address the above problem, we provide a simple s-
tochastic sketch strategy for multi-label classification. In par-
ticular, we carefully construct a small sketch of the full da-
ta set, and then use that sketch as a surrogate to perform
fast optimization. This paper first introduces stochastic σ-
subgaussian sketch, and then proposes the construction of
a sketch matrix based on Walsh-Hadamard matrix to reduce
the expensive matrix multiplications of σ-subgaussian sketch.
From an algorithmic perspective, we provide provable guar-
antees that our proposed methods are approximately as good
as the exact solution of BR. From a statistical learning per-
spective, we provide the generalization error bound of multi-
label classification using our proposed stochastic sketch mod-
el.

Experiments on various real-world data sets demonstrate
the superiority of the proposed methods. The results verify
our theoretical findings. We organize this paper as follows.
The second section introduces our proposed stochastic sketch
for multi-label classification. The third section provides the
provable guarantees for our algorithm from both algorithmic
and statistical learning perspectives, and experimental results
are presented in the fourth section. The last section provides
our conclusions.

2 Stochastic Sketch for Multi-label
Classification

Assume that x(i) ∈ Rp×1 is a real vector representing an in-
put (instance), and y(i) ∈ {0, 1}q×1 is a real vector represent-
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ing the corresponding output (i ∈ {1 . . . n}). n denotes the
number of training samples. The input matrix is X ∈ Rn×p
and the output matrix is Y ∈ {0, 1}n×q . 〈·, ·〉 and In×n rep-
resent the inner product and the n×n identity matrix, respec-
tively. We denote the transpose of the vector/matrix by the
superscript ′ and the logarithms to base 2 by log. Let || · ||2
and || · ||F represent the l2 norm and Frobenius norm, respec-
tively. Let V ∈ Rp×q be the regressors and N(0, 1) denote
the standard Gaussian distribution.

A simple linear regression model for BR [Tsoumakas et al.,
2010] learns the matrix V through the following formulation:

min
V ∈Rp×q

1

2
||XV − Y ||2F (1)

Assuming that n > p and n > q, the computational com-
plexity for this problem is O(npq + np2) [Golub and Loan,
1996]. The computational cost of an exact solution for prob-
lem 1 will be prohibitive on large-scale settings. To solve this
problem, we construct a small sketch of the full data set by
stochastic projection methods, and then use that sketch as a
surrogate to perform fast optimization for problem 1. Specif-
ically, we define a sketch matrix S ∈ Rm×n and S 6= 0,
where m < n is the projection dimension and 0 is the zero
matrix with all the zero entries. The input matrix X and out-
put matrix Y are approximated by their sketched matrix SX
and SY , respectively. We aim to solve the following sketched
problem of problem 1.

min
V ∈Rp×q

1

2
||SXV − SY ||2F (2)

Motivated by [Weinberger and Saul, 2009; Kulis, 2013;
Bhatia et al., 2015], we use a k-nearest neighbor (kNN) clas-
sifier in the embedding space for prediction, instead of using
an expensive decoding process [Zhang and Schneider, 2012].
Next, we introduce two kinds of stochastic sketch methods.

2.1 Stochastic σ-Subgaussian Sketch
The entries of a sketch matrix can be simply defined as i.i.d
random variables from certain distributions, such as Gaussian
distribution and Bernoulli distribution. [Matousek, 2008] has
already shown that each of these distributions is a special case
of Subgaussian distribution, which is defined as follows:

Definition 1 (σ-Subgaussian). A row si ∈ Rn of the sketch
matrix S is σ-Subgaussian, if it has zero mean and for any
vector ζ ∈ Rn and ε ≥ 0, we have

P (|〈si, ζ〉| ≥ ε||ζ||2) ≤ 2e−
nε2

2σ2

Clearly, a vector with i.i.d standard Gaussian entries or
Bernoulli entries is 1-Subgaussian. We refer any matrix
S ∈ Rm×n to a Subgaussian sketch if its rows are zero mean,
1-Subgaussian, and with the covariance matrix cov(si) =
In×n. A Subgaussian sketch is straightforward to construct.
However, given the Subgaussian sketch S ∈ Rm×n, the cost
of computing SX and SY is O(npm) and O(nqm), respec-
tively. Next, we introduce the following technique to reduce
this time complexity.

2.2 Stochastic Walsh-Hadamard Sketch
Inspired by [Ailon and Chazelle, 2009], we propose to con-
struct the sketch matrix based on Walsh-Hadamard matrix to
reduce the expensive matrix multiplications of Subgaussian s-
ketch. Formally, a stochastic Walsh-Hadamard sketch matrix
S ∈ Rm×n is obtained with i.i.d. rows of the form:

si =
√
neiHR, i = 1, · · · ,m

where {e1, · · · , em} is a random subset of m rows uniformly
sampled from In×n, R ∈ Rn×n is a random diagonal matrix
whose entries are i.i.d. Rademacher variables andH ∈ Rn×n
constitutes a Walsh-Hadamard matrix defined as:

Hij = (−1)〈B(i)−1,B(j)−1〉, i, j = 1, · · · , n

where B(i) and B(j) represent the binary expression with τ -
bit of i and j (assume 2τ = n).

Then, we can employ fast Walsh-Hadamard transform [Fi-
no and Algazi, 1976] to perform SX and SY inO(np logm)
and O(nq logm).

3 Main Results
Since we address problem 2 rather than directly solving prob-
lem 1, which has great advantages for fast optimization, it
is interesting to ask the question: what is the relationship
between problem 2 and problem 1? Let V ∗ and V̂ be the
optimal solutions of problem 1 and problem 2. We define
f(V ∗) = ||XV ∗ − Y ||2F and g(V̂ ) = ||SXV̂ − SY ||2F . We
will prove that we can choose an appropriate m such that the
two optimal objectives f(V ∗) and g(V̂ ) are approximately
the same. This means that we can speed up the computation
of problem 1, without sacrificing too much accuracy. Further-
more, we provide the generalization error bound of the multi-
label classification problem using our proposed stochastic s-
ketch model. To measure the quality of approximation, we
first define the δ-optimality approximation as follows:
Definition 2 (δ-Optimality Approximation). Given δ ∈
(0, 1), V̂ is a δ-optimality approximation solution, if

(1− δ)f(V ∗) ≤ g(V̂ ) ≤ (1 + δ)f(V ∗)

According to the properties of Matrix norm, we have
g(V̂ ) ≤ ||S||F f(V̂ ), so g(V̂ ) is proportional to f(V̂ ). There-
fore, the closeness of g(V̂ ) and f(V ∗) implies the closeness
of f(V̂ ) and f(V ∗).

3.1 σ-Subgaussian Sketch Guarantee
We first introduce the tangent cone, which is used by [Rock-
afellar and Wets, 2004]:
Definition 3 (Tangent Cone). Given a set C ⊆ Rp and x∗ ∈
C, the tangent cone of C at x∗ is defined as K = clconv{r ∈
Rp|r = t(x − x∗) for some t ≥ 0 and x ∈ C}, where clconv
denotes the closed convex hull.

The tangent cone arises naturally in the convex optimality
conditions: any r ∈ K defines a feasible direction at the opti-
mal x∗, and optimality means that it is impossible to decrease
the objective function by moving in directions belonging to
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the tangent cone. Then, we introduce the Gaussian width,
which is an important complexity measure used by [Gordon,
1985]:
Definition 4 (Gaussian Width). Given a closed set Y ⊆ Rn,
the Gaussian width of Y , denoted by ω(Y), is defined as:

ω(Y) = Eg[sup
z∈Y
|〈g, z〉|]

where g ∼ N(0, In×n).
This complexity measure plays an important role in learn-

ing theory and statistics [Koltchinskii and Panchenko, 2000].
Let Sn−1 = {z ∈ Rn|||z||2 = 1} be the Euclidean sphere.
XK represents the linearly transformed cone: {Xr ∈ Rn|r ∈
K}, and we use Gaussian width to measure the width of
the intersection of XK and Sn−1. This paper defines Y =
XK ∩ Sn−1. We state the following theorem for guarantee-
ing the σ-Subgaussian sketch:
Theorem 1. Let S ∈ Rm×n be a stochastic σ-Subgaussian
sketch matrix, c1 and c2 be universal constants. Given any
δ ∈ (0, 1) and m = O(( c1δ )2ω2(Y)), then with probability

at least 1 − 6qe−
c2mδ

2

σ4 , V̂ is a δ-optimality approximation
solution.

The proof sketch of this theorem can be found in the Ap-
pendix.
Remark. Theorem 1 guarantees that the stochastic σ-
Subgaussian sketch method is able to construct a small sketch
of the full data set for the fast optimization of problem 1,
while preserving the δ-optimality of the solution.

3.2 Walsh-Hadamard Sketch Guarantee
We generalize the concept of Gaussian width to two addition-
al measures, S-Gaussian width and Rademacher width:
Definition 5 (S-Gaussian Width). Given a closed set Y ⊆
Rn and a stochastic sketch matrix S ∈ Rm×n, the S-
Gaussian width of Y , denoted by ωS(Y), is defined as:

ωS(Y) = Eg,S [sup
z∈Y
|〈g, Sz√

m
〉|]

where g ∼ N(0, Im×m).
Definition 6 (Rademacher Width). Given a closed set Y ⊆
Rn, the Rademacher width of Y , denoted by Υ(Y), is defined
as:

Υ(Y) = E$[sup
z∈Y
|〈$, z〉|]

where $ ∈ {±1}n is an i.i.d. vector of Rademacher vari-
ables.

Next, we still define Y = XK∩Sn−1 and state the follow-
ing theorem for guaranteeing the Walsh-Hadamard sketch:
Theorem 2. Let S ∈ Rm×n be a stochastic Walsh-
Hadamard sketch matrix, c1, c2 and c3 be universal con-
stants. Given any δ ∈ (0, 1) and m = O(( c1δ )2(Υ(Y) +√

6log(n))2ω2
S(Y)), then with probability at least 1 −

6q
(

c2
(mn)2 + c2e

− c3mδ
2

Υ(Y)2+log(nm)
)
, V̂ is a δ-optimality approx-

imation solution.

Remark. An additional term (Υ(Y) +
√

6log(n))2 ap-
pears in the sketch size, so the required sketch size for the
Walsh-Hadamard sketch is larger than that required for the
σ-Subgaussian sketch. However, the potentially larger sketch
size is offset by the much lower cost of matrix multiplication-
s via the stochastic Walsh-Hadamard sketch matrix. Theo-
rem 2 guarantees that the stochastic Walsh-Hadamard sketch
method is also able to construct a small sketch of the full data
set for the fast optimization of problem 1, while preserving
the δ-optimality of the solution.

3.3 Generalization Error Bound
This subsection provides the generalization error bound of
the multi-label classification problem using our proposed t-
wo stochastic sketch models. Because our results can be
applied to two models, we simply call our stochastic sketch
models SS. Assume our model is characterized by a distribu-
tion D on the space of inputs and labels X × {0, 1}q , where
X ⊆ Rp. Let a sample {(x(j), y(j))} be drawn i.i.d. from
the distribution D, where y(j) ∈ {0, 1}q (j ∈ {1, . . . , n})
are the ground truth label vectors. Assume n samples D =
{(x(1), y(1)), · · · , (x(n), y(n))} are drawn i.i.d. n times from
the distribution D, which is denoted by D ∼ Dn. For two
inputs x(z), x(j) in X , we define d(x(z), x(j)) = ||x(z) −
x(j)||2 as the Euclidean metric in the original input space
and dpro(x

(z), x(j)) = ‖V̂ ′x(z) − V̂ ′x(j)‖2 as the metric
in the embedding input space. Let hDknni(x) represent the
prediction of the i-th label for input x using our model SS-
kNN, which is trained on D. The performance of SS-kNN:
(hDknn1

(·), · · · , hDknnq (·)) : X → {0, 1}q is then measured in
terms of its generalization error, which is its expected loss on
a new example (x, y) drawn according to D:

ED∼Dn,(x,y)∼D

( q∑
i=1

`(yi, h
D
knni(x))

)
(3)

where yi means the i-th label and `(yi, hDknni(x)) represents
the loss function for the i-th label. We define the loss function
as follows for the analysis.

`(yi, h
D
knni(x)) = P (yi 6= hDknni(x)) (4)

For the i-th label, we define the function as follows:

νij(x) = P (yi = j|x), j ∈ {0, 1}. (5)

The Bayes optimal classifier b∗ for the i-th label is defined as

b∗i (x) = arg max
j∈{0,1}

νij(x) (6)

Before deriving our results, we first present several important
definitions and theorems.
Definition 7 (Covering Numbers, [Shawe-Taylor et al.,
1998]). Let (X , d) be a metric space, A be a subset of X
and ε > 0. A set B ⊆ X is an ε-cover for A, if for every
a ∈ A, there exists b ∈ B such that d(a, b) < ε. The ε-
covering number of A,N (ε,A, d), is the minimal cardinality
of an ε-cover for A (if there is no such finite cover then it is
defined as∞).
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SS+GAU SS+WH
DATA SET BR+LIB BR+kNN FASTXML SLEEC m = 256 m = 512 m = 1024 m = 256 m = 512 m = 1024
COREL5K 0.0098 0.0095 0.0093 0.0094 0.0095 0.0095 0.0094 0.0103 0.0102 0.0099
NUS(VLAD) 0.0211 0.0213 0.0209 0.0207 0.0221 0.0218 0.0216 0.0230 0.0225 0.0218
NUS(BOW) 0.0215 0.0220 0.0216 0.0213 0.0227 0.0223 0.0222 0.0229 0.0226 0.0223
RCV1X 0.0017 0.0019 0.0019 0.0018 0.00189 0.00188 0.00187 0.00199 0.00195 0.00192

Table 1: The results of Hamming Loss on the various data sets.

SS+GAU SS+WH
DATA SET BR+LIB BR+kNN FASTXML SLEEC m = 256 m = 512 m = 1024 m = 256 m = 512 m = 1024
COREL5K 0.1150 0.0930 0.0530 0.0824 0.0475 0.0446 0.0659 0.0539 0.0817 0.0902
NUS(VLAD) 0.1247 0.1547 0.1118 0.1578 0.1099 0.1310 0.1460 0.1001 0.1289 0.1443
NUS(BOW) 0.0984 0.1012 0.0892 0.1122 0.0896 0.0932 0.0952 0.0882 0.0903 0.0920
RCV1X 0.2950 0.2894 0.2367 0.2801 0.2063 0.2767 0.2813 0.2173 0.2621 0.2796

Table 2: The results of Example-F1 on the various data sets.

Definition 8 (Doubling Dimension, [Krauthgamer and Lee,
2004]). Let (X , d) be a metric space, and let λ̄ be the smallest
value such that every ball in X can be covered by λ̄ balls of
half the radius. The doubling dimension of X is defined as :
ddim(X ) = log2(λ̄).

Theorem 3 ([Krauthgamer and Lee, 2004]). Let (X , d) be a
metric space. The diameter of X is defined as diam(X ) =

sup
x,x′∈X

d(x, x′). The ε-covering number of X , N (ε,X , d), is

bounded by:

N (ε,X , d) ≤
(2diam(X )

ε

)ddim(X )
(7)

We provide the following generalization error bound for
SS-1NN:

Theorem 4. Given a metric space (X , dpro), assume func-
tion νi : X → [0, 1] is Lipschitz with constant L with respect
to the sup-norm for each label. Suppose X has a finite dou-
bling dimension: ddim(X ) = D < ∞ and diam(X ) = 1.
LetD = {(x(1), y(1)), · · · , (x(n), y(n))} and (x, y) be drawn
i.i.d. from the distribution D. Then, we have

ED∼Dn,(x,y)∼D

( q∑
i=1

P (yi 6= hD1nni(x))
)

≤
q∑
i=1

2P (b∗i (x) 6= yi) +
3qL||V̂ ||F
n1/(D+1)

(8)

Inspired by Theorem 19.5 in [Shalev-Shwartz and Ben-
David, 2014], we derive the following lemma for SS-kNN:

Lemma 1. Given metric space (X , dpro), assume function
νi : X → {0, 1} is Lipschitz with constant L with respect
to the sup-norm for each label. Suppose X has a finite dou-
bling dimension: ddim(X ) = D < ∞ and diam(X ) = 1.
LetD = {(x(1), y(1)), · · · , (x(n), y(n))} and (x, y) be drawn

i.i.d. from the distribution D. Then, we have

ED∼Dn,(x,y)∼D

( q∑
i=1

P (yi 6= hDknni(x))
)

≤
q∑
i=1

(1 +
√

8/k)P (b∗i (x) 6= yi)+
q(6L||V̂ ||F + k)

n1/(D+1)

(9)

The following corollary reveals important statistical prop-
erties of SS-1NN and SS-kNN.
Corollary 1. As n goes to infinity, the error of the SS-1NN
and SS-kNN converges to the sum of twice the Bayes error
and 1+

√
8/k times Bayes error over the labels, respectively.

4 Experiment
4.1 Data Sets and Baselines
We abbreviate our proposed stochastic σ-Subgaussian s-
ketch and stochastic Walsh-Hadamard sketch to SS+GAU
and SS+WH, respectively. In the experiment, we set the
entries in the σ-Subgaussian sketch matrix as i.i.d standard
Gaussian entries. This section evaluates the performance of
the proposed methods on four data sets: corel5k, nus(vlad),
nus(bow) and rcv1x. The statistics of these data sets are pre-
sented in website1. We compare SS+GAU and SS+WH with
several state-of-the-art methods, as follows.
• BR [Tsoumakas et al., 2010]: We implement two

base classifiers for BR. The first uses linear classifica-
tion/regression package LIBLINEAR [Fan et al., 2008]
with l2-regularized square hinge loss as the base clas-
sifier. We simply call this baseline BR+LIB. The sec-
ond uses kNN as the base classifier. We simply call this
baseline BR+kNN and count the kNN search time as the
training time.
• FastXML [Prabhu and Varma, 2014]: An advanced tree-

based multi-label classifier.
• SLEEC [Bhatia et al., 2015]: A state-of-the-art embed-

ding method, which is based on sparse local embeddings
1http://mulan.sourceforge.net
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SS+GAU SS+WH
DATA SET BR+LIB BR+kNN FASTXML SLEEC m = 256 m = 512 m = 1024 m = 256 m = 512 m = 1024
COREL5K 7.198 0.678 4.941 736.670 0.196 0.218 0.366 0.119 0.197 0.239
NUS(VLAD) 222.21 179.04 715.86 9723.49 25.29 51.68 93.97 11.87 20.22 33.04
NUS(BOW) 511.83 351.64 1162.53 11391.54 52.05 72.65 120.37 25.41 34.32 48.85
RCV1X 22607.53 353.42 1116.05 78441.93 72.53 114.55 144.17 48.88 55.94 72.22

Table 3: The training time (in second) on the various data sets.

Figure 1: Experiment results of SS+GAU and SS+WH on rcv1x data set.

for large-scale multi-label classification. We use solver-
s of FastXML and SLEEC provided by the respective
authors with default parameters.

Following the similar settings in [Zhang and Zhou, 2007]
and [Bhatia et al., 2015], we set k = 10 for the kNN search
in all kNN based methods. The sketch size m is chosen in
a range of {64, 128, 256, 512, 1024}. Following [Chen and
Lin, 2012], [Zhang and Schneider, 2012] and [Guo and Schu-
urmans, 2013], we consider the Hamming Loss and Example-
F1 measures to evaluate the prediction performance of all the
methods. The smaller the value of the Hamming Loss, the
better the performance, while the larger the value of Example-
F1, the better the performance.

4.2 Results
Figure 1 shows that with the increasing sketch size, the train-
ing time of SS+GAU and SS+WH rise, while the prediction
performance of SS+GAU and SS+WH becomes better. The
results verify our theoretical analysis. The Hamming Loss,
Example-F1 and training time comparisons of various meth-
ods on corel5k, nus(vlad), nus(bow) and rcv1x data sets are
shown in Table 1, Table 2 and Table 3, respectively. From
Tables 1, 2 and 3, we can see that:
• BR and SLEEC usually achieve better results, which is

consistent with the empirical results in [Bhatia et al.,
2015] and [Taha and Tiun, 2016]. However, SLEEC is
the slowest method compared to other baselines.
• Because we perform the optimization only on a smal-

l sketch of the full data set, our proposed methods are
significantly faster than BR and state-of-the-art embed-
ding approaches. Moreover, we can maintain compet-
itive prediction performance by setting an appropriate

sketch size. The empirical results illustrate our theoreti-
cal studies.

5 Conclusion
This paper carefully constructs stochastic σ-Subgaussian s-
ketch and Walsh-Hadamard sketch for multi-label classifica-
tion. From an algorithmic perspective, we show that we can
obtain answers that are approximately as good as the exact an-
swer for BR. From a statistical learning perspective, we also
provide the generalization error bound of multi-label classi-
fication using our proposed stochastic sketch model. Lastly,
our empirical studies corroborate our theoretical findings, and
demonstrate the superiority of the proposed methods.
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A The Proof Sketch of Theorem 1
We first present the following lemma, which is derived from
[Mendelson et al., 2007].
Lemma 2. Let S ∈ Rm×n be a stochastic σ-Subgaussian
sketch matrix. Then there are universal constants c1 and c2
such that for any subset Y ⊆ Sn−1, any u ∈ Sn−1 and δ ∈
(0, 1), we have

sup
z∈Y
|z′S z| ≤ c1√

m
ω(Y) + δ (10)

with probability at least 1− e−
c2mδ

2

σ4 , and we have

sup
z∈Y
|z′S u| ≤ 5c1√

m
ω(Y) + 3δ (11)

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2436



with probability at least 1 − 3e−
c2mδ

2

σ4 , where S = S′S −
In×n.

Proof. (of Theorem 1). We first show that V̂ is a δ-optimality
approximation solution from the right hand. Let V ∗1 , · · · , V ∗q ,
V̂1, · · · , V̂q and Y1, · · · , Yq be q columns of matrix V ∗, V̂ and
Y , respectively. Then ||XV ∗−Y ||2F and ||SXV̂ −SY ||2F can
be decomposed to ||XV ∗−Y ||2F =

∑q
i=1 ||XV ∗i −Yi||22 and

||SXV̂ − SY ||2F =
∑q
i=1 ||SXV̂i − SYi||22. Next, we study

the relationship between ||XV ∗i −Yi||22 and ||SXV̂i−SYi||22.
We defineM = V̂i−V ∗i . According to Definition 3, we know
that M belongs to the tangent cone of C at V ∗i .

Because V ∗i ∈ arg minr∈Rp ||Xr−Yi||22, we have ||XV ∗i −
Yi||22 ≤ ||XV̂i−Yi||22 = ||XV ∗i −Yi||22+2〈XV ∗i −Yi, XM〉+
||XM ||22. Consequently, we obtain:

2〈XV ∗i − Yi, XM〉+ ||XM ||22 ≥ 0 (12)

As V̂i ∈ arg minr∈Rp ||SXr − SYi||22, we have ||SXV ∗i −
SYi||22 ≥ ||SXV̂i − SYi||22 = ||SXV ∗i − SYi||22 +
2〈SXV ∗i −SYi, SXM〉+ ||SXM ||22. Consequently, we ob-
tain ||SXM ||22 ≤ −2〈SXV ∗i − SYi, SXM〉 ≤ 2||SXV ∗i −
SYi||2||SXM ||2 and

||SXM ||2 ≤ 2||SXV ∗i − SYi||2 (13)

We derive the following:

||SXV̂i − SYi||22
=||SXV ∗i − SYi||22+||SXM ||22+2〈SXV ∗i − SYi, SXM〉
=||SXV ∗i − SYi||22 + ||XM ||22 + 〈XM,SXM〉

+ 2〈XV ∗i − Yi,SXM〉+ 2〈XV ∗i − Yi, XM〉

By using Lemma 2, with probability at least 1 − 4e−
c2mδ

2

σ4 ,
we have

||SXV̂i − SYi||22
≤||SXV ∗i −SYi||22 + ||XM ||22(1 +

c1√
m
ω(Y) + δ)

+ 2||XV ∗i − Yi||2||XM ||2(1 +
5c1√
m
ω(Y) + 3δ)

where Y = XK ∩ Sn−1. Given γ > 0, we have 2||XV ∗i −
Yi||2||XM ||2 ≤ γ||XV ∗i − Yi||22 + 1/γ||XM ||22. For the
sake of clarity, we define ψ = 1 + 5c1√

m
ω(Y) + 3δ and

ϕ = 1 + c1√
m
ω(Y) + δ, and then substitute them to the above

expression, with probability at least 1− 4e−
c2mδ

2

σ4 , we have

||SXV̂i − SYi||22

≤||SXV ∗i −SYi||22+ γψ||XV ∗i − Yi||22+(
ψ

γ
+ ϕ)||XM ||22

(14)

Clearly, we have ω(
XV ∗i −Yi
||XV ∗i −Yi||2

) ≤ ω(Y). By using Lemma

2, with probability at least 1− e−
c2mδ

2

σ4 , we have

||SXV ∗i − SYi||22
=||XV ∗i − Yi||22 + 〈XV ∗i − Yi,S (XV ∗i − Yi)〉

≤||XV ∗i − Yi||22(1 +
c1√
m
ω(

XV ∗i − Yi
||XV ∗i − Yi||2

) + δ)

≤||XV ∗i − Yi||22ϕ

(15)

By using Lemma 2, with probability at least 1 − e−
c2mδ

2

σ4 ,
we have ||SXM ||22 = ||XM ||22 + 〈XM,SXM〉 ≥
||XM ||22(1 − c1√

m
ω(Y) − δ) = ||XM ||22(2 − ϕ). By us-

ing Eq.(13), with probability at least 1 − e−
c2mδ

2

σ4 , we have

||XM ||22 ≤
||SXM ||22

2− ϕ
≤ 4
||SXV ∗i − SYi||22

2− ϕ
(16)

Eq.(14), Eq.(15) and Eq.(16) imply that, with probability at

least 1− 6e−
c2mδ

2

σ4 , we have

||SXV̂i − SYi||22

≤(1 + 4

ψ
γ+ϕ

2− ϕ
)||SXV ∗i −SYi||22+ γψ||XV ∗i −Yi||22

≤(1+4

ψ
γ+ϕ

2−ϕ
)ϕ||XV ∗i −Yi||22+ γψ||XV ∗i −Yi||22

≤(ϕ− 4
ψ

γ
− 4ϕ+ γψ)||XV ∗i − Yi||22

(17)

By setting γ = 4, with probability at least 1− 6e−
c2mδ

2

σ4 , we
have

||SXV̂i − SYi||22
≤(3ψ − 3ϕ)||XV ∗i − Yi||22

=(
12c1√
m
ω(Y) + 6δ)||XV ∗i − Yi||22

(18)

Eq.(18) implies that, with probability at least 1− 6qe−
c2mδ

2

σ4 ,
we have

||SXV̂−SY ||2F ≤ (
12c1√
m
ω(Y) + 6δ)||XV ∗−Y ||2F (19)

References
[Ailon and Chazelle, 2009] Nir Ailon and Bernard Chazelle.

The fast Johnson-Lindenstrauss transform and approxi-
mate nearest neighbors. SIAM Journal on Computing,
39(1):302–322, 2009.

[Bhatia et al., 2015] Kush Bhatia, Himanshu Jain, Purushot-
tam Kar, Manik Varma, and Prateek Jain. Sparse local em-
beddings for extreme multi-label classification. In NIPS,
pages 730–738, 2015.

[Chen and Lin, 2012] Yao-Nan Chen and Hsuan-Tien Lin.
Feature-aware label space dimension reduction for multi-
label classification. In NIPS, pages 1538–1546, 2012.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2437



[Fan et al., 2008] Rong-En Fan, Kai-Wei Chang, Cho-Jui H-
sieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A
library for large linear classification. Journal of Machine
Learning Research, 9:1871–1874, 2008.

[Fino and Algazi, 1976] Bernard J. Fino and V. Ralph Al-
gazi. Unified matrix treatment of the fast Walsh-
Hadamard transform. IEEE Transactions on Computers,
25(11):1142–1146, 1976.

[Golub and Loan, 1996] Gene H. Golub and Charles F. Van
Loan. Matrix Computations. Johns Hopkins University
Press, 1996.

[Gong et al., 2020] Xiuwen Gong, Dong Yuan, and Wei Bao.
Online metric learning for multi-label classification. In
AAAI, pages 4012–4019, 2020.

[Gordon, 1985] Yehoram Gordon. Some inequalities for
Gaussian processes and applications. Israel J. Math,
50:109–110, 1985.

[Guo and Schuurmans, 2013] Yuhong Guo and Dale Schuur-
mans. Multi-label classification with output kernels. In
ECML/PKDD, pages 417–432, 2013.

[Hsu et al., 2009] Daniel Hsu, Sham Kakade, John Lang-
ford, and Tong Zhang. Multi-label prediction via com-
pressed sensing. In Advances in Neural Information Pro-
cessing Systems 22, pages 772–780, 2009.

[Koltchinskii and Panchenko, 2000] Vladimir Koltchinskii
and Dmitriy Panchenko. Rademacher Processes and
Bounding the Risk of Function Learning. Springer-Verlag,
2000.

[Krauthgamer and Lee, 2004] Robert Krauthgamer and
James R. Lee. Navigating nets: Simple algorithms for
proximity search. In Proceedings of the Fifteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
798–807, 2004.

[Kulis, 2013] Brian Kulis. Metric learning: A survey. Foun-
dations and Trends in Machine Learning, 5(4):287–364,
2013.

[Liu and Tsang, 2017] Weiwei Liu and Ivor W. Tsang. Mak-
ing decision trees feasible in ultrahigh feature and la-
bel dimensions. Journal of Machine Learning Research,
18:81:1–81:36, 2017.

[Liu et al., 2017] Weiwei Liu, Ivor W. Tsang, and Klaus-
Robert Müller. An easy-to-hard learning paradigm for
multiple classes and multiple labels. Journal of Machine
Learning Research, 18:94:1–94:38, 2017.

[Liu et al., 2019] Weiwei Liu, Donna Xu, Ivor W. Tsang, and
Wenjie Zhang. Metric learning for multi-output tasks.
IEEE Transactions on Pattern Analysis and Machine In-
telligence, 41(2):408–422, 2019.

[Luaces et al., 2012] Oscar Luaces, Jorge Dı́ez, José Barran-
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