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Abstract

Cloud service providers, including Google, Ama-
zon, and Alibaba, have now launched machine-
learning-as-a-service (MLaaS) platforms, allowing
clients to access sophisticated cloud-based machine
learning models via APIs. Unfortunately, however,
the commercial value of these models makes them
alluring targets for theft, and their strategic posi-
tion as part of the IT infrastructure of many compa-
nies makes them an enticing springboard for con-
ducting further adversarial attacks. In this paper,
we put forth a novel and effective attack strategy,
dubbed INVERSENET, that steals the functionality
of black-box cloud-based models with only a small
number of queries. The crux of the innovation is
that, unlike existing model extraction attacks that
rely on public datasets or adversarial samples, IN-
VERSENET constructs inversed training samples to
increase the similarity between the extracted sub-
stitute model and the victim model. Further, only a
small number of data samples with high confidence
scores (rather than an entire dataset) are used to re-
construct the inversed dataset, which substantially
reduces the attack cost. Extensive experiments con-
ducted on three simulated victim models and Al-
ibaba Cloud’s commercially-available API demon-
strate that INVERSENET yields a model with sig-
nificantly greater functional similarity to the victim
model than the current state-of-the-art attacks at a
substantially lower query budget.

1 Introduction

Machine-learning-as-a-service (MLaaS) provides users with
access to machine learning and data analytics via the cloud.
Today, companies like IBM, Amazon, Google are offering
highly sophisticated models, such as deep neural networks,
that typically require enormous amounts of data and millions
of stored parameters to train [Ribeiro et al., 2015]. Clients
retrieve their desired predictions by simply posting queries
through an API, which means they need never be bothered
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with the highly technical details of preparing training sets,
configuring model architectures, or specifying hyperparam-
eters. In fact, these elements are generally completely un-
known to the end-user, making most cloud-based models
more of a black box than they already are.

However, this convenience is a double-edged sword as re-
cent studies have revealed that attackers can launch model
extraction attacks against black-box ML models. In a model
extraction attack, the adversary queries a cloud-based model
via an API and uses the results to reverse engineer a sub-
stitute model with similar functionality. There are several
reasons an adversary might launch a model extraction at-
tack. One is to sell what are typically enormously valu-
able models. Another is to pry open the model enough to
be able to launch further attacks, e.g., adversarial examples.
Thus, since Tramer et al. proposed the first model extraction
method in 2016, numerous researchers have contributed their
own insights, variations, and extensions to the literature (e.g.,
[Tramer et al., 2016; Shi er al., 2017; Papernot et al., 2017,
Wang and Gong, 2018; Juuti et al., 2019; Orekondy et al.,
2019a; Pal et al., 2020; Yu et al., 2020]). Tramer et al.’s
[Tramer et al., 2016] method works on simple models such as
logistics regression, SVM, decision trees, and shallow neural
networks. Shi et al. [Shi er al., 2017] proposed StealClassi-
fier, which extracts functionality from Naive Bayes and SVM
models designed for text classification. In [Papernot ef al.,
2017], Papernot et al. discovered that adversarial examples
generated by a substitute model can incur a high misclassi-
fication rate when fed into a black-box model. Duddu et al.
[Duddu er al., 2018] proposed the use of side channels to in-
fer the depth of deep neural networks. Wang and Gong [Wang
and Gong, 2018] proposed the first hyperparameter extrac-
tion method to work on a diverse range of machine learn-
ing models, including ridge regression, logistic regression,
support vector machine, and neural networks. With the aim
of extracting a black-box model’s functionality, Orekondy et
al. [Orekondy et al., 2019a] presented an iterative model ex-
traction strategy called KnockoffNet that constructs the query
dataset using reinforcement learning. The most recent model
extraction attacks are ACTIVETHIEF [Pal et al., 2020] and
CloudLeak [Yu ef al., 2020]. ACTIVETHIEF uses an active
learning mechanism to select samples from a public dataset
for query. CloudLeak proposed that adversarial examples are
helpful for extracting the decision boundary of the black-box
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models.

Although studies on model extraction attacks have made
considerable progress, there are still challenges to tackle.
First, building a substitute model with comparable perfor-
mance to a victim model that has a complicated structure,
like a DNN, generally requires querying the victim model in-
ordinately many times. Such a vast number of queries not
only incurs high query costs [Correia-Silva et al., 2018] but
also increases the risk of the attack being detected [Papernot
et al., 2017]. It is an easy task for cloud service providers
to monitor user-server traffic and generate a warning when a
suspicious stream of queries is detected. Second, useful in-
formation about the victim model can be learned from both
natural data samples (from public datasets) [Orekondy et al.,
2019a; Pal er al., 2020; Correia-Silva et al., 2018] and syn-
thetic samples (provided by the adversary [Juuti et al., 2019;
Papernot et al., 2017; Tramer et al., 2016]) even when those
data are different from the original training set. Admittedly,
though, the substitute model is likely to have relatively low
similarity to the victim model in these cases.

In this paper, we propose INVERSENET —a novel model ex-
traction attack against black-box machine learning models by
making use of model inversion techniques to greatly improve
the success of model extraction. The method begins by initi-
ating a primitive substitute model using query samples from
public datasets. To reduce the number of queries, the coreset
algorithm [Sener and Savarese, 2018], which is commonly
used in active learning, is used to select the most representa-
tive samples instead of using the whole dataset. By develop-
ing an innovative model inversion approach that only selects
data samples with high confidence scores to construct the in-
version model, a reliable set of inversed data samples are con-
structed with far fewer queries. The initial substitute model
is then retrained with the inversed data samples to obtain the
final substitute model. This is the key to INVERSENET’s ef-
fectiveness. As the inverse data samples are expected to have
a similar functionality to the original training data samples,
the established substitute model should be more analogous to
the victim model.

Extensive experiments on both simulated victim models
and a real-world API confirm superior performance by IN-
VERSENET over the current state-of-the-art approaches [Pal
et al., 2020; Orekondy et al., 2019a; Papernot et al., 2017]
in terms of achieving higher similarity between the substi-
tute and victim models. Further analysis shows that both the
sample selection algorithm based on high confidence scores
and the data inversion are integral to boosting the efficiency
and performance of model extraction attacks. Importantly, we
also show that INVERSENET can evade PRADA [Juuti et al.,
20191, one of the state-of-the-art defense strategies against
model extraction attacks.

In summary, this paper makes the following contributions.

 To the best of our knowledge, this is the first attempt to
leverage model inversion techniques for a model extrac-
tion attack. The effectiveness of the approach lies in the
fact that the inversed data samples resemble that of the
original training data, which helps the substitute model
to learn the functionalities of the victim model.
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Figure 1: Overview of INVERSENET.

To improve efficiency and significantly reduce the cost
of queries when constructing an inversion model, we
present a new sample selection method that chooses only
the samples with high confidence scores.

We validate the effectiveness of INVERSENET with ex-
tensive experiments on both simulated victim models
and real-world APIs. INVERSENET performs well in
strict black-box scenarios, where only top-1 results are
returned. It is the most challenging scenario in model
extraction attacks. We also show that INVERSENET is
resistant to one of the most well-known defense strate-
gies, PRADA.

2 Threat Model

Following existing works on model extraction attacks
[Orekondy et al., 2019a; Pal et al., 2020], we consider
a black-box scenario where the attacker’s only access is
through the API provided by the MLaaS. Given an input z,
the API interface returns an M -dimensional prediction vec-
tor of confidence scores y = [y1, ¥z, ..., yur] € RM, where

M is the number of classes, and Zn]\le Ym = 1. We consider
the toughest case where the API only returns the class label
(top-1 results) but not the confidence scores.

We consider the most realistic and challenging attack sce-
nario, where the attacker has no prior knowledge of the vic-
tim model, including its parameters, hyperparameters, or ar-
chitecture; has no access to the training or test data used to
train or evaluate the victim model; has no information about
the distribution of the training or test data. The attacker only
has public dataset to query the victim model to glean useful
information.

The adversary’s goal is to steal the victim model from the
cloud with a limited query budget, constructing a local sub-
stitute model with the same functionality as the victim model.

3 INVERSENET: Attack Strategy

As shown in Figure 1, INVERSENET proceeds through four
major phases: initiating the substitute model, selecting sam-
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ples for model inversion, inversing the training data samples,
and retraining the substitute model.

e Initiating substitute model. To start with, we initiate a
primitive substitute model by querying the victim model
using carefully selected samples from the public dataset
based on the coreset algorithm.

e Selecting samples for inversion. Given the primitive sub-
stitute model, we intend to improve the model with in-
versed training samples. We propose to inverse training
samples based on samples with high confidence scores
from the public dataset, which considerably reduces the
query cost.

e Inversing training samples. For each class of the victim
model, we are able to inverse a single representative av-
erage sample. To enrich the inversed training samples,
we leverage data augmentation techniques.

* Retraining substitute model. We use the inversed train-
ing samples to query the victim model, based on which
the substitute model is retrained to reach a high similar-
ity with the victim model.

In model extraction attacks, it is ideal to use as few queries
as possible to the victim model. This not only reduces query
costs but also avoids being detected. On the one hand, for
the adversary, probing the API should cost less than train-
ing a model with the same functionality himself. On the
other hand, numerous queries might sound alarms with the
cloud service provider, risking an account ban or other coun-
termeasures. With INVERSENET, the adversary queries the
victim model during three of the four phases, namely, substi-
tute model initiation, training sample inversion, and model re-
training, but with different carefully selected samples. In our
experiments, we show that INVERSENET outperforms exist-
ing approaches with the same query budget and also conduct
an ablation study on the effectiveness of the queries at each
of the three phases.

3.1 Initiating Substitute Model

Instead of starting from scratch, model extraction attacks usu-
ally initialize a primitive substitute model. As far as we are
concerned, almost all existing works use pre-trained models
from model zoos, such as Caffe Model Zoo [Jia and Shel-
hamer, 2015]. In stark contrast, we establish our initial substi-
tute model by using the query results of coreset data samples
that are most representative of the entire data samples of the
public dataset. This approach yields an ideal initial substitute
model with a low query cost.

The key idea of the coreset algorithm is to select the most
informative data samples, i.e., a “core set”, that cover the en-
tire dataset (e.g., ImageNet). In other words, the class label
information of this coreset of samples is indicative of the class
labels of the remaining samples.

To begin with, a set Sy of kg seed samples is randomly se-
lected from the public dataset. Each is marked as the cen-
ter of a cluster. In the i-th iteration, the K samples that
are most-distant from the current cluster centers S;_; are se-
lected. Each chosen sample is added to the set of data centers
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for selecting the next sample. Formally,

Ty, = arg, max min ||z —2'||1,k € [1,K], (1)
2€Sk i z’'€S;

where Sl,i =5 \ S-,l,and Sk,i = Skflvi \ {f]@fl,i}, k €
[2, K]. The cluster centers is updated as S; = S;—1 U
{$k1}kK:1

After [ iterations, we have a collective set of samples de-
noted as S;. Sy is used to query the victim model to obtain
the prediction labels. The labeled samples are then used to
train an initial substitute model.

3.2 Selecting Samples for Inversion

Given the primitive substitute model, the next step is to im-
prove the model with more query results from the victim
model. There are two common practice for selecting query
samples. The first is to select more samples from the public
dataset using active learning or reinforcement learning tech-
niques [Pal et al., 2020; Orekondy et al., 2019al. However,
since the public dataset may be quite different from the train-
ing dataset of the victim model, more samples from the public
dataset may only be incrementally helpful. The second is to
synthesize adversarial samples to learn the decision boundary
of the victim model [Papernot et al., 2017; Juuti et al., 2019;
Yu et al., 2020]. Nonetheless, many defense strategies specif-
ically target at detecting synthetic sample queries [Juuti et al.,
2019].

In INVERSENET, we seek for an unexplored territory of
query sample selection. It is commonly agreed that, most
ideally, the samples used to query the victim model should
resemble the original training set as closely as possible. How-
ever, in the strict black-box setting, the original training set
or a dataset in the same problem domain (PD) as the orig-
inal training set are usually unavailable. Inspired by model
inversion attacks that aim to recover the “average” images of
the original training samples of a learning model [Fredrik-
son et al., 2015; Yang et al., 2019], we propose to lever-
age the recovered data samples to query the victim model,
which should greatly enhance the performance of the substi-
tute model.

The model inversion scheme we use is based on [Yang
et al., 2019], and in stark contrast to it, we have designed
a more efficient method of constructing an inversion model
that is specially tailored to model extraction. The method
was inspired by a discovery that samples with high confi-
dence scores are more useful for generating high-quality in-
versed data samples. Instead of querying the victim model
to obtain confidence scores, the initial substitute model is uti-
lized to judge if a sample is of high confidence score, in order
to save query costs. This is reasonable since the initial sub-
stitute model has already learned some characteristics of the
victim model. The advanced inversion method significantly
reduces the number of queries required to construct the inver-
sion model compared to [Yang er al., 2019].

Samples with high confidence scores are those that are far
away from the decision boundary of a model. For instance,
consider a binary classifier f with f(z) = 0 as the decision
boundary. The samples that satisfy f(x) > 0 are positive



Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

Input data Output data
uwmg{:] nmm{:]~ummﬁ

Figure 2: The model inversion process. The victim model Fy- takes
the data sample x as input and outputs a prediction result Fy (z).
The inversion model Gy takes the prediction vector as input and
outputs the inversed data sample x*.

samples and those that satisfy f(z) < 0 are negative sam-
ples. The samples with a large distance from the decision
boundary are deemed to be the samples with high confidence
scores since the classifier f is able to decide the class of these
samples with high confidence. In contrast, the samples close
to the decision boundary are considered to be samples with
low confidence scores since they are easily misclassified.

To determine the distance between a sample and the de-
cision boundary, we resort to the observation that it is rela-
tively easy to push low-confidence samples across the deci-
sion boundary by adding a little noise, while it requires much
more noise to change the label of high-confidence samples.
Therefore, we generate an (untargeted) adversarial example
[Ducoffe and Precioso, 2018] for each sample from the pub-
lic dataset based on the initial substitute model. The required
perturbation to generate the adversarial example is used to de-
termine whether the sample is of a high confidence score or
not.

Given a sample x, we seek the smallest noise Az, such that
T = = + Ax will be misclassified to an incorrect label.

min [|Aclls, st f(z+A2) £ f@). @)

Noise is added to a sample iteratively until the sample is
misclassified. To ensure that the adversarial sample crosses
the decision boundary, Ax is multiplied with the constant
1+ ¢ (¢ < 1) to yield the distance D = (1 + {)Az. In
our experiments, £ was set to 0.02 [Moosavi-Dezfooli et al.,
2016]. The samples from the public dataset are sorted ac-
cording to distance D in non-ascending order, and the first X
samples are selected as having the highest confidence scores.

Notably, this set of selected samples may contain some of
the same samples as in the coreset used for substitute model
initiation. Hence, to further reduce costs, any overlapping
samples are removed before querying the victim model Fy .
The final set of selected samples with high confidence scores
that need to query the victim model is denoted as .S ;.

3.3 Inversing Training Samples

Given the selected high confidence score samples, the next
step is to generate inversed training samples of the victim
model. As shown in Figure 2, the inversion process can be
viewed as an encoder-decoder architecture. The victim model
Fy is the encoder; the inversion model Gy is the decoder; the
prediction vector can be thought of as the latent space. The
victim model Fy encodes an input sample x into a prediction
vector Fy/ () (i.e., the confidence score), and the decoder Gy
decodes the prediction vector to obtain the data sample z*.
The encoder-decoder architecture of the inversion process
is similar but different from the autoencoder in [Baldi, 2012].
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In [Baldi, 2012], the encoder is updated in an iterative man-
ner. In contrast, in Figure 2, the victim model FYy is fixed
but unknown in our black-box attack scenario. Moreover, the
training dataset of FYy, is unknown and cannot be used to train
Gy, which is different from the case in [Baldi, 2012]. Both
difficulties make it challenging to obtain the inversion model
Gy.

The inversion process has three main steps. Firstly, the
samples in Sy are fed into the victim model Fy to obtain
their prediction vectors. Second, an inversion model Gy is
trained using a truncation approach, i.e., truncate the Fy’s
predictions to the same dimension of the prediction vector on
the training dataset, forcing Gy, maximally recover the in-
versed samples. It can also help to prevent overfitting of Gy .
Specifically, given a selected sample x with a high confidence
score, the prediction vector Fy/(x) is truncated to m dimen-
sions, which preserves the top m scores and sets the rest to
zeros. We set m to 1 since in the toughest case, the commer-
cial API only returns the top-1 results. The inversion model
G'y is trained by minimizing the following objective function

C(Gv) = Egzns, [L(Gy (truncy (Fy (), )], (3)

where L is the loss function, and truncy(-) is the truncate
function that preserves the first score of the prediction vector.
The last step is to input the truncated prediction vectors to the
inversion model to obtain the inversed samples. As an exam-
ple, assume that the victim model has five classes. To recover
an inversed data sample of the second class, (0,1,0,0,0) would
be fed to the inversion model GGy, which would return an in-
versed sample z* representing the corresponding class.

The inversion model only produces a single inversed av-
erage sample for each class, which is not sufficient for re-
training the substitute model. Thus, we augment inversed
samples to enlarge the retraining set. We vary the value
of truncated prediction vectors to the inversion model (e.g.,
use (0,0.9,0,0,0) to inverse the second class image) to obtain
multiple inversed samples for the same class. We also use
other augmentation techniques including cropping, scaling,
rotating, linear augmenting, shearing, Gaussian blurring, and
adding white Gaussian noise to copies of inversed samples.

3.4 Retraining Substitute Model

With the initial substitute model and the augmented inversed
dataset in hand, the victim model is then queried with the
samples from the inversed dataset. The labeled responses re-
turned from these queries are then used to retrain the initial
substitute model, resulting in the final well-performed substi-
tute model.

4 Implementation and Evaluation

The simulated victim models are trained on three datasets:
MNIST, GTSRB, and CIFAR10. The victim model structure
is Classifier, and the substitute model structure is CNN32.
For real-world commercial API, we use the pornography de-
tection service provided by Alibaba Cloud', which outputs

one of three labels, i.e., “porn”, “sexy”, or “normal”. The

'ai.aliyun.com/lvwang/imgadult
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Figure 4: Impact of query budgets.

APT’s documentation does not provide any information about
the training dataset or the model architecture. To extract the
real-world API, we use ResNet18 [He et al., 2016] as the sub-
stitute model architecture.

We use agreement to evaluate the similarity between the
substitute model and the victim model. And accuracy de-
notes the prediction accuracy of the substitute model on the
test set. We use PSNR and MSE to evaluate the quality of
inversed samples. Details on the evaluation metrics are in the
Appendix. All experiments were conducted on an Ubuntu
16.04 system with a 8-core Inte]l CPU and NVIDIA GPU.

4.1 Evaluation Results

We compare INVERSENET with state-of-the-art extraction
attacks ACTIVETHIEF [Pal et al., 2020], KnockoffNet
[Orekondy et al., 2019al, and Papernot [Papernot et al.,
2017]. For a fair comparison, the query budgets are the
same for all algorithms. Figure 3 shows that INVERSENET
has a higher agreement than the baselines for all datasets at
all query budgets. Notably, the performance improvement
is more pronounced when the query budget is limited. Both
ACTIVETHIEF and KnockoffNet only use raw samples from
public datasets to establish their substitute models. The per-
formance advantage of INVERSENET is therefore attributed
to using an inverse dataset to retrain the substitute model. Pa-
pernot also uses synthetic samples, but is ineffective when
extracting the GTSRB and CIFAR10 models.

Impact of query budget. INVERSENET queries the victim
model in three different phases with K, K5 and K5 samples
respectively. The total query budgetis K = K7 + K5 + K3.
In the experiments, the ratio between K, Ko, and K is fixed
at 0.45:0.45:0.1. Later, we will evaluate the effectiveness of
each query phase with an ablation study. As shown in Fig-
ure 4, it is obvious that the performance of the substitute
model gets better as the query budget increases. As the query
budget grows from 1k to 20k, the agreement increases sig-
nificantly, especially with the GTSRB and CIFAR10 models.

substitute model reaches an agreement of 93.2%, whereas the
GTSRB model reaches an agreement of 86.1%, and the more
complex CIFAR10 model yields an agreement of 75.4%. We
also show the results of INVERSENET with full confidence
score in the Appendix. For the real-world API, INVERSENET
reaches an agreement of 76.87% with a budget of only 1k
and 80.53% with 5k queries, which is very competitive for
extracting a real-world API when the training set is unknown
to the attacker. The attacker may exploit the stolen model for
its own profit, thus the potential economic loss of such model
extraction attacks may be fundamental.

Impact of substitute model structure. In this part, we in-
vestigate the impact of substitute model structure on the per-
formance of INVERSENET. For comparison, we first use
Classifer as the substitute model structure, which is the same
as the victim model structure; then we use three different
model structures for the substitute model, namely CNN32,
CNN42, and ResNet18. The details of these model structures
can be found in the Appendix. Table 1 shows that when sub-
stitute model structure is the same as or in the same family
as the black-box victim model, the agreement is high. In the
case of unknown victim model structure, a complex structure
is effective in extracting the functionality of the victim model.

The effectiveness of high confidence score samples. We
compare the inversed samples using randomly selected sam-
ples and using samples with high confidence scores (dubbed
HCSS). For fair comparison, we use the same number of
queries (10k) for HCSS and the random strategy. As shown
in Figure 5, we can see that the PSNR of HCSS is higher than
the random strategy for all datasets. Moreover, the experi-
mental results of model inversion are comparable to the state-
of-the-art data reconstruction attacks [Salem et al., 2020].
The MSE of the inversed samples using HCSS is also lower
than that using the random strategy. The results of MSE and
more inversed samples are shown in the Appendix.

Ablation study on the effectiveness of queries. To verify
the effectiveness of the query in each phase as we mentioned
above, we conduct an ablation study by changing one of the
parameters K;,i € [1, 3] while fixing the other two parame-
ters K; = 4,000, j # i. As shown in Table 2, we can see that
if either K'; or K, increases, the agreement will increase.This
indicates that selecting a larger coreset for substitute model
initiation and selecting more high confidence score samples
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MNIST GTSRB CIFARI10
Classifier CNN32 CNN42 ResNetl8| Classifier CNN32 CNN42 ResNetl8| Classifier CNN32 CNN42 ResNetl8
10k | 94.34% 932% 90.37% 90.52% 87.42% 86.1% 83.7% 83.93% 75.7% 754%  63.6% 64.3%
20k | 95.5% 942% 93.37% 94.47% 94.71% 94% 88.6% 89.41% 77.48% 773% 67.42% 69.54%
30k | 95.96% 954% 94.67% 94.78% 95.88% 954% 93.6% 92.52% 81.94% 78.6% 72.01% 71.04%

Table 1: Impact of substitute model structure
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Figure 5: PSNR of inversed samples for MNIST, GTSRB, and CIFARI10. 1st row: the original training samples. 2nd row: inversed samples
using random selection method. 3rd row: inversed samples using samples with high confidence scores.

Variable Dataset 1,000 2,000 3,000 4,000

MNIST 80.2%  82.32% 85.48% 89.28%

K GTSRB 724%  72.92% 73.05% 75.18%
CIFARI10 | 69.12% 70.96% 74.17% 75.55%

MNIST 88.23% 88.78% 89.26%  89.28%

K> GTSRB 67.46% T71.04% 72.22% 75.18%
CIFARI10 | 70.28% 72.05% 74.38% 75.55%

MNIST 89.37% 89.67% 88.59%  89.28%

K3 GTSRB 75.59%  75.65% 75.02%  75.18%
CIFARI10 | 74.59% 7539% 75.39%  75.55%

Table 2: Ablation study

for training sample inversion both contribute to a better per-
formance of INVERSENET. If K3 increases, the agreement
slightly fluctuates up and down, but basically there are little
changes. However, if we aggressively set K3 as 0, the agree-
ment will decrease by approximately 2%. This shows that
augmenting the inverse dataset is helpful, but the contribution
is limited. The ablation study provides valuable guidance on
the split of the query budget: more budget should be assigned
to K7 and K5, and a small K3 is enough.

Evading state-of-the-art defense. PRADA [Juuti et al.,
2019] is a defense strategy against model extraction attacks.
Based on the assumption that the distribution of queries used
by the attacker usually deviates from a normal (Gaussian) dis-
tribution, PRADA keeps track of the minimum distance be-
tween a new input sample and all previous samples in the
same class to model the distribution of queries. The Shapiro-
Wilk test statistic [Juuti et al., 2019] is used to quantify
whether the distribution of queries fits a normal distribution.
PRADA is especially effective in detecting model extraction
attacks using adversarial samples as queries. Both Knock-
offNet and ACTIVETHIEF use solely natural samples from
public dataset, thus will not be detected by PRADA. But the
performance of KnockoffNet and ACTIVETHIEF is unsatis-
factory. Papernot [Papernot et al., 2017] leverages adversar-
ial samples for query, thus it is easily detected by PRADA
as the query distribution is far from a normal distribution,
as shown in Figure 6. Our INVERSENET uses both natu-
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Figure 6: Distribution of distances between queries.

ral data from public datasets but also an augmented inverse
dataset. Figure 6 demonstrates that the query distribution of
INVERSENET is still similar to a normal distribution. This
indicates that INVERSENET can reach an ideal performance
while evading defense strategies such as PRADA. More po-
tential defenses are discussed in the Appendix.

5 Conclusion

This article presents the design, implementation, and evalua-
tion of INVERSENET —a novel model extraction attack against
black-box models using inversed datasets reconstructed by
selecting only samples with high confidence scores, which
greatly reduces the number of queries required to construct
the inversion model. Extensive experiments confirm IN-
VERSENET as a more successful method of model extraction
attack than the current state-of-the-art approaches.
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A Dataset of Victim Model

MNIST. We randomly choose 60,000 samples as the training
set, and 10,000 samples as the test set.

GTSRB. The dataset is pre-divided into 39,209 training
and 12,630 testing samples. Using annotated information, we
cropped each image to its core area with size 32 x 32.

CIFAR10. We randomly select 50,000 and 10,000 samples
as training and test set respectively.

B Query Dataset

For the MNIST victim model, we use EMNIST Letters [Co-
hen et al., 2017] as the public dataset. For the GTSRB and CI-
FAR10 models, we draw samples from the ImageNet dataset.
For the commercial API, we assembled a dataset that con-
tains 135,325 public samples downloaded from the internet,
divided into five categories, three of which are related to
pornography. All samples are resized to 224 x 224. Note
that there is no overlap between the query dataset and the pri-
vate dataset (i.e., training dataset and test dataset) of both the
simulated and real-world black-box victim models.

C Model Structure

Victim model. The structure of simulated victim models is
Classifier, which contains four CNN blocks. Each block con-
sists of a convolutional layer followed by a batch normaliza-
tion layer, a max-pooling layer, and a ReLU activation layer.
Two fully connected layers are added after the CNN blocks,
and a softmax function is added to the last layer.

Substitute model. We use Classifier, CNN32, CNN42, and
ResNet as the structure of the substitute model. CNN32
contains three CNN blocks, and each block comprises two
repeated units of two convolutional layers and one pooling
layer. Each convolutional layer is followed by a ReLU layer,
a batchnorm layer, and a pooling layer followed by dropout.
The output of the final pooling layer passes through a fully-
connected layer and a softmax layer to obtain the final out-
put. CNN42 contains 4 convolution blocks, each consisting
of 2 repeated units of 2 convolutional layers and one pool-
ing layer. Each convolutional layer is followed by ReLU and
batchnorm layers, and a pooling layer followed by dropout.
The output of the final pooling layer passes through a fully-
connected layer and a softmax layer to obtain the final output.
In ResNet18, the convolutional layers mostly have 3 x 3 filters
and follow two simple design rules. First, for the same output
feature map size, the layers have the same number of filters.
Second, if the feature map size is halved, the number of fil-
ters is doubled to preserve the time complexity per layer. The
total number of weighted layers is 18. A shortcut connection
is added to each pair of 3x3 filters. We perform downsam-
pling directly by convolutional layers that have a stride of 2.
The network ends with a global average pooling layer and a
1000-way fully-connected layer with softmax.

Inversion model. Following [Yang ef al., 2019], the inver-
sion model Gy comprises of five transposed CNN blocks.
The first four are made up of a transposed convolutional layer
followed by a batch normalization layer and a Tanh activation
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Figure 7: Performance with Full Confidence Score.

MNIST GTSRB CIFAR-10
HCSS Random | HCSS Random | HCSS Random
x107°% x107° | (x107%) x107° | x107° x107°

Sk | 12.5297 16.7109
10k | 11.5170 16.2321
15k | 11.4790 15.2694
20k | 11.4557 14.6737
25k | 11.3969 14.6215
30k | 11.3780 14.5808

16.8906 17.8962
16.5144 17.3834
15.5311 17.0791
15.3711 16.9327
15.3190 16.6913
15.2458 16.5486

12.5000 12.5725
12.4622 12.5594
12.4413 12.5209
12.4269 12.4806
12.4208 12.4629
12.4062 12.4330

Table 3: MSE of inversed samples with high confidence score sam-
ples (HCSS) versus randomly selected samples.

function. The last block contains a transposed convolutional
layer followed by a Sigmoid activation function.

D Evaluation Metrics

We use agreement to measure the similarity between the sub-
stitute model and the victim model in terms of their outputs,

1
Agreement(Fy, Fg,T) = Tl > I[Fy(z) = Fs(x)),
zeT

where Fy and Fg are the victim model and the substitute
model respectively, T is the test dataset, and I(.) is the indi-
cator function. Agreement calculates the fraction of test sam-
ples for which the substitute model F's and the victim model
Fy outputs the same predicted class.

We measure the quality of inversed training samples using
mean squared error (MSE), which computes the difference
between the inversed samples and the original training sam-
ple [Yang er al., 2019]. Besides, we use Peak Signal-to-Noise
Ratio (PSNR) as another metric to evaluate the pixel level re-
covery quality of the inversed samples. These metrics serve
as indicators that samples with high confidence scores are in-
deed helpful to data inversion.

E Inversed Dataset

Figure 8~11 show more representative inversed samples of
MNIST, GTSRB, and CIFAR-10. The inversed samples using
high confidence score samples are comparable to the state-of-
the-art data reconstruction attacks [Salem et al., 2020].

We present the MSE of inversed samples using our high
confidence score samples (HCSS) and randomly selected
samples in Table 3. For fair comparison, we use the same
number of queries (10K) for HCSS and the random strategy.
It is shown that the MSE of HCSS is lower than the ran-
dom selection strategy, indicating that the inversed samples
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Figure 8: Performance of sample inversion on GTSRB. The first column is the original training samples. The other columns are the inversed

data samples (including enlarged samples).
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Figure 9: PSNR of more inversed images on GTSRB. The first row is the original training samples. The second row is the inversed images
with model trained by randomly selected images. The third row is the inversed images with model trained by high confidence score samples.

' YEENERER
-] l-.- N
E L

Figure 10: Performance of sample inversion on CIFAR-10. The first
column is the original training samples. The other columns are the
inversed data samples (including enlarged samples).

of HCSS are more similar to the original samples than those
of the random selection strategy.

Apart from MSE, we also quantitatively analyze the effec-
tiveness of HCSS using PNSR. The results of the whole in-
versed GTSRB samples are shown in Figure 9. The results
show that HCSS has higher PNSR than the random selection
strategy for all classes.

F Performance with Full Confidence Score

In this appendix, we present the performance of IN-
VERSENET when full confidence scores are available. Note
that confidence scores only contribute to initiating the substi-
tute model in INVERSENET. When inversing training sam-
ples, since we cannot access the training samples’ confidence
scores, we only use top-1 results to train the inversion model.

As shown in Figure 7, we can see that INVERSENET with
full confidence score can achieve a higher agreement than
INVERSENET with top-1 in all datasets. For example, IN-
VERSENET with full confidence score yields an agreement of
94% with the relatively simple MNIST model at a query bud-
get of 10k, while INVERSENET with top-1 reaches 93.2%.
With the more complex GTSRB and CIFAR10 models at
a query budget of 10k, INVERSENET with full confidence
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Figure 11: Performance of sample inversion on MNIST. The first
column is the original training samples. The other columns are the
inversed data samples (including enlarged samples).

score returns an agreement of 89.3% (GTSRB) and 77.8%
(CIFAR10), while INVERSENET with top-1 trailing at 86.1%
(GTSRB) and 75.4% (CIFAR10).

G Potential Defense Strategy

To the best of our knowledge, there are two types of state-of-
the-art defense strategies against model extraction attacks: 1)
perturbing confidence scores (but ensuring correct prediction
label), 2) detecting query sequence abnormalities. Since IN-
VERSENET performs well with top-1 prediction results, type
1) defense strategies, e.g., [Lee er al., 2019; Orekondy er al.,
2019b], are not effective against INVERSENET. The most re-
cent work of 2) is PRADA, which is shown to be ineffective
against INVERSENET.

A possible defense against INVERSENET is for the model
owner to measure the knowledge gained by the adversary
through query [Kesarwani et al., 2018]. Once the gained
knowledge hits a pre-designed threshold, the model owner
may reject further queries to evade model extraction attacks.
The information gain may be measured by training and up-
dating a local proxy model for each client to estimate the in-
formation gain concerning a given validation set. However,
such an approach is computationally expensive.
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