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Abstract
Classification algorithms in machine learning of-
ten assume a flat label space. However, most real
world data have dependencies between the labels,
which can often be captured by using a hierarchy.
Utilizing this relation can help develop a model ca-
pable of satisfying the dependencies and improv-
ing model accuracy and interpretability. Further, as
different levels in the hierarchy correspond to dif-
ferent granularities, penalizing each label equally
can be detrimental to model learning. In this paper,
we propose a loss function, hierarchical curriculum
loss, with two properties: (i) satisfy hierarchical con-
straints present in the label space, and (ii) provide
non-uniform weights to labels based on their levels
in the hierarchy, learned implicitly by the training
paradigm. We theoretically show that the proposed
hierarchical class-based curriculum loss is a tight
bound of 0-1 loss among all losses satisfying the
hierarchical constraints. We test our loss function
on real world image data sets, and show that it sig-
nificantly outperforms state-of-the-art baselines.

1 Introduction
Machine learning (ML) models are trained on class labels that
often have an underlying taxonomy or hierarchy defined over
the label space. However, general ML models do not utilize the
taxonomy relations between the labels and can thus make more
egregious errors. For example, if an image contains “bulldog”,
the model would penalize a prediction of “dog” and “building”
equally unlike a human evaluator who would consider “dog” to
be a more accurate prediction. Although such nuances are not
captured by the standard evaluation metrics, they are crucial
for ensuring quality in real deployments of ML models.

Hierarchical multi-label classification (HMC) methods,
which utilize the hierarchy of class labels, aim to tackle the
above issue. Traditional methods in this domain broadly use
one of three approaches: (i) architectural modifications to the
original model to learn either levels or individual classes sepa-
rately, (ii) converting the discrete label space to a continuous
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one and embedding the labels using relations between them,
and (iii) modifying the loss function by adding more weights
to specific classes in the hierarchy. However, the methods in
this domain are mostly empirical and the choice of modifica-
tions is often experimental. To overcome this issue, we aim
to incorporate the class dependencies in the loss function in a
systematic fashion. To this end, we propose a formulation to
incorporate hierarchical constraints in a base loss function and
show that our proposed loss is a tight bound to the base loss.

Further, we note that typically humans do not learn all the
categories of objects at the same time, but rather learn them
gradually starting with simple high-level categories. A similar
setting was explored by Bengio et al. [Bengio et al., 2009],
introducing the concept of curriculum learning feeding the
model easier examples to mimic the way of human learning.
They show that learning simple examples first makes the model
learn a smoother function. Lyu et al. [Lyu and Tsang, 2019]
extended this to define an example-based curriculum loss with
theoretical bounds to 0-1 loss. We extend our hierarchically
constrained loss function to incorporate a class-based curricu-
lum learning paradigm, implicitly providing higher weights to
simpler classes. With the hierarchical constraints, the model
ensures that the classes higher in the hierarchy are selected
to provide training examples until the model learns to iden-
tify them correctly, before moving on to classes deeper in the
hierarchy (making the learning problem more difficult).

We theoretically show that our proposed loss function, hi-
erarchical class-based curriculum loss, is a tight bound on
0-1 loss — we show that any other loss function that satisfies
hierarchical constraints on a given base loss gives a higher
loss compared to our loss. We evaluate this result empiri-
cally on four image data sets, showing that our loss function
provides a significant improvement on the hierarchical dis-
tance metric compared to the baselines. We also show that,
unlike many other hierarchical multi-label classification meth-
ods, our method does not have a degraded performance on
non-hierarchical metrics and in most cases has a significant
improvement over the baselines.

2 Related Work
Research in hierarchical classification falls into three cate-
gories: (i) embedding label relations in continuous space, (ii)
structural modifications of base architecture, and (iii) adding
hierarchical regularizers and loss function modifications.
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Label-embedding methods [Kumar et al., 2018; Frome et
al., 2013; Chen et al., 2019; He and Chua, 2017; Huang and
Lin, 2017; Bertinetto et al., 2019] map class labels to contin-
uous vectors capable of reconstructing the relation between
labels. They then learn a model to predict the embedding
instead of original labels. The disadvantage of these methods
is typically the difficulty of mapping back the prediction to the
discrete space and the noise introduced in this conversion.

Models that perform structural modifications use earlier
layers in the network to predict higher level categories and
later layers to predict lower level categories [Wehrmann et al.,
2018; Masera and Blanzieri, 2018; Cerri et al., 2014; Bilal et
al., 2017]. Structural methods are often domain-dependent,
needing time and effort to analyze the data and come up with
specific modifications. In comparison, our loss based HCL
method is easier to implement and domain-agnostic.

Finally, models that modify the loss function to incorporate
hierarchy assign a higher penalty to the prediction of labels
which are more distant from the ground truth. AGGKNN-
L and ADDKNN-L-CSL [Verma et al., 2012] use a lowest
common ancestor (LCA) based penalty between the classes.
Similarly, Deng et. al. [Deng et al., 2010] introduce hierar-
chical cost giving penalty based on the height of LCA. CNN-
HL-LI [Wu et al., 2016] use a weighting parameter to control
the contribution of fine-grained classes which is empirically
learned. HXE [Bertinetto et al., 2019] use a probabilistic
approach to assign penalties for a given class given the par-
ent class and provide an information theoretic interpretation
for it, while Papai et al. [Papai et al., 2012] use an approach
where a subjective feedback provided by a user is translated
to probabilistic constraints.

The domain of curriculum learning was introduced by
Bengio et. al. [Bengio et al., 2009] based on the obser-
vation that humans learn much faster when presented in-
formation in a meaningful order as opposed to random,
which is typically used for training machine learning mod-
els. Several follow up works have shown this type of learn-
ing to be successful [Smith, 2017; Matiisen et al., 2019;
Lyu and Tsang, 2019]. Our approach builds on this line of
work to develop a curriculum learning-based loss.

3 Preliminaries

We first define some notations for the rest of the paper. Let
T = (xi,yi)i=1,...,N denote the training set with N examples

where xi ∈ RD is the input feature vector and yi ∈ {0, 1}C
is the ground truth assignment of the input to a category space.
Here, C and D are the number of categories and dimensional-
ity of input feature vector respectively. Note that we consider
the problem of multi-label classification where an input can
belong to multiple classes simultaneously. We denote the loss
function as l : RN × RC → R where l(yi, ŷi) denotes the
loss when the prediction is ŷi. For ease of notation, we will
refer to it as l(ŷi). In our problem, we assume that the set
of categories C can be arranged in a hierarchy H = (C,P)
where P is the set of directed parent-child relations between
the categories, P(c) = p means parent of class c is p.

4 Hierarchical Class-Based Curriculum Loss
For the task of multi-class classification, given a multi-class
loss function, our goal is to incorporate the hierarchical con-
straints present in the label space into the given loss function.
In this section, we first define a hierarchical constraint which
we require to be satisfied for a hierarchical label space. We
then introduce our formulation of a hierarchically constrained
loss and show that the proposed loss function indeed satisfies
the constraint. We prove a bound on the proposed loss, extend
the loss function using a curriculum learning paradigm to get a
tight bound to the 0-1 loss using this, and present an algorithm
to train the model using the proposed loss function. Note that
the proposed loss function HCL corresponds to lhc. HCL-Hier
(lh) is any generic loss that satisfies our proposed hierarchical
constraint, the first component of HCL. HCL-CL (lhc without
lh) is any generic loss that just uses class-based curriculum
learning, the second component of HCL.

4.1 Incorporating Hierarchical Constraints
Consider the learning framework with training set T =
(xi, yi)i=1,...,N . A general multi-class multi-label loss lower
bounded by 0-1 loss can be defined as follows:

l(ŷ) =
∑
i∈N

∑
j∈C

l(ŷi,j). (1)

Note that this loss function does not impose any hierarchical
constraints between the categories. Consider two categories in
the category set C: Animal and Dog. Without constraints, a
model trained using the above loss can have lAnimal > lDog.
This implies that the model is more accurate in its prediction of
Dog compared to Animal. However, this is counter-intuitive as
Dog is an Animal and its confidence should not be greater than
Animal’s. To tackle this, we define the following hierarchical
constraint Λ on a generic loss function l:

Λ : ∀(xi, yi) ∈ T, ∀c1, c2 ∈ C,
P(c1) = c2 =⇒ l(ŷi,c1) ≥ l(ŷi,c2)

(2)

The constraint implies that the loss of a child node in the
hierarchy is constrained to be more than the loss of the corre-
sponding parent node. Satisfaction of this constraint encodes
that the model suffers a lower loss when it predicts a finer
category with less accuracy than its parent, which is intuitive.
Note that this constraint can be modified to constrain level-
wise relations instead of parent-child relations. The theorems
in this paper can be proven for level-wise relations as well.

We now propose the loss function lh and show that it satis-
fies the hierarchical constraint Λ by definition:

lh(ŷ) =
∑
i∈N

∑
j∈C

max(l(ŷi,j), l(ŷi,P(j))) (3)

We now show the following result for lh.
Theorem 1. (Hierarchically Constrained Loss) Given a loss
function l, the loss function lh defined in Equation 3 satisfies
the hierarchical constraint Λ defined in Equation 2.

Proof. Let us assume that lh doesn’t follow hierarchical con-
straint Λ i.e. ∃(xi, yi) ∈ T, ∃c1, c2 ∈ C s.t.

P(c1) = c2 and lh(ŷi,c1) < lh(ŷi,c2)
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However, we have
lh(ŷi,c1) = max(l(ŷi,c1), l(ŷi,P(c1))) ≥ lh(ŷi,c2)

which contradicts our assumption. This implies that lh has to
follow the hierarchical constraint Λ.

Now, we show that the hierarchically constrained loss func-
tion is tightly bounded to the base function.
Theorem 2. (Bound on Constrained Loss) For a loss func-
tion l(ŷ) lower-bounded by 0-1 loss, the loss function lh de-
fined in Equation 3 is an element-wise tight bound on l(ŷ) with
constraint Λ. Let � denote elementwise inequality i.e. f � q
means ∀x ∈ domain(f), f(x) ≤ q(x). We then have:
l � lh � g ∀g ∈ L satisfying constraint Λ, s.t. l � g. (4)

Proof. Let us assume that ∃g ∈ L s.t. lh � g i.e.
∃(xi, yi) ∈ T, ∃c1 ∈ C s.t. g(ŷi,c1) < lh(ŷi,c1) (5)

Using the definition of lh from Eq. 3, we have:
g(ŷi,c1) < max(l(ŷi,c1), l(ŷi,P(c1))) (6)

This leads to two cases:
Case 1. If l(ŷi,c1) > l(ŷi,P(c1)), then we get g(ŷi,c1) <
l(ŷi,c1). This contradicts the assumption that g is lower-
bounded by l i.e. l � g.
Case 2. If l(ŷi,P(c1)) > l(ŷi,c1), then we get g(ŷi,c1) <
l(ŷi,P(c1)). As l � g, we have g(ŷi,P(c1)) >= l(ŷi,P(c1)).
Combined, we get g(ŷi,P(c1)) > g(ŷi,c1). However, this vio-
lates the Λ constraint.

Thus, we get l � lh � g.

The above result is for a generic loss — it can be used to
get the following property for 0-1 loss.
Corollary 1. (Bound on Constrained 0-1 Loss) For a 0-1
loss function e(ŷ), the loss function eh is defined as

eh(ŷ) =
∑
i∈N

∑
j∈C

max(e(ŷi,j), e(ŷi,P(j))) (7)

is an element-wise tight bound on e(ŷ) with constraint Λ, i.e.,
the following relation holds:
e � eh � g ∀g ∈ L satisfying constraint Λ, s.t. e � g. (8)
We have shown above that the hierarchy constrained loss

function lh provides an element-wise tight bound on the base
loss l. We now extend this loss function to use a curriculum
learning paradigm and show that the loss is a tighter bound to
0-1 loss compared to any other hierarchy preserving loss.

4.2 Hierarchical Curriculum Loss
As shown by Hu et al. [Hu et al., 2016], 0-1 loss ensures that
the empirical risk has a monotonic relation with adversarial
empirical risk. However, it is non-differentiable and difficult
to optimize. Following the groundwork by Lyu et al. [Lyu
and Tsang, 2019] who propose example based curriculum
loss, we present a class-based curriculum loss for any given
hierarchically constrained loss function l and a class selection
parameter s in the following theorem. The theorem also proves
that the function defined is tighter bound to 0-1 loss compared
to any loss function which satisfies the hierarchical constraint
and is lower bounded by l. Note that a general loss function l
is element-wise lower bounded by 0-1 loss e, i.e., e � l.

Theorem 3. (Hierarchical Class-Based Curriculum Loss)
For a general hierarchy constrained loss function lh(ŷ), we
define the loss function lhc(ŷ) as follows:

min
s∈{0,1}C

max

(∑
i∈N

∑
j∈C

sj lh(ŷi,j), C−
∑
j∈C

sj+eh(ŷ)

)
(9)

Then, e(ŷ) ≤ lhc(ŷ) ≤ g(ŷ) ∀g ∈ L satisfying hierarchical
constraint Λ, s.t. l � g i.e. the following holds
|lhc(ŷ)− e(ŷ)| ≤ |g(ŷ)− e(ŷ)|∀g ∈ L such that (10)

∀(xi, yi) ∈ T, ∀c1, c2 ∈ C,
P(c1) = c2 =⇒ g(ŷi,c1) ≥ g(ŷi,c2)

(11)

l(ŷi,j) ≤ g(ŷi,j)∀(xi, yi) ∈ T, ∀j ∈ C (12)

Proof. Consider lhc(ŷ) which is

min
s∈{0,1}C

max(
∑
i∈N

∑
j∈C

sj lh(ŷi,j), C −
∑
j∈C

sj + eh(ŷ))

≤ max(lh(ŷ), eh(ŷ))

= lh(ŷ) ≤ g(ŷ) (from Theorem 2). (13)
For the lower bound we have,

min
s∈{0,1}C

max(
∑
i∈N

∑
j∈C

sj lh(ŷi,j), C −
∑
j∈C

sj + eh(ŷ))

≥ min
s∈{0,1}C

(C −
∑
j∈C

sj + eh(ŷ)) = eh(ŷ)

≥ e(ŷ)(from Corollary 1). (14)
This gives e(ŷ) ≤ lhc(ŷ) ≤ g(ŷ). Subtracting e(ŷ) from both
sides, we get the theorem.

Note that s governs classes to be selected for training, i.e.,
s(i) = 1 implies that class i is selected by the loss function.
This is primarily used to select easy classes first followed
by harder classes. Intuitively, the max in the loss function
sub-selects classes based on their loss values.

4.3 Algorithm
In the above theorem, we prove that the proposed hierarchical
class-based curriculum loss provides a tighter bound to 0-1
loss compared to the hierarchically constrained loss function.
Given the above, we now need to find the optimal class selec-
tion parameters si for each class. We show that Algorithm 1
provides the optimal selection parameters.
Theorem 4. (Class Selection) Given a base loss function l, a
hierarchically constrained loss function lh, a solution s for
Equation 9 is provided by Algorithm 1.

The proof for above is provided in the Appendix. The algo-
rithm first creates a hierarchically constrained loss function lh
given the loss function l. It then sorts the loss values of classes
in increasing order of magnitude. Finally, it selects the first K
classes from this list such that the cumulative sum is greater
than thresh + 1 −K, where thresh is an hyper-parameter.
The first K − 1 classes go in the selection pool.

Note that the time complexity of our approach is
O(NClog(C)) and that of a typical base loss is O(NC). The
additional log(C) is computationally inexpensive as class sizes
are typically very small.
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Algorithm 1: Class Selection for Hierarchical Class-
Based Curriculum Learning. Number of samples N ,
Number of classes C, Base Loss l, Threshold thresh-
determines the selection of classes to contribute to the
loss function in an iteration

Function selectClasses (l, thresh)
for j = 1 . . . C do

lh(ŷ.,j)← 0;
for i = 1 . . . N do

lh(ŷi,j)← max(l(ŷi,j), l(ŷi,P(j)));
lh(ŷ.,j) += lh(ŷi,j);

Sort class indices in non-decreasing order of lh;
Get minimum K s.t.∑K

c=1 lh(ŷ.,c) > thresh+ 1−K;
for i = 1 . . . C do

if i < K then
si ← 1;

else
si ← 0;

return s

5 Experiments
In this section, we present experiments to showcase the perfor-
mance of hierarchical class-based loss. We show the results
on four data sets with the state-of-the-art hierarchical loss
functions. Further, we perform statistical tests to show the sig-
nificance of our results. We also perform an ablation study on
each of the component of hierarchical class-based curriculum
loss, including the hierarchically constrained loss(HCL-Hier)
and class-based curriculum loss(HCL-CL), and show how they
interplay to provide the proposed final loss function(HCL). We
performed our experiments on 2 Nvidia GeForce RTX 2080
Ti with 12 GB memory with 3.30 GHz CPU clock speed.

5.1 Experimental Setup
We evaluate our loss function on four real world image data
sets – (i) IMCLEF [Dimitrovski et al., 2011], (ii) Wipo [Rousu
et al., 2006], (iii) Reuters [Lewis et al., 2004], and (iv) iNatu-
ralist [Van Horn et al., 2018]. A summary of these datasets is
provided in Tables 1 & 2.
Experimental Details. For evaluation on datasets with pre-
extracted features, we use a multi-layer perceptron with the
extracted features as input and the categories as output. We
select the hyperparameters of the neural network using evalua-
tion on a validation set with binary cross entropy loss. Based
on this, we get a structure with 800 hidden neurons and a
dropout of 0.25. Note that we fix this network for all the
baseline loss functions and our loss function to ensure fair
comparison of results. For evaluation on iNaturalist, we used
a ResNet-18 architecture (pre-trained on ImageNet). We use
Adam optimizer and a learning rate of 10−5.
Baselines. We compare the hierarchical class-based curricu-
lum loss with the following state-of-the-art losses – (i) bi-
nary cross entropy loss [Goodfellow et al., 2016], (ii) fo-
cal loss [Lin et al., 2018] and (iii) hierarchical cross entropy

loss [Bertinetto et al., 2019]. Further, we also compare it with
a label-embedding approach called SoftLabels [Bertinetto et
al., 2019], which modifies the ground truth labels in accor-
dance with the hierarchy. For all the baselines, we use the
range of hyperparameters used in their respective works.

5.2 Metrics
We use the following metrics to evaluate each of the losses for
the classification task – (i) Hit@1, (ii) MRR (Mean Reciprocal
Rank) [Radev et al., 2002], (iii) HierDist [Deng et al., 2010],
(iv) HierCons. The first two metrics capture the accuracy of
ranking of the model predictions while the other two metrics
capture preservation of hierarchical information. Hierarchy
capturing methods often show lower performance compared to
non-hierarchical methods on first two metric as the losses get
more constrained. However, these hierarchical methods often
show improvements on a metric which captures how close to
the ground truth class the prediction is in the given hierarchy.

HierDist captures this and is defined as the minimum height
of the lowest common ancestor (LCA) between the ground
truth labels and the top prediction from the model. Mathemat-
ically, for a data point (xi, yi) ∈ T , it is defined as

HierDist = min
c1∈{j:yi,j==1}

LCAH
(
c1, argmaxj(ŷi,j)

)
,

where H denotes the hierarchy of the labels. The minimum
height of LCA is taken as 0 for a correct prediction. As pointed
out by Deng [Deng et al., 2010], the metric is effectively on
a log scale. It is measured by the height in the hierarchy of
the lowest common ancestor, and moving up a level can be
more than double the number of descendants depending on
the fan out of the parent class (often greater than 3-4). We
show that our loss function is superior to the baseline losses
for this metric. In addition, our model’s performance also
doesn’t deteriorate on non-hierarchical metrics.

We further propose another metric Hierarchical Consistency
(HierCons) to measure the consistency of predictions w.r.t. the
hierarchy. We define a pair of predictions to be consistent if
they satisfy constraint Λ (Eq. 2). HierCons@k considers the
top k predictions and takes the ratio of total consistent pairs
and maximum possible pairs which is kC2.

5.3 Overall Results
We now compare our proposed loss (HCL) with the state-of-
the-art loss functions capturing hierarchy as well as a label
embedding method (SoftLabels). From Table 1 & 2, we ob-
serve that our loss significantly outperforms the base loss
functions. Consistent with earlier results [Bertinetto et al.,
2019], we see that previously proposed hierarchically con-
strained loss functions especially SoftLabels & HXE improve
on hierarchical metrics but the performance deteriorates for
non-hierarchical metrics. On the other hand, HCL is able
to get significant boost in Hit@1, MRR and HierDist while
also improving or maintaining similar HierCons@3 as com-
pared to all state-of-the-art loss functions including the base
cross-entropy loss. HierCons@3 is also a dataset dependent
metric, iNaturalist data sets have higher inherent consistency
than say IMCLEF. We observe that overall Hier-CE is the best
performing baseline but our model outperforms it on every
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Methods Wipo (Tr /Tt:1352/358) Reuters (Tr /Tt:3000/3000) IMCLEF (Tr /Tt:10000/1006)

Hit@1 MRR HierDist HierCons@3 Hit@1 MRR HierDist HierCons@3 Hit@1 MRR HierDist HierCons@3 Time

CE 82.91 87.71 0.510 0.949 97.90 98.76 0.084 0.937 90.35 92.97 0.285 0.765 6.32 sec
FL 79.55 84.78 0.602 0.940 97.63 98.59 0.093 0.912 90.14 93.76 0.263 0.764 9.11 sec
HXE 82.91 87.39 0.513 0.951 97.80 98.65 0.085 0.889 90.45 93.27 0.279 0.766 93.05 sec
SL 79.83 87.18 0.605 0.993 97.93 98.90 0.083 0.997 89.95 93.85 0.300 0.939 6.29 sec
HCL 85.43 89.15 0.434 0.944 98.17 98.90 0.073 0.981 91.24 93.66 0.258 0.834 10.31 sec

Table 1: Hierarchical Image Classification Results on Wipo, Reuters and IMCLEF data sets. Tr , Tt represent number of training and test
examples respectively. We use pre-extracted features with a multi-layer perceptron as our base model. We show time taken per epoch for
training for the larger data set IMCLEF.

Methods Reptiles (Tr /Tt:12357/2158) Fungi (Tr /Tt:1931/355) Birds (Tr /Tt:40619/7250)

Hit@1 MRR HierDist HierCons@3 Hit@1 MRR HierDist HierCons@3 Hit@1 MRR HierDist HierCons@3 Time

CE 95.22 96.51 0.334 0.971 81.36 87.88 1.305 1.0 95.72 96.98 0.299 0.974 5.44 sec
FL 95.36 96.79 0.322 0.975 81.92 87.82 1.266 1.0 96.15 97.33 0.266 0.940 6.29 sec
HXE 95.09 97.30 0.344 0.995 81.64 87.92 1.285 1.0 93.03 96.30 0.488 0.993 6.67 sec
SL 95.22 95.83 0.329 0.953 76.84 83.69 1.621 1.0 96.59 96.93 0.236 0.960 5.85 sec
HCL 95.64 96.77 0.305 0.993 83.33 89.13 1.167 1.0 96.68 97.58 0.230 0.999 5.60 sec

Table 2: Hierarchical Image Classification Results on iNaturalist data set. We use ResNet-18 as our base model.We show time taken per epoch
for training for the larger iNaturalist data set Birds.

Methods Average Ranking in Metric across Data Sets

Hit@1 MRR HierDist HierCons@3 Overall

CE 3.16 3.16 3.5 3.00 3.20
FL 3.33 3.16 3.0 3.83 3.33
HXE 3.33 3.00 3.83 2.33 3.12
SL 3.33 3.33 3.66 2.16 3.13
HCL 1.00 1.66 1.00 2.00 1.42

Table 3: The rankings of HCL and baselines obtained using Tables 1
and 2. For each metric, the ranking is averaged over all the data sets.
Overall ranking takes average over the metrics.

metric except HierCons@3 on Wipo. Label embedding of
SoftLabels(SL) facilitate parent classes to contribute to loss of
all children classes in the hierarchy, thus inherently preserving
hierarchical consistency. HCL significantly outperforms SL in
all metric except HierCons@3 with slight trade-off on MRR
in IMCLEF. Note that HCL is also computationally efficient
and takes the least time compared to the best performing hi-
erarchical baselines (e.g. HXE). We ranked performance of
HCL loss as compared to other state-of-the-art losses on all
4 metric across datasets. As per Table 3, HCL has the best
rank in terms of improvement across metrics, slightly above
1 is contributed by slightly lesser improvement in MRR with
sizeable gains in other metrics. We present statistical tests on
this table in the next section.

5.4 Detailed Analysis
We perform an ablation study on each component of the pro-
posed loss and show their interplay. We then show statistical
analyses to further evaluate the performance of the final loss,
HCL. Finally, we show how the hyperparameter of HCL was
selected and its effect on performance.

Ablation Studies
We show the effects of the hierarchical constraints and the
curriculum loss using cross entropy loss as the base function

Methods Hit@1 MRR HierDist HierCons@3 DevHit@1
CE 90.35 92.97 0.285 0.765 0.430

HCL-Hier 90.45 93.27 0.283 0.769 0.322
HCL-CL 90.75 93.41 0.274 0.838 0.416

HCL 91.24 93.66 0.258 0.834 0.353

Table 4: Ablation studies on IMCLEF showing the effect of each
component of our loss function. For HierDist & DevHit@1, lower
value is better.

in Table 4. We show results on test set of IMCELF.
We observe that the hierarchically constrained cross en-

tropy loss, HCL-Hier, improves on the hierarchical metrics
and non-hierarchical metrics. This shows that adding the hier-
archical constraint doesn’t deteriorate typical metrics all the
while making the predictions more consistent with the label
space hierarchy as well as making predictions closer to the
ground truth label in the hierarchical space. We believe that
the improvement in non-hierarchical metrics may be attributed
to the modified ranking due to hierarchical constraint making
the top predictions more likely.

Looking into class-based curriculum loss individually, we
observe that as suggested by theory, carefully selecting the
classes based on their loss (giving more weight to simpler
classes at higher hierarchy levels) improves the hierarchical
evaluation metric, making the predictions more relevant.

Overall, combining the two aspects yields our proposed
loss HCL which shows the best performance. We see that for
all the metrics, HCL gives significant gains both with respect
to baseline loss and individual components. This follows
theory in which we have shown that combining class-based
curriculum loss with hierarchical constraints gives a tighter
bound to 0-1 loss with respect to the hierarchically constrained
loss. Further, as this loss explicitly ensures that loss of a
higher level node is lower than the a lower level, and implicitly
gives more weight to higher level node as they are selected
more, the combined effect makes it more consistent to the
hierarchy. This can be particularly seen from the fact that
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Figure 1: Statistic graph of Bonferroni-Dunn test corresponding to
the results reported in Tables 1 & 2. The red dashed line denotes
the sum of ranking of HCL and corresponding CD. The algorithms
above the line are statistically significantly outperformed by HCL.

each individual component gave good improvements for the
hierarchical metric but the combined loss gave much more
significant gain. HCL loss finds the best trade-off between
maintaining hierarchical metrics HierDist & HierCons while
significantly improving non-hierarchical metrics Hit@1 &
MRR. It is able to improve Hit@1, MRR and even HierDist
much significantly with much lower deviation in Hit@1 metric
compared to base cross-entropy loss when both hierarchical
constraints and curriculum loss are applied together.

Quantitative Analysis
We perform statistical tests to understand the significance of
our results. Based on Tables 1 & 2, the methods are ranked
(summarized in Table 3). We evaluate our method using Fried-
man test and Bonferroni-Dunn’s test.

Based on Friedman test, we get a χ2 value of 12.1 and 12.93
for Hit@1 and HierDist respectively (with p-values 0.017 and
0.011 respectively). Thus, the results of various approaches
vary widely with a confidence value of 95% enabling us to use
difference statistics to compare the approaches.

We use Bonferroni-Dunn’s test to identify the difference
between the methods. The critical difference (CDα) is given

by the formula qα
√

g(g+1)
6N , where qα is the critical value, g is

the number of methods and N is the number of samples (i.e.
data sets in our case). For α = 0.15, we have qα of 2.4324
which leads to CDα of 2.2205. The comparison of methods
with HCL is provided in Figure 1. We conclude that with 85%
confidence, HCL outperforms all baselines on Hit@1 metric
and all methods except Focal Loss on HierDist metric.

Figure 2: Evaluation of varying percentage class-selection threshold
for HCL. Results are shown for HierDist (top) and Hit@1 (bottom).

Hyperparameter Variation
As mentioned in Algorithm 1, HCL uses a threshold which
determines the selection of classes to contribute to the loss
function at a particular iteration. We select the appropriate
value of the threshold based on the percentage of classes se-
lected with the random initialization of the model (i.e. using
the 0th iteration loss values). We analyze the impact of varying
the percentage of class-selection by HCL on its performance.
From Figure 2 we observe that, both significant metrics, Hi-
erDist and Hit@1 change significantly in their performance
based on the percentage of classes selected and hence thresh-
old used for class-selection. HierDist is at its best of 0.258
and Hit@1 at its best of 91.24 at 40% class-selection of the
total 47 classes in IMCLEF. We also note that the drop in the
performance with less than optimal or more than the required
class-selection percentage is smooth and in accordance with
the learning-method of HCL loss as explained in section 4.2.

6 Conclusion
In this paper, we propose a hierarchical class-based curriculum
loss for multi-label classification with theoretical analysis and
provable bounds, making it general and dataset-agnostic. We
propose a class-based curriculum loss to enhance the perfor-
mance of the hierarchically constrained loss, and show signifi-
cant empirical gains on multiple data sets. We observed that
our models improve on both hierarchical and non-hierarchical
metrics, making it widely applicable. We further perform
statistical tests to illustrate the significance of results.

In the future, we would like to relax the hierarchical con-
straints and develop a loss for a general graph-based relation
structure between the labels. Further, we would like to test
the model on other real world data sets that contain relation
between labels. Finally, we would also like to test the model
performance when we introduce noise into the hierarchical
labels of the class taxonomy.

References
[Bengio et al., 2009] Yoshua Bengio, Jérôme Louradour, Ro-

nan Collobert, and Jason Weston. Curriculum learning. In

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2453



Proceedings of the 26th annual international conference
on machine learning, pages 41–48, 2009.

[Bertinetto et al., 2019] Luca Bertinetto, Romain Mueller,
Konstantinos Tertikas, Sina Samangooei, and Nicholas A
Lord. Making better mistakes: Leveraging class hierarchies
with deep networks. arXiv preprint arXiv:1912.09393,
2019.

[Bilal et al., 2017] Alsallakh Bilal, Amin Jourabloo, Mao Ye,
Xiaoming Liu, and Liu Ren. Do convolutional neural net-
works learn class hierarchy? IEEE transactions on visual-
ization and computer graphics, 24(1):152–162, 2017.

[Cerri et al., 2014] Ricardo Cerri, Rodrigo C Barros, and An-
dré CPLF De Carvalho. Hierarchical multi-label classifica-
tion using local neural networks. Journal of Computer and
System Sciences, 80(1):39–56, 2014.

[Chen et al., 2019] Chen Chen, Haobo Wang, Weiwei Liu,
Xingyuan Zhao, Tianlei Hu, and Gang Chen. Two-stage
label embedding via neural factorization machine for multi-
label classification. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pages 3304–3311,
2019.

[Deng et al., 2010] Jia Deng, Alexander C Berg, Kai Li, and
Li Fei-Fei. What does classifying more than 10,000 image
categories tell us? In European conference on computer
vision, pages 71–84. Springer, 2010.

[Dimitrovski et al., 2011] Ivica Dimitrovski, Dragi Kocev,
Suzana Loskovska, and Sašo Džeroski. Hierarchical an-
notation of medical images. Pattern Recognition, 44(10-
11):2436–2449, 2011.

[Frome et al., 2013] Andrea Frome, Greg S Corrado, Jon
Shlens, Samy Bengio, Jeff Dean, Marc’Aurelio Ranzato,
and Tomas Mikolov. Devise: A deep visual-semantic em-
bedding model. In Advances in neural information process-
ing systems, 2013.

[Goodfellow et al., 2016] Ian Goodfellow, Yoshua Bengio,
and Aaron Courville. Deep Learning. MIT Press, 2016.

[He and Chua, 2017] Xiangnan He and Tat-Seng Chua. Neu-
ral factorization machines for sparse predictive analytics.
In Proceedings of the 40th International ACM SIGIR con-
ference on Research and Development in Information Re-
trieval, pages 355–364, 2017.

[Hu et al., 2016] Weihua Hu, Gang Niu, Issei Sato, and
Masashi Sugiyama. Does distributionally robust super-
vised learning give robust classifiers? arXiv preprint
arXiv:1611.02041, 2016.

[Huang and Lin, 2017] Kuan-Hao Huang and Hsuan-Tien
Lin. Cost-sensitive label embedding for multi-label classi-
fication. Machine Learning, 106(9-10):1725–1746, 2017.

[Kumar et al., 2018] Vikas Kumar, Arun K Pujari, Vi-
neet Padmanabhan, Sandeep Kumar Sahu, and
Venkateswara Rao Kagita. Multi-label classifica-
tion using hierarchical embedding. Expert Systems with
Applications, 91:263–269, 2018.

[Lewis et al., 2004] David D Lewis, Yiming Yang, Tony G
Rose, and Fan Li. Rcv1: A new benchmark collection for

text categorization research. Journal of machine learning
research, 5(Apr):361–397, 2004.

[Lin et al., 2018] Tsung-Yi Lin, Priyal Goyal, Ross Girshick,
Kaiming He, and Piotr Dollar. Focal loss for dense ob-
ject detection. IEEE transactions on pattern analysis and
machine intelligence, 2018.

[Lyu and Tsang, 2019] Yueming Lyu and Ivor W Tsang. Cur-
riculum loss: Robust learning and generalization against
label corruption. arXiv preprint arXiv:1905.10045, 2019.

[Masera and Blanzieri, 2018] Luca Masera and Enrico
Blanzieri. Awx: An integrated approach to hierarchical-
multilabel classification. In Joint European Conference on
Machine Learning and Knowledge Discovery in Databases,
pages 322–336. Springer, 2018.

[Matiisen et al., 2019] Tambet Matiisen, Avital Oliver, Taco
Cohen, and John Schulman. Teacher-student curriculum
learning. IEEE transactions on neural networks and learn-
ing systems, 2019.

[Papai et al., 2012] Tivadar Papai, Shalini Ghosh, and
Henry A. Kautz. Combining subjective probabilities and
data in training markov logic networks. In Machine Learn-
ing and Knowledge Discovery in Databases - European
Conference, ECML PKDD, 2012.

[Radev et al., 2002] Dragomir R Radev, Hong Qi, Harris Wu,
and Weiguo Fan. Evaluating web-based question answering
systems. In LREC, 2002.

[Rousu et al., 2006] Juho Rousu, Craig Saunders, Sandor
Szedmak, and John Shawe-Taylor. Kernel-based learning
of hierarchical multilabel classification models. Journal of
Machine Learning Research, 7(Jul):1601–1626, 2006.

[Smith, 2017] Leslie N Smith. Cyclical learning rates for
training neural networks. In 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 464–
472. IEEE, 2017.

[Van Horn et al., 2018] Grant Van Horn, Oisin Mac Aodha,
Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig
Adam, Pietro Perona, and Serge Belongie. The inaturalist
species classification and detection dataset. In Proceedings
of the IEEE conference on computer vision and pattern
recognition, pages 8769–8778, 2018.

[Verma et al., 2012] Nakul Verma, Dhruv Mahajan, Sun-
dararajan Sellamanickam, and Vinod Nair. Learning hi-
erarchical similarity metrics. In 2012 IEEE conference on
computer vision and pattern recognition, pages 2280–2287.
IEEE, 2012.

[Wehrmann et al., 2018] Jonatas Wehrmann, Ricardo Cerri,
and Rodrigo Barros. Hierarchical multi-label classifica-
tion networks. In International Conference on Machine
Learning, pages 5075–5084, 2018.

[Wu et al., 2016] Hui Wu, Michele Merler, Rosario Uceda-
Sosa, and John R Smith. Learning to make better mistakes:
Semantics-aware visual food recognition. In Proceedings
of the 24th ACM international conference on Multimedia,
pages 172–176, 2016.

Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI-21)

2454


	Introduction
	Related Work
	Preliminaries
	Hierarchical Class-Based Curriculum Loss
	Incorporating Hierarchical Constraints
	Hierarchical Curriculum Loss
	Algorithm

	Experiments
	Experimental Setup
	Metrics
	Overall Results
	Detailed Analysis
	Ablation Studies
	Quantitative Analysis
	Hyperparameter Variation


	Conclusion

