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Abstract
We explore the use of policy approximations to re-
duce the computational cost of learning Nash equi-
libria in zero-sum stochastic games. We propose
a new Q-learning type algorithm that uses a se-
quence of entropy-regularized soft policies to ap-
proximate the Nash policy during the Q-function
updates. We prove that under certain conditions, by
updating the entropy regularization, the algorithm
converges to a Nash equilibrium. We also demon-
strate the proposed algorithm’s ability to transfer
previous training experiences, enabling the agents
to adapt quickly to new environments. We pro-
vide a dynamic hyper-parameter schedule scheme
to further expedite convergence. Empirical results
applied to a number of stochastic games verify that
the proposed algorithm converges to a Nash equi-
librium, while exhibiting a major speed-up over ex-
isting algorithms.

1 Introduction
Stochastic Games (SG) [Owen, 1982] is a widely adopted
framework to extend reinforcement learning [Sutton and
Barto, 1998] to multiple-agent scenarios. The resulting multi-
agent reinforcement learning (MARL) framework assumes
a group of autonomous agents that choose actions inde-
pendently and interact with each other to reach an equilib-
rium [Busoniu et al., 2008]. When all agents are rational, the
most natural solution concept is the one of a Nash Equilib-
rium (NE) [Nash, 1951]. The difficulty of extending single-
agent RL methods to learn the NE stems from the fact that the
interactions among agents result in a non-stationary environ-
ment and thus make learning computationally expensive and
difficult to stabilize [Matignon et al., 2012].

Several approaches have been proposed to learn policies in
multi-agent scenarios. One set of algorithms learn directly
a NE using computationally demanding operators, such as
Minimax-Q [Littman, 1994] and Nash-Q [Hu and Wellman,
2003]. Agents adopting these algorithms follow more ratio-
nal policies but in doing so, they tend to take more time to
learn these policies. For example, Minimax-Q needs to solve

*Equal contribution.

Figure 1: A schematic of the SNQ2L algorithm.

a linear program to compute the Nash equilibrium at each Q-
function update. Even with the help of neural networks, the
number of linear programs solved during the learning process
still grows with the cardinality of the state and action spaces,
which makes Minimax-Q infeasible for large games.

Other popular approaches that extend single-agent RL
methods [Bertsekas and Tsitsiklis, 1996] to multi-agent sce-
narios include: simplifying the interactions [Foerster et al.,
2018b; Bowling and Veloso, 2001; Littman, 2001], or intro-
ducing extra mechanisms in the game [Lowe et al., 2017;
Li et al., 2019; Foerster et al., 2018a]. Such algorithms allow
the agents to compute “fast” but less rational policies, but are
unlikely to converge to a rational equilibrium, in general.

The recent works on entropy-regularized soft Q-learning
[Fox et al., 2016] provide an efficient way to approximate
Nash policies. Specifically, the two-agent Soft-Q algorithm
[Grau-Moya et al., 2018] avoids the use of the expensive lin-
ear optimizations to update the Q-function. The two agents,
instead, compute closed-form soft-optimal policies under an
entropy regularization that explores the policy space close to
the given priors. Due to fixed regularization, however, the
generated policies of the two-agent Soft-Q may be far from
a NE. Consequently, there is a need for algorithms that learn
the NE, yet in a computationally efficient manner, that can be
used in a wide variety of multi-agent situations.

To achieve convergence to NE while maintaining com-
putational efficiency, we propose a novel adaptive entropy-
regularized Q-learning algorithm for zero-sum games, re-
ferred to as Soft Nash Q2-learning (SNQ2L) 1. The proposed

1SNQ2 refers to the non-learning version of the algorithm, which has
access to the game dynamics.
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algorithm learns two different Q-values: a standard Q-value
and an entropy-regularized soft Q-value. The two values are
used asynchronously in a “feedback” learning mechanism:
the soft policies act as an efficient approximation of the Nash
policies to update the standard Q-value; the Nash policies
from the standard Q-function are computed periodically to
update the priors that guide the soft policies (see Figure 1).
Consequently, SNQ2L reduces the frequency of using the ex-
pensive Minimax operator, and thus expedites convergence
to the NE. Since the balance between the prior update fre-
quency and computational efficiency plays a critical role in
the performance of the SNQ2L algorithm, we also introduce
a dynamic schedule scheme that adaptively changes the prior
update frequency. The proposed algorithm has the potential
of transferring previous experiences to new environments by
incorporating a prior to “warm start” the learning process.

Contributions. The contributions of this paper can be sum-
marized as: (1) we propose a new algorithm for multi-agent
games and prove the convergence of the proposed algorithm
to a NE; (2) we demonstrate a major speed-up in convergence
to a NE over existing algorithms; (3) we provide a dynamic
schedule scheme of hyper-parameters to further expedite con-
vergence; and (4) we demonstrate the ability of the algorithm
to transfer previous experience to a new environment.

2 Background
Two-agent Zero-sum Stochastic Games. In two-agent
stochastic games, two agents, henceforth referred to as the
Player (pl) and the Opponent (op), respectively, interact in
the same stochastic environment. In this paper we are in-
terested, in particular, in zero-sum games where one of the
agent’s gain is the other agent’s loss [Filar and Vrieze, 2012].
A zero-sum stochastic game G is formalized by the tuple
G = 〈S,Apl,Aop, T ,R, γ〉, where S denotes a finite state
space, andApl andAop are the finite action spaces. To choose
actions, the Player uses a (Markovian) policy πpl : S×Apl →
[0, 1] and the Opponent uses πop : S×Aop → [0, 1], which to-
gether produce the next state according to the state transition
function T : S × S ×Apl ×Aop → [0, 1]. As a consequence
of simultaneously taking these actions, the agents receive a
reward R : S × Apl × Aop → [Rmin, Rmax]. The constant
γ ∈ (0, 1) is the discount factor. For zero-sum games, the
Player seeks to maximize the total expected reward, whereas
the Opponent seeks to minimize it. We denote the value
at each state induced by the policy pair π = (πpl, πop) as
Vπ(s) = Eπ

[∑∞
t=0 γ

tR(st, a
pl
t , a

op
t )|s0 = s

]
. We denote by

Π the set of all admissible policy pairs.

Nash Equilibrium. Operating at a Nash equilibrium, no
agent can gain by unilaterally deviating from her policy. For-
mally, at a NE (πpl?, πop?), at each state s ∈ S satisfies

Vπ
pl,πop?

(s) ≤ Vπ
pl?,πop?

(s) ≤ Vπ
pl?,πop

(s),

for all admissible policies πpl, πop. Even though multi-
ple Nash equilibria could exist in a zero-sum SG, the
minimax (optimal) value at a NE is unique and can be
computed [Von Neumann et al., 2007] via V∗(s) =

maxπpl minπop Vπpl,πop
(s) = minπop maxπpl Vπ

pl,πop
(s).

3 Sequential Policy Approximations
The SNQ2L algorithm uses sequential policy approximations
to relieve the computational burden seen in the Minimax-Q
algorithm. In this section, we introduce the baseline SNQ2
algorithm in a competitive MDP (cMDP) setting. That is, we
assume the game G is known. Later on, we will extend the
algorithm for RL problems where G is only partially known.
The proposed algorithm uses entropy-regularized soft poli-
cies to approximate the Nash equilibrium at each iteration.
We prove the convergence of such algorithm to a NE in the
Supplementary material. In the process, we define four oper-
ators that are useful in presenting the proposed algorithm.

3.1 Shapley’s Method
Shapley’s method [Filar and Vrieze, 2012] is an iterative al-
gorithm commonly used to solve the Nash equilibrium of a
zero-sum stochastic game 2. Each iteration of the algorithm
consists of two operations.

Step 1. Compute the Nash policies at each state given the
Q-function estimate at the current iteration t, by solving a
linear program [Filar and Vrieze, 2012]. For example, the
maximizing Player has the following optimization problem,

max v

subject to v1T − πpl(s)TQt(s) ≤ 0

1Tπpl(s) = 1, πpl(s) ≥ 0,

(1)

where πpl(s) is the policy in vector form and Qt(s) is the
Q-matrix at state s. The Nash policy of the Opponent can be
solved in a similar manner. We denote the solutions to these
optimization problems as πpl

Nash,t(s) and πop
Nash,t(s), respec-

tively. Performing the optimizations at all states s one may
define the overall operation via the operator ΓNash : Q→ Π as

(πpl
Nash,t, π

op
Nash,t) = ΓNash Qt. (2)

Step 2. Given a policy pair π, update the Q-function via

Qt+1(s, apl, aop) = R(s, apl, aop) (3)

+ γ
∑
s′∈S
T (s′|s, apl, aop) πpl(s′)TQt(s

′)πop(s′).

Similarly, we define the standard Q-function update operator
as Γ1 : Q × Π → Q. The Shapley’s Method utilizes the
following operator to iterate on the Q-functions.

B(Q) = Γ1(Q,ΓNashQ). (4)

Theorem 1 [Filar and Vrieze, 2012] is the foundation for
the convergence of both Shapley’s method and Minimax-Q.

Theorem 1. The operator B is a sup-norm contraction map-
ping with a contraction factor of γ. The fixed point of B is the
Q-function corresponding to a Nash equilibrium.

2Minimax-Q is an asynchronous learning version of Shapley’s
method.
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3.2 Entropy-Regularized Policy Approximation
Entropy-regularized policy approximation [Fox et al., 2016]
was originally introduced to reduce the maximization bias
commonly seen in learning algorithms. This idea was later
extended to two-agent scenarios and is referred to as the two-
agent Soft-Q algorithm [Grau-Moya et al., 2018]. Two-agent
Soft-Q introduces two fixed entropy-regulation terms to the
reward structure and thus restricts the policy exploration to
a neighborhood of the given priors. Given a policy pair
(πpl, πop), the soft-value function is defined as

Vπ
pl,πop

KL (s) = Eπ
pl,πop

s

[ ∞∑
t=0

γt
(
R(st, a

pl
t , a

op
t )

− 1

βpl
log

πpl(apl
t |st)

ρpl(apl
t |st)

− 1

βop
log

πop(aop
t |st)

ρop(aop
t |st)

)]
,

(5)

where βpl > 0 and βop < 0 are inverse temperatures, and ρpl

and ρop are priors for the Player and the Opponent.
The objective of the two-agent Soft-Q algorithm is to find

the optimal solution to the max-min optimization problem
maxπpl minπop VKL(s;πpl, πop). It has been shown in [Grau-
Moya et al., 2018] that the optimal solution can be found
through an iterative algorithm.

Step 1. With the current soft Q-function QKL,t, construct
the soft optimal policy for the Player through the closed-form
solution

πpl
KL,t(a

pl|s) =
1

Zpl(s)
ρpl(apl|s) exp

[
βplQpl

KL,t(s, a
pl)
]
, (6)

where Zpl(s) is the normalization factor and Qpl
KL,t is a

marginalization through a log-sum-exp function

Qpl
KL,t(s, a

pl) (7)

=
1

βop
log
∑
aop

ρop(aop|s)exp
[
βopQKL,t(s, a

pl, aop)
]
.

The soft-optimal policy of the Opponent can be obtained in a
similar manner. One can then define the soft optimal policy
generating operator ΓβKL : Q×Π→ Π as

(πpl
Nash,t, π

op
Nash,t) = ΓβKL(QKL,t, ρ). (8)

Step 2. With the marginalization in (7), compute the opti-
mal value at state s via

VKL,t(s) =
1

βpl
log
∑
apl

ρpl(apl|s) exp
[
βplQpl

KL,t(s, a
pl)
]

(9)

One can then update the Q-function through

QKL,t+1(s, apl, aop) (10)

= R(s, apl, aop) + γ
∑
s′∈S
T (s′|s, apl, aop)VKL,t(s

′).

We denote the soft update operator Γβ2 : Q×Π→ Q as

QKL,t+1 = ΓβKL(QKL,t, ρ). (11)

Note that, due to the fixed regularization, the two-agent Soft-
Q algorithm does not converge to a NE in general.

Algorithm 1: Baseline SNQ2 in the cMDP Settings

1 Inputs: Game tuple G = 〈S,Apl,Aop, T ,R, γ〉;
2 SetQ(s, apl, aop) = QKL(s, apl, aop) = 0;
3 Set βpl and βop to some large values;
4 whileQ andQKL not converged do
5 Update Nash policies: πNash ← ΓNash(Q);
6 Update soft optimal policies: πKL ← ΓβKL(QKL, πNash);
7 Update Q-function: Q ← Γ1(Q, πKL);
8 Update soft Q-function: QKL ← Γβ2 (QKL, πNash);
9 Q ← Q ,QKL ← QKL ;

10 Reduce inverse temperature β
11 end
12 return πNash andQ(s, apl, aop).

3.3 Sequential Policy Approximation Algorithm
In Algorithm 1, we present the baseline SNQ2 in the cMDP
settings, where the game G is known. Different from the two-
agent Soft-Q with a fixed entropy regularization, the proposed
algorithm decreases β over time. As a result, a sequence of
policy approximations of different levels of regularization is
applied, and thus enables the algorithm to converge to a NE.

Within the while loop, the algorithm first computes the
Nash policies under the current estimate of the Q-function,
and it uses the Nash policies as the priors to generate the
soft policies. The soft policies are then used to update the
Q-functions.

To prove the convergence of the baseline SNQ2 algorithm,
we define the operations within the while loop in Algorithm 1
as Γβ : Q̄ → Q̄, such that

ΓβQ̄ = Γβ
[
Q
QKL

]
=

[
Γ1(Q,ΓβKL(QKL,ΓNashQ))

Γβ2 (QKL,ΓNashQ)

]
.

The baseline SNQ2 algorithm differs from the standard iter-
ative algorithms, in the sense that the operator Γβ changes at
every iteration, as the inverse temperature pair β = (βpl, βop)
decreases to zero. As a result, we first present our theorem re-
garding the convergence of sequentially applying a family of
contraction mappings. The proof of Theorem 2 can be found
in Appendix B.

Theorem 2. Let (X , ρ) be a complete metric space, let
fn : X → X be a family of contraction mappings, such
that, for all n = 1, 2, . . . there exists dn ∈ (0, 1), such that
ρ(fnx, fny) ≤ dn ρ(x, y) for all x, y ∈ X . Assume that
limn→∞ dn = d ∈ (0, 1). Let x ∈ X , and let x(n) =
fn · · · f1x be the result of sequentially applying the opera-
tors f1, . . . , fn to x. If the sequence of operators {fn}∞n=1
converges pointwise to f , then f is also a ρ-contraction map-
ping with contraction factor d. Furthermore, if x? is the fixed
point of f , then, for every x ∈ X , limn→∞ x(n) = x?.

We now present the convergence theorem of Algorithm 1.

Theorem 3. Under certain regularity assumptions, by se-
quentially applying Γβ and gradually decreasing β to zero,
Algorithm 1 converges to a Nash equilibrium.

Proof. We provide a sketch of the proof here. The com-
plete proof can be found at the supplementary material in
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the Appendix. We first show that under certain regularity as-
sumptions, the operator Γβ is a family of contraction map-
ping. We then show that as β approaches zero, the operator
Γβ converges pointwise to an operator, which has the con-
catenated Nash Q-function [Q?Nash,Q?Nash]

T as its unique fixed
point. Then, by Theorem 2, we conclude that Algorithm 1
converges to a Nash equilibrium by sequentially applying Γβ

to some initial Q-function and decreasing β to zero.

This baseline SNQ2 serves as a demonstration of the se-
quential policy approximation idea behind the SNQ2 algo-
rithm. It does not relieve the computational burden of com-
puting Nash policies, as we update the Nash policies at every
iteration in the while loop. Due to the simplicity of the base-
line algorithm, we can demonstrate its mechanism within the
space limit. The standard SNQ2, on the other hand, only ap-
plies ΓNash periodically. We present the standard SNQ2 algo-
rithm and its convergence proof in the appendix.

4 Two-Agent Soft Nash Q2-Learning
In this section, we present the two-agent Soft Nash Q2-
Learning algorithm (SNQ2L). This algorithm is an (asyn-
chronous) learning version of the standard SNQ2 in Algo-
rithm 1. Specifically, this algorithm does not have access to
the dynamics of the game and uses stochastic approximations
to estimate the expectation operator in (5). This SNQ2L al-
gorithm only updates the Nash policies periodically accord-
ing to a dynamic schedule, and thus reduces the computations
required to find the Nash equilibrium.

Learning Rule for QKL.

QKL,t+1(st, a
pl
t , a

op
t )← (1− ηt)QKL,t(st, a

pl
t , a

op
t ) (12)

+ ηt

[
R(st, a

pl
t , a

op
t ) + γVKL,t(st+1)

]
.

Here, t is the learning step, and VKL,t(st+1) is computed as
in (9) using the current QKL,t estimate. The priors used in (9)
are updated periodically using the Nash policies as indicated
by the red arrow in Figure 1.

Learning Rule for Q.

Qt+1(st, a
pl
t , a

op
t )← (1− αt)Qt(st, apl

t , a
op
t ) (13)

+ αt
[
R(st, a

pl
t , a

op
t ) + γVt(st+1)

]
.

To compute the estimated optimal value Vt(st+1), SNQ2L
uses either soft policies or Nash policies. We summarize
SNQ2L with dynamic schedule in Algorithm 2.

4.1 Schedule of the Hyper-parameters M and β
As presented in Algorithm 2, the trade-off between compu-
tational efficiency and approximation accuracy is embedded
in the prior update frequency ∆M and the Nash update fre-
quency T . Intuitively, when the new Nash priors are close to
the old ones, the algorithm is close to convergence. In this
situation, the prior update frequency should be decreased (in-
crease ∆M ) and the algorithm should trust and exploit the
priors (decrease β).

The default number of episodes between two Nash prior
policy updates ∆M0 and the default decay rate of the inverse

Algorithm 2: SNQ2-Learning Algorithm

1 Inputs: Priors ρ, Learning rates α and η; initial prior update
episode M = ∆M0; Nash update frequency T ;

2 SetQ(s, apl, aop) = QKL(s, apl, aop) = 0;
3 Set βpl and βop to some large values;
4 whileQ not converged do
5 while episode i not end do
6 Compute πKL(st)←

[
ΓβKL(QKL, ρ)

]
(st);

7 Collect transition (st, a
pl
t , a

op
t , rt, st+1) where

apl
t ∼ πpl

KL(st), aop
t ∼ πop

KL(st);
8 if t mod T == 0 then
9 Compute V(st+1) =

maxπpl minaop
∑
apl Q(st+1, a

pl, aop)πpl(apl|st+1

)
;

10 else
11 Compute

V(st+1) = πpl
KL(st+1)T Q(st+1) πop

KL(st+1) ;
12 end
13 UpdateQ(st, a

pl
t , a

op
t ) with V(st+1) via (13);

14 UpdateQKL(st, a
pl
t , a

op
t ) via (12);

15 end
16 if i == M then
17 Compute πNash ← ΓNashQt;
18 Update priors ρnew ← πNash;
19 Update schedule as in Algorithm 3:
20 ∆M,βnew = DS

(
ρnew, ρ, β,∆M,Q

)
;

21 Update next prior update schedule M += ∆M ;
22 Update priors ρ← ρnew, β ← βnew;
23 Decrease learning rates α and η;
24 end
25 end
26 returnQ(s, apl, aop).

temperature λ ∈ (0, 1) are given initially as

∆M0 =
Nstates ×Naction pairs

α0 × Tmax
, λ =

(
βend

β0

)1/Nupdates

,

where α0 is the initial learning rate and Tmax is the maximum
length of a learning episode; β0 and βend are the initial and
estimated final magnitude for both βop and βpl, and Nupdates is
the estimated number of prior updates. This value of ∆M0

allows the algorithm to properly explore the state-action pairs
so that the first prior update is performed with an informed Q-
function. In our numerical experiments we found that β0 =
20, βend = 0.1 and Nupdates = 10 are a good set of values.

Algorithm 3 summarizes the dynamic schedule scheme,
where the parameter σ ∈ (0, 1) is a decrease factor and the
RelativeDifference captures the performance difference be-
tween old and new priors. We demonstrate the performance
boost due to dynamic schedule in Section 5.5.

4.2 Warm-Starting
One can warm-start the proposed SNQ2L algorithm by first
initializing the priors ρpl and ρop based on some previously
learnt policies or expert demonstrations, and then also post-
poning the first prior update to exploit these priors. Using a
prior policy instead of the value to warm-start the algorithm
has two major advantages: first, human demonstrations can
be converted into prior policies in a more streamlined manner
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Algorithm 3: Dynamic Schedule for M and β

1 Inputs: old and new priors ρ, ρnew; old prior update length
∆M ; old inverse temperatures β; currentQ;

2 Compute Vold(s) = [ρpl(s)]TQ(s)ρop(s) and
Vnew(s) = ρpl

new(s)TQ(s)ρop
new(s), for all s;

3 Compute
RelativeDifference(s) = |Vnew(s)− Vold(s)|

/
|Vnew(s)|;

4 Count the number of states n, where
RelativeDifference(s) < δ;

5 if n/|S| ≥ Threshold then
6 ∆M = min{∆M/σ,∆Mmax},

βnew = max{λ βold, βmin};
7 else
8 ∆M = max{σ∆M,∆Mmin}, βnew = βold;
9 end

10 return ∆M , βnew.

than into value information; second, prior policies provide
more consistent guidance than the values, as the priors are
not updated till the first prior update. We demonstrate the ef-
fectiveness of transferring previous experience in Section 5.4.

5 Numerical Experiments
To evaluate the performance of the proposed algorithm, we
tested and compared SNQ2L with four existing algorithms
(Minimax-Q [Littman, 1994], Two-agent Soft-Q [Grau-Moya
et al., 2018], WoLF-PHC [Bowling and Veloso, 2001],
Single-Q [Tan, 1993]) for three zero-sum game environ-
ments: a Soccer game as in [Littman, 1994], a two-agent
Pursuit-Evasion Game (PEG) [Guan et al., 2020] and a se-
quential Rock-Paper-Scissor game (sRPS).

5.1 Evaluation Criteria
Two metrics were used to evaluate the performance of differ-
ent algorithms: the number of states achieving a NE and the
running time3. For each game, we computed four different
values and compared them to determine whether a state has
achieved a NE: (a) the ground truth Nash value VNash solved
exactly via Shapley’s method; (b) the learnt value VL; (c) the
one-sided MDP value Vpl

L computed by fixing the Opponent
to her learnt policy and letting the Player maximize; (d) the
one-sided MDP value Vop

L . We assume that the learnt policies
achieve a NE at state s, if the values at state s satisfy

max

{∣∣∣VNash(s)−VL(s)

∣∣∣∣∣VNash(s)
∣∣ ,

∣∣∣VNash(s)−V
pl
L (s)

∣∣∣∣∣VNash(s)
∣∣ ,

∣∣∣VNash(s)−V
op
L (s)

∣∣∣∣∣VNash(s)
∣∣

}
< ε.

Notice that the evaluation criterion above is stricter than
the case of only collecting empirical win rates of different
agents competing in the environment as in [Littman, 1994;
Lagoudakis and Parr, 2002], since any deviation from the NE
could be exploited by either agent in our criteria.

5.2 The Game Environments
Pursuit-Evasion. The pursuit-evasion game (PEG) is
played on three grids of different sizes (4×4, 6×6 and 8×8).

3Implemented in a Python environment with AMD Ryzen 1920x.
Matrix games at each state are solved via Scipy’s linprog.

The 8×8 grid is shown in Figure 2. In a PEG, two agents
simultaneously choose one of four directions on each turn. In
the default setting, an agent has a 60% success rate of mov-
ing to its intended cell and a 40% chance of landing in the
cell to the left of the intended direction. In such setting, a
deterministic policy cannot be a Nash policy.

Soccer. The soccer game [Littman, 1994] is played on a
4×5 grid as in Figure 2. Two agents, A and B, can choose
one of five actions on each turn: N, S, E, W, and Stand, and
the two actions selected are executed in random order. The
circle represents the ball. When the agent with the ball steps
into the goal (left for A and right for B), that agent scores and
the game restarts at a random state. When an agent executes
an action that takes it to the cell occupied by the other agent,
possession of the ball goes to the stationary agent. Littman
argued that the Nash policies must be stochastic.

Sequential Rock-Paper-Scissor. In a sequential Rock-
Paper-Scissor game (sRPS), two agents play the RPS game
repeatedly. The sRPS game ends when one of the agents wins
four consecutive RPS games. The Nash policies of sPRS at
each state are uniform for both agents.

5.3 Comparison to Existing Algorithms
We evaluate SNQ2L on the game environments in Section 5.2
using the evaluation criteria in Section 5.1. The SNQ2L al-
gorithm can be initialized with two types of priors, uniform4

(SNQ2L-U) and previous experience (SNQ2L-PE). Previous
experience for PEGs and Soccer is learnt in a training session
of the same game but with a different dynamics. For sRPS,
the previous experience is a perturbed uniform strategy. The
algorithm also has the option of a fixed schedule (SNQ2L-
FS) and a dynamic schedule (SNQ2L-DS). Unless otherwise
specified, SNQ2L uses a dynamic schedule. SNQ2L was
compared with four popular existing algorithms: Minimax-Q,
two-agent Soft-Q, WoLF-PHC and Single-Q. We fine-tuned
these existing algorithms to get the best performance so as to
demonstrate their actual capabilities. We compare the con-
vergence performance of the algorithms in Figure 3.

The sRPS game with a uniform Nash equilibrium shows
that SNQ2L is capable of converging to a fully mixed strat-
egy. In this game, two-agent Soft-Q learning fails to con-
verge to the uniform NE, as its reward structure is regularized
as in (5); Single-Q learning tries to learn a pure policy but
does not converge; WoLF-PHC converges to NE at two ter-
minal states but with large value deviation, which propagates

Figure 2: The grid of a 8 × 8 pursuit-evasion game (left), and the
grid of the soccer game (right).

4For sRPS, the default prior is randomly generated, as uniform poli-
cies are the Nash policy for this game.
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(a) Performance at convergence (b) Computation time (c) Performance at cutoff

Figure 3: All results are averaged over ten runs. The computation time in (b) is normalized by that of Minimax-Q. We cut off the computation
at 600k episodes for 8×8 PEG, due to the large state space. In most of the experiments, SNQ2L achieves a slightly better convergence to NE
than Minimax-Q, while exhibiting an significant reduction in computation time. Two-agent Soft-Q, Single-Q and WoLF-PHC are fast but fail
to converge to NE in all five games hence are not shown in (b). Note that two-agent Soft-Q fails completely in sRPS.

(a) Episode-wise (b) Time-wise

Figure 4: Convergence trends of different algorithms in 4×4 PEG.

to other states and results in poor policies.
We then examine the 4×4 PEG game. Despite the rela-

tively small state space, the stochastic transition at all non-
terminal states requires extensive exploration of the environ-
ment. We plot the convergence trends over 300k episodes and
over 12k seconds for Minimax-Q and SNQ2L in Figure 4.

The time-wise convergence trends in Figure 4 demonstrate
the expedited convergence of SNQ2L in terms of computa-
tion time. The episode-wise trend plot shows that SNQ2L
maintains the same level of convergence to NE as Minimax-
Q, albeit with significantly reduced computation time. This
shows that our adaptive entropy-regularized policy approxi-
mation approach is both accurate and efficient.

5.4 Effectiveness of Warm-Starting
In PEGs, the agents learn their previous experience on the
same grid but with a 75% success rate. To reduce overfitting
to the previous environment, the prior policy fed to the agent
for a new training session is the average of the previously
learnt policy and a uniform policy. As seen in Figure 4(b),
previous experience does not shorten the time till conver-
gence but instead significantly reduces the time to reach a
reasonable performance. We plot the cutoff time performance
of the 4×4 and 8×8 PEGs in Figure 3(c). In the 4×4 example
the time to reach over 90% Nash convergence is halved from
1.2k seconds with uniform prior down to 600 seconds with
previous experience. In the 8×8 example the time to 80%
convergence was halved from 7.2k seconds to 3.6k seconds.

One also observes from Figure 4(a) that the policies gener-
ated by SNQ2L with previous experience converge, episode-
wise, slightly faster than Minimax-Q. This “warm-start” fea-
ture has appealing real-world applications, where the number
of episodes interacting with the environment is the main con-
straint instead of computation time. In this case, one can first
train prior policies using a simulator and use these as priors

(a) 6×6 PEG (b) Soccer

Figure 5: Episode-wise convergence trends in 6×6 PEG and Soccer.

to the agents. With SNQ2L one can train the agents to reach
a reasonable level of performance in fewer episodes, while
maintaining a relatively low computation overhead.

5.5 Effectiveness of Dynamic Schedule
In Figure 4(a), we use a fixed schedule (FS) with constant
prior update intervals and we compare with the dynamic
schedule (DS). The latter demonstrates a faster episode-wise
convergence by reducing the number of episodes in which
SNQ2L exploits a bad initial prior at the beginning of the
learning. As the initial learning rate is large, a Q-value based
on a bad prior could be difficult to correct later on. When the
algorithm is close to convergence, DS reduces the prior up-
date frequency and thus reduces performance oscillations, as
shown in Figure 4. In Figure 5, the FS is fine-tuned through
trial and error, and the DS is given a sub-optimal initial sched-
ule. DS recovers from the given sub-optimal schedule and is
still capable of achieving similar, or even better, performance
compared to the hand-tuned FS.

6 Conclusions and Future Work
We have proposed a novel algorithm for solving zero-sum
games where the agents use entropy-regularized policies to
approximate the Nash policies and thus reduce computation
time till convergence. We proved that under certain con-
ditions, the proposed algorithm converges to a Nash equi-
librium. We conducted numerical experiments on multiple
games of different sizes and levels of stochasticity. The sim-
ulation results demonstrated that the algorithm significantly
reduces computation time when compared to existing algo-
rithms. We also demonstrated the effectiveness of warm-
starting in a new environment using previous experience. One
interesting direction of future work is to extend the current al-
gorithm to general-sum games.
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