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Abstract
Network pruning is a widely used technique to re-
duce computation cost and model size for deep
neural networks. However, the typical three-stage
pipeline, i.e., training, pruning and retraining (fine-
tuning) significantly increases the overall training
trails. In this paper, we develop a systematic
weight-pruning optimization approach based on
Surrogate Lagrangian relaxation (SLR), which is
tailored to overcome difficulties caused by the dis-
crete nature of the weight-pruning problem while
ensuring fast convergence.
We further accelerate the convergence of the SLR
by using quadratic penalties. Model parameters ob-
tained by SLR during the training phase are much
closer to their optimal values as compared to those
obtained by other state-of-the-art methods. We
evaluate the proposed method on image classifica-
tion tasks using CIFAR-10 and ImageNet, as well
as object detection tasks using COCO 2014 and
Ultra-Fast-Lane-Detection using TuSimple lane de-
tection dataset. Experimental results demonstrate
that our SLR-based weight-pruning optimization
approach achieves higher compression rate than
state-of-the-arts under the same accuracy require-
ment. It also achieves a high model accuracy even
at the hard-pruning stage without retraining (re-
duces the traditional three-stage pruning to two-
stage). Given a limited budget of retraining epochs,
our approach quickly recovers the model accuracy.

1 Introduction
Deep neural network (DNN)-based statistical models are in-
creasingly taxing of computational and storage resources,
with costs proportional to the model size (i.e. the number
of parameters in a model). This concern is especially press-
ing for embedded or IoT devices [Krizhevsky et al., 2012;
Simonyan and Zisserman, 2014]. By reducing model size,
one reduces both storage costs and computation costs when
evaluating a model. Various techniques exist for reducing

∗These authors contributed equally.

model size while maintaining performance of the model,
e.g. weight pruning, sparsity regularization, quantization,
and clustering. These techniques are collectively known as
model compression [Dai et al., 2017; Yang et al., 2016;
Molchanov et al., 2017; Guo et al., 2016; Tung et al., 2017;
Luo et al., 2017; Ding et al., 2017; Park et al., 2017;
Frankle and Carbin, 2018; He et al., 2018; Liu et al., 2019].

These works leverage the observation that training a com-
pact model from scratch is more difficult and less performant
than retraining a pruned model [Frankle and Carbin, 2018;
Liu et al., 2019]. Therefore, a typical three-stage pipeline,
i.e., training (large model), pruning and retraining (also called
“fine-tuning”) is required. The pruning process is to set the
redundant weights to zero and keep the important weights to
best preserve the accuracy. The retraining process is neces-
sary since the model accuracy dramatically drops after hard-
pruning. However, this three-stage weight pruning technique
significantly increases the overall training cost. For example,
although the state-of-the-art weight pruning methods achieve
very high compression rate while maintaining the prediction
accuracy on many DNN architectures, the retraining process
takes a longer time, e.g., 80 epochs for ResNet-18 on Im-
ageNet, which is 70% of the original training epochs using
Alternate Direction Method of Multipliers (ADMM) [Zhang
et al., 2018; Ren et al., 2019].

Given the pros and cons of current weight pruning-method,
this paper aims to answer the following questions: Is there an
optimization method that can achieve a high model accu-
racy even at the hard-pruning stage and can reduce re-
training trails significantly? Given a limited budget of re-
training epochs, is there an optimization method that can
quickly recover the model accuracy (much faster than the
state-of-the-art methods)?

The major obstacle when answering these questions is the
discrete nature of the model compression problems caused by
“cardinality” constraints, which ensure that a certain propor-
tion of weights is pruned.

In this paper, to address this difficulty, we develop a
weight-pruning optimization approach based on recent Surro-
gate Lagrangian relaxation (SLR) [Bragin et al., 2015], which
overcomes all major convergence difficulties of standard La-
grangian relaxation. Within the SLR approach, Lagrangian
multipliers approach their optimal values much faster as com-
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pared to those within other methods (e.g., ADMM).
We summarize our contributions/findings as:

• Tailoring the SLR-based approach to overcome difficul-
ties caused by the discrete nature of the weight-pruning
problem while ensuring fast convergence.

• Further acceleration of the SLR convergence by using
quadratic penalties. The method possesses nice conver-
gence properties inherited from fast accelerated reduc-
tion of constraint violation due to quadratic penalties and
from the guaranteed convergence thereby leading to un-
paralleled performance as compared to other methods.
Therefore, model parameters obtained by SLR are much
closer to their optimal values as compared to those ob-
tained by other state-of-the-art methods.

• Convergence proof of the SLR method for weight prun-
ing problems. Existing coordination-based weight prun-
ing methods do not converge when solving non-convex
problems. Other coordination methods (e.g., ADMM)
are not designed to handle discrete variables and other
types of non-convexities.

• The achievement of high model accuracy even at the
hard-pruning stage through our SLR-based weight-
pruning optimization approach; given a limited budget
of retraining epochs, the new method quickly recovers
the model accuracy.

2 Related Works on Weight Pruning
Since lots of researchers have investigated that some portion
of weights in neural networks are redundant, weight prun-
ing is proposed to remove these less important coefficient
values and it achieves model compression with similar per-
formance compared to uncompressed one. Structured and
non-structured (irregular) are two mainstream weight prun-
ing methods.

In this work, we focus on irregular pruning which can
achieve much higher accuracy than structured pruning [Wen
et al., 2016] due to its flexibility in selecting weights.

Early work [Han et al., 2015] proposed an iterative and
static magnitude-based weight pruning to explore the redun-
dancy. Later, the compression rate has been further improved
by integrating the ADMM [Boyd et al., 2011], an optimiza-
tion algorithm that breaks optimization problems into smaller
subproblems, where dynamic penalty is applied on all tar-
geted weights each of which is then solved iteratively and
more easily [Zhang et al., 2018; Niu et al., 2020]. [Louizos
et al., 2018] proposed a framework for L0 norm regular-
ization for neural networks, which aim to prune the net-
work during training by choosing weights setting them to ex-
actly zero. Lottery ticket hypothesis was proposed by [Fran-
kle and Carbin, 2018], which observes that a subnetwork
of randomly-initialized network can replace the original net-
work with the same performance.

3 Weight Pruning using SLR
Consider a DNN with N layers indexed by n ∈ 1, ..., N ,
where the weights at layer n are denoted by Wn.

The objective is to minimize the loss function subject to
constraints on the cardinality of weights within each layer
n (the number of nonzero weights should be less than or
equal to the predefined number ln): min

Wn

f
(
Wn

)
+∑N

n=1 gn(Wn), where the first term represents the nonlin-
ear smooth loss function and the other represents the non-
differentiable “cardinality” penalty term [Zhang et al., 2018]
with gn(·) being the indicator function:

gn(Wn) =

{
0 if card(Wn) ≤ ln, n = 1, . . . , N,

+∞ otherwise.

In its entirety, the problem cannot be solved ei-
ther analytically or by using the stochastic gradient de-
scent. To enable the decomposition into smaller manage-
able subproblems, duplicate variables are introduced and
the problem is equivalently rewritten as: min

Wn

f
(
Wn

)
+∑N

n=1 gn(Zn), subject to Wn = Zn, n = 1, . . . , N. To
solve the problem, constraints are first relaxed by introduc-
ing Lagrangian multipliers and their violations are penalized
by using quadratic penalties. The resulting Augmented La-
grangian function [Boyd et al., 2011; Zhang et al., 2018] of
the above optimization problem is this given by

Lρ
(
Wn,Zn,Λn

)
= f

(
Wn

)
+

N∑
n=1

gn(Zn)

+

N∑
n=1

tr[ΛT
n (Wn − Zn)] +

N∑
n=1

ρ

2
‖Wn − Zn‖2F ,

(1)

where Λn is a matrix of Lagrangian multipliers (dual vari-
ables) corresponding to constraints Wn = Zn, and has the
same dimension as Wn. The positive scalar ρ is the penalty
coefficient, tr(·) denotes the trace, and ‖ · ‖2F denotes the
Frobenius norm.

In the following, motivated by decomposibility enabled by
SLR [Bragin et al., 2015], which overcame all major difficul-
ties of standard Lagrangian Relaxation, with much alleviated
zigzagging and guaranteed convergence, the relaxed problem
will be decomposed into two manageable subproblems, and
the subproblems will then be efficiently coordinated by La-
grangian multipliers.
Step 1: Solve “Loss Function” Subproblem for Wn by us-
ing Stochastic Gradient Decent. At iteration k, for given
values of multipliers Λk

n, the first “loss function” subproblem
is to minimize the Lagrangian function, while keeping Zn at
previously obtained values Zk−1n as

min
Wn

Lρ
(
Wn,Z

k−1
n ,Λn

)
. (2)

Since the regularizer is a differentiable quadratic norm, and
the loss function is differentiable, the subproblem can be
solved by stochastic gradient descent (SGD) [Bottou, 2010].
To ensure that multipliers updating directions are “proper,”
the following “surrogate” optimality condition needs to be
satisfied following [Bragin et al., 2015, p. 179, eq. (12)]:

Lρ
(
Wk

n,Z
k−1
n ,Λk

n

)
< Lρ

(
Wk−1

n ,Zk−1n ,Λk
n

)
. (3)
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If (3) is satisfied, multipliers are updated following [Bragin
et al., 2015, p. 179, eq. (15)] as:

Λ′
k+1
n :=Λk

n + s′k(Wk
n − Zk−1n ). (4)

where stepsizes are updated as [Bragin et al., 2015, p. 180,
eq. (20)] as

s′k =αk
sk−1||Wk−1 − Zk−1||
||Wk − Zk−1||

. (5)

Step 2: Solve “Cardinality” Subproblem for Zn through
Pruning by using Projections onto Discrete Subspace.
The second “cardinality” subproblem is solved with respect
to Zn while fixing other variables at values Wk

n as

min
Zn

Lρ
(
Wk

n,Zn,Λ
′k+1
n

)
. (6)

Since gn(·) is the indicator function, the globally optimal so-
lution of this problem can be explicitly derived as [Boyd et
al., 2011]:

Zkn = ΠSn

(
Wk

n +
Λ′

k+1
n

ρ

)
, (7)

where ΠSn(·) denotes the Euclidean projection onto the set
Sn = {Wn | card(Wn) ≤ ln}, n = 1, . . . , N .

To ensure that multipliers updating directions are “proper,”
the following “surrogate” optimality condition needs to be
satisfied:

Lρ
(
Wk

n,Z
k
n,Λ

′k+1
n

)
< Lρ

(
Wk

n,Z
k−1
n ,Λ′

k+1
n

)
(8)

Once (8) is satisfied,1 multipliers are updated as:

Λk+1
n :=Λ′

k+1
n + sk(Wk

n − Zkn), (9)

where stepsizes are updated as

sk =αk
s′k||Wk−1 − Zk−1||
||Wk − Zk||

, (10)

where stepsize-setting parameters [Bragin et al., 2015, p.
188, eq. (67)] are:

αk =1− 1

M × k(1− 1
kr )

,M > 1, 0 < r < 1. (11)

The algorithm of the new method is presented below:

1If condition (8) is not satisfied, the subproblems (2) and (6) are
solved again by using the latest available values for Wn and Zn.

Algorithm 1 Surrogate Lagrangian Relaxation

1: Initialize W0
n,Z

0
n,Λ

0
n and s0

2: while Stopping criteria are not satisfied do
3: 1 solve subproblem (2),
4: if surrogate optimality condition (3) is satisfied then
5: keep Wk

n,Z
k
n, and update multipliers Λk

n per (4) ,
6: else
7: keep Wk

n,Z
k
n, do not update multipliers Λk

n,
8: end if
9: 2 solve subproblem (6),

10: if surrogate optimality condition (8) is satisfied then
11: keep Wk

n,Z
k
n, and update multipliers Λk

n per (9) ,
12: else
13: keep Wk

n,Z
k
n, do not update multipliers Λk

n,
14: end if
15: end while

The theoretical results are summarized below:
Theorem. Sufficient Condition for Convergence of the
Method: Assuming for any integer number κ there exists
k > κ such that surrogate optimality conditions (3) and (8)
are satisfied, then under the stepsizing conditions (5) and
(10)-(11), the Lagrangian multipliers converge to their opti-
mal values Λ∗n that maximize the following dual function:

q(Λ) ≡ min
Wn,Zn

Lρ
(
Wn,Zn,Λn

)
. (12)

Proof. The proof will be based on that of [Bragin et al.,
2015]. The major difference in the original SLR method [Bra-
gin et al., 2015] and the SLR method of this paper is the pres-
ence of quadratic terms within the Lagrangian function (1).

It should be noted that the weight pruning problem can be
equivalently rewritten in a generic form as:

min
X

F(X), s.t. G(X) = 0. (13)
where X collectively denotes the decision variables
{Wn,Zn} and

F(X) ≡ f
(
Wn

)
+

N∑
n=1

gn(Zn) +
N∑
n=1

ρ

2
‖Wn − Zn‖2F ,

G(X) ≡Wn − Zn, n = 1, . . . , N.
(14)

The feasible set of (13) is equivalent to that of the orig-
inal model compression problem. Feasibility requires that
Wn = Zn, which makes the term ρ

2‖Wn − Zn‖2F within
(13) disappear. Therefore, the Lagrangian function that cor-
responds to (13) is the Augmented Lagrangian function (1) to
the original model compression problem. Furthermore, the
surrogate optimality conditions (3) and (8) are the surrogate
optimality conditions that correspond to the Lagrangian func-
tion F(X) + ΛG(X) that corresponds to the problem (13).
Therefore, since within the original SLR [Bragin et al., 2015,
Prop. 2.7, p. 188] convergence was proved under conditions
on stepsizes (5) and (10)-(11) and the satisfaction of surrogate
optimality conditions, both of which are satisfied here, mul-
tipliers converge to their optimal values for the model com-
pression under consideration as well.
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This is a major result in machine learning since this is the
first application of the SLR method to guarantee theoretical
convergence of the model compression problem while han-
dling discrete variables as well as the quadratic terms. In fact,
owing to quadratic terms, the method inherits nice conver-
gence properties similar to those of Augmented Lagrangian
Relaxation (ALR) (fast reduction of constraint violations) and
to those of SLR (fast and guaranteed convergence without
much of zigzagging of multipliers and the need of the so-
called “optimal dual value” [Bragin et al., 2015]) thereby
leading to unparalleled performance as compared to other
methods.

The SLR method enjoys the benefits of efficient subprob-
lem solution coordination with guaranteed convergence made
possible by stepsizes (5) and (10)-(11) approaching zero
(without this requirement, multipliers (9) would not exhibit
convergence), and by the satisfaction of surrogate surrogate
optimality conditions (3) and (8) ensuring that multipliers are
updated along “good” directions. In Section 4, it will be
verified empirically that there always exists iteration κ af-
ter which the “surrogate” optimality conditions are satisfied
thereby ensuring that the multipliers approach their optimal
values during the entire iterative process.

The SLR method also benefits from the independent and
systematic adjustment of two hyper-parameters: penalty co-
efficient ρ and the stepsize sk. In contrast, other coordina-
tion methods are not designed to handle discrete variables
and other types of non-convexities. For example, ADMM do
not converge when solving non-convex problems [Boyd et al.,
2011, p. 73] because stepsizes ρ within the method does not
converge to zero. Lowering stepsizes to zero within ADMM
would also lead to decrease of the penalty coefficient, thereby
leading to slower convergence.

4 Evaluation

In this section, we discuss our experimental results for image
classification and object detection tasks.

4.1 Experimental Setup

All of the baseline models we use and our code in image
classification tasks are implemented with PyTorch 1.6.0 and
Python 3.6. For our experiments on COCO 2014 dataset, we
used Torch v1.6.0, pycocotools v2.0 packages. For our exper-
iments on TuSimple lane detection benchmark dataset2, we
used Python 3.7 with Torch v1.6.0, and SpConv v1.2 package.
We conducted our experiments on Ubuntu 18.04 and using
Nvidia Quadro RTX 6000 GPU with 24 GB GPU memory.
We used 4 GPU nodes to train our models on the ImageNet
dataset.

We start by pruning the pretrained models through SLR
training. Afterwards, we perform hard-pruning on the model,
completing the compression phase. We report the overall
compression rate (or the percentage of remaining weights)
and prediction accuracy.

2https://github.com/TuSimple/tusimple-benchmark

4.2 Evaluation on Image Classification Tasks
Models and Datasets. We used ResNet-18, ResNet-50,
ResNet-56, ResNet-110 [He et al., 2016] and VGG-16 [Si-
monyan and Zisserman, 2014] on CIFAR-10. On ImageNet
ILSVRC 2012 benchmark, we use ResNet-18, ResNet-50
[He et al., 2016] and MobileNetV2 [Sandler et al., 2018]. We
use the pretrained ResNet models on ImageNet from Torchvi-
sion’s “models” subpackage. The accuracy of the pretrained
baseline models we used are listed in Table 1.
Training Settings. In all experiments we used ρ = 0.1.
In CIFAR-10 experiments, we used a learning rate of 0.01,
batch size of 128 and ADAM optimizer during training.
On ImageNet, we used a learning rate of 10−4, batch size
of 256 and SGD optimizer. For a fair comparison of SLR
and ADMM methods, we used the same number of training
epochs and sparsity configuration for both methods in the
experiments.

Table 1 shows our comparison of SLR and ADMM on
CIFAR-10 and ImageNet benchmark. Here, SLR parameters
are set as M = 300, r = 0.1 and s0 = 10−2. After SLR
and ADMM training, final hardpruning is performed and the
hardpruning accuracy is reported without any additional re-
training, given a limited budget of training epochs. According
to our results, SLR outperforms ADMM method in terms of
accuracy under the same compression rate. With higher com-
pression rates, CIFAR-10 results show higher gap in accuracy
between SLR and ADMM.

Baseline
(%) Epoch ADMM

(%)
SLR
(%)

Comp.
Rate

CIFAR-10
ResNet-18 93.33 40 72.84 89.93 8.71×
ResNet-50 93.86 50 78.63 88.91 6.57×
VGG-16 93.27 110 69.05 87.31 12×

ResNet-56 93.39 30 90.5 92.3 6.5×
ResNet-110 93.68 30 89.71 92.31 9.7×
ImageNet
ResNet-18 69.7 / 89.0 40 58.9 / 81.7 60.9 / 84.4 6.5×
ResNet-50 76.1 / 92.8 30 64.8 / 85.1 65.9 / 87.5 3.89×

MobileNetV2 71.8 / 91.0 60 61.8 / 84.3 63.2 / 85.5 1.76×

Table 1: Comparison of SLR and ADMM on CIFAR-10 and Ima-
geNet datasets. ImageNet results show Top-1 / Top-5 accuracy.

Figure 1 shows the hardpruning accuracy during SLR vs.
ADMM on CIFAR-10 and ImageNet, corresponding to Ta-
ble 1. During training, hardpruning accuracy is checked pe-
riodically. If the hardpruning accuracy meets the accuracy
criteria, the training is stopped. As seen in the figures, SLR
quickly converges and reaches the desired accuracy, almost
3× faster than ADMM on CIFAR-10. Moreover, in Figure
1c, ADMM is still below the desired accuracy even after 300
epochs of training on VGG-16, while SLR completes train-
ing in 80 epochs. Similarly, as can be seen in Figures 1f and
1g, ADMM cannot output the desired accuracy after 60 and
50 epochs of training on ImageNet, while SLR reaches the
threshold quickly.
Table 2 shows our comparison of SLR with other recent
model compression works on CIFAR-10 benchmark. We re-
port the percentage of parameters pruned after SLR training
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(a) ResNet-18 on CIFAR-10.
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(b) ResNet-50 on CIFAR-10.
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(c) VGG-16 on CIFAR-10.
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(d) ResNet-56 on CIFAR-10.
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(e) ResNet-110 on CIFAR-10.
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(f) ResNet-18 on ImageNet.
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(g) ResNet-50 on ImageNet.

Figure 1: Hardpruning accuracy after SLR and ADMM training on CIFAR-10 and ImageNet benchmarks. Accuracy is reported periodically
and training is stopped when desired accuracy is reached.

Model Method Acc.
(%)

Params
Pruned

(%)

VGG-16

SLR 91.2
90AMC [He et al., 2018] 91.0

L0 [Louizos et al., 2018] 80.0
SLR 93.1 60One-shot pruning[Liu et al., 2019] 92.4
SLR 93.2 50Iter. Prun. [Han et al., 2015] 92.2

ResNet-18 SLR (at 20k iterations) 89.9 88.6Iter. prun. [Frankle and Carbin, 2018] 75.0

ResNet-50 SLR 93.6 60AMC [He et al., 2018] 93.5

ResNet-56 SLR 92.3 84.4
GSM [Ding et al., 2019] 94.1 85.0
Group Sparsity [Li et al., 2020b] 92.65 79.2
[Zhao et al., 2019] 92.26 20.49
GAL-0.6 [Lin et al., 2019] 93.38 11.8
[Li et al., 2016] 93.06 13.7
NISP [Yu et al., 2018] 93.01 42.6
KSE [Li et al., 2019] 93.23 54.73
DHP-50 [Li et al., 2020a] 93.58 41.58

Table 2: SLR performance comparison with VGG-16, ResNet-18,
ResNet-50 and ResNet-56 on CIFAR-10.

and the final accuracy. We start training the networks with a
learning rate of 0.1 decreasing the learning rate by a factor
of 10 at epochs 80 and 100. On ResNet-18, we compare our
result at only 20k iterations. For VGG-16 and ResNet-50, we
observe that SLR can achieve up to 60% pruning with less
than 1% accuracy drop.

4.3 Evaluation on Object Detection Tasks
Models and Datasets. We used YOLOv3 and YOLOv3-
tiny models [Redmon and Farhadi, 2018] on COCO 2014
benchmark. We used and followed the publicly available Ul-
tralytics repository3 for YOLOv3 and its pretrained models.
For lane detection experiment, we used the pretrained model
from Ultra-Fast-Lane-Detection [Qin et al., 2020] on TuSim-
ple lane detection benchmark dataset.

Training Settings. In all experiments we used ρ = 0.1. We
set SLR parameters asM = 300, r = 0.1 and s0 = 10−2. We
follow the same training settings provided by the repositories
we use. Finally, we use the same number of training epochs
and sparsity configuration for ADMM and SLR.

Testing Settings. On YOLOv3 models, we calculate the
COCO mAP with IoU = 0.50 with image size of 640 for
testing. On lane detection experiments, evaluation metric is
“accuracy”, which is calculated as

∑
clip Cclip∑
clip Sclip

, where Cclip is
the number of lane points predicted correctly and Sclip is the
total number of ground truth in each clip.

Our comparison of SLR and ADMM methods on COCO
dataset is shown in Table 3. We have compared the two meth-
ods under 3 different compression rates for YOLOv3-tiny and
tested YOLOv3-SPP pretrained model with a compression
rate of 1.98×. We can see that the model pruned with SLR
method has higher accuracy after hard-pruning in all cases.

3https://github.com/ultralytics/yolov3
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At a glance at YOLOv3-tiny results, we observe that the ad-
vantage of SLR is higher with an increased compression rate.

Architecture Epoch Method Hardpruning
mAP

Comp.
Rate

15 ADMM 35.2 1.19×SLR 36.1
YOLOv3-tiny
(mAP = 37.1) 20 ADMM 32.2 2×SLR 36.0

25 ADMM 25.3 3.33×SLR 35.4
YOLOv3-SPP
(mAP = 64.4) 15 ADMM 41.2 2×SLR 53.2

Table 3: ADMM and SLR training results with YOLOv3 on COCO.

In compression rate 3.33× on YOLOv3-tiny, given a limit
of 25 epochs, we can observe that the gap between ADMM
and SLR is much higher, which is the due to the faster con-
vergence of SLR as shown in Figure 2b. Similarly, Figure
2a shows the mAP progress of YOLOv3 during SLR and
ADMM training for 50 epochs, pruned with 2× compression.
SLR reaches the mAP threshold only at epoch 15.
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(a) YOLOv3.
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(b) YOLOv3-tiny.

Figure 2: Hardpruning accuracy of YOLOv3 and YOLOv3-tiny. Ac-
curacy is reported every 5 epochs and training is stopped when meth-
ods reach the accuracy threshold.

Table 4 reports our result for the Lane Detection task on
TuSimple lane detection benchmark after 40 epochs of train-
ing and 5 epochs of masked-retraining. We conducted exper-
iments under 8 different compression rates. Similarly, Fig-
ure 3 illustrates the accuracy gap between ADMM and SLR
methods after hard pruning as compression rate increases.

Compression Hardpruning Acc. (%) Retraining Acc. (%)
ADMM SLR ADMM SLR

1.82× 92.49 94.64 94.28 94.63
2.54× 92.25 94.56 94.04 94.93
4.21× 90.97 94.66 94.18 94.68
12.10× 88.41 94.51 94.45 94.7
16.85× 78.75 94.55 94.23 94.65
22.80× 67.79 94.62 94.08 94.55
35.25× 57.05 93.93 93.63 94.34
77.67× 46.09 89.72 88.33 90.18

Table 4: SLR pruning results with ResNet-18 on TuSimple bench-
mark through different compression rates.
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Figure 3: Hardpruning accuracy on TuSimple benchmark with
ADMM vs. SLR training for several compression rates. SLR has
a greater advantage over ADMM as compression rate increases.

From Figure 3, our observation is that for a small com-
pression rate such as 1.82×, SLR has little advantage over
ADMM in terms of hardpruning accuracy. However, as the
compression rate increases, SLR starts to perform better than
ADMM. For example, SLR survives 77.67× compression
with slight accuracy degration and results in 89.72% accuracy
after hardpruning while ADMM accuracy drops to 46.09%.
This demonstrates that our SLR-based training method has a
greater advantage over ADMM especially in higher compres-
sion rates, as it achieves compression with less accuracy loss
and reduces the time required to retrain after hard-pruning.

Finally, in Figure 4, we show the difference between
weights of one layer before and after pruning with SLR
and ADMM. In Figure 4a, we show the initial (non-pruned)
weights and then show the sparsity of weights under the same
compression rate (77×) with SLR and ADMM. Initially, the
layer has low sparsity. After training with SLR and ADMM,
we can see an increased number of zeroed-weights. SLR
moves towards the desired sparsity level faster than ADMM.
In Figure 4b, we compare the sparsity of weights under the
same accuracy (89.0%). It can be observed that SLR signifi-
cantly reduced the number of non-zero weights and ADMM
has more non-zero weights remaining compared with SLR.

4.4 Ablation Studies
We conducted several experiments to observe SLR behavior
with respect to SLR parameters ρ, s0, r and M on ResNet-
18 model (93.33% accuracy) and CIFAR-10. We pruned the
model through SLR training for 50 epochs with a compres-
sion rate of 8.71× and observed the hardpruning accuracy
every 10 epochs. Figure 5 shows the accuracy of the model
through SLR training based on the different values of s0, M
and r. Based on the hardpruning accuracy throughout train-
ing, it can be seen that, even though the parameters do not
have a great impact on the end result, choice of s0 can im-
pact the convergence of the model. From Figure 5a, we can
state that s0 = 10−2 provides higher starting accuracy and
converges quickly. Figure 5b and Figure 5c demonstrate the
impact of M and r on the hardpruning accuracy respectively.
Figure 6 demonstrates that there exists iteration κ (as required
in the Theorem) so that the surrogate optimality condition, the
high-level convergence criterion of the SLR method, is satis-
fied during training with s0 = 10−2, ρ = 0.1 thereby sig-
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(a) Weights before after pruning with SLR (middle) and ADMM (right) under the same compression rate
(77.6×).

(b) Weights before and after pruning with SLR (middle) and ADMM (right) under the same accuracy
(89.0%).

Figure 4: Heatmap of ResNet-18 weights on TuSimple benchmark before and after pruned with and ADMM. Weights are more zeroed out
with SLR compared to ADMM.
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Figure 5: Hardpruning accuracy of ResNet-18 on CIFAR-10 during
SLR training with respect to different values of s0, M and r.

nifying that “good” multiplier-updating directions are always
found. For example, after the conditions are violated at epoch
9, there exits κ = 10 so that at iteration 11, after κ = 10, the
surrogate conditions are satisfied again.

5 Conclusions
In this paper, we presented the DNN weight-pruning prob-
lem as a non-convex optimization problem by adopting the
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Figure 6: Surrogate optimality condition satisfaction graph during
the SLR training of ResNet-18 on CIFAR-10 for 50 epochs (1: sat-
isfied, 0: not satisfied). The condition is satisfied periodically.

cardinality function to induce weight sparsity. By using the
SLR method, the relaxed weight-pruning problem is decom-
posed into subproblems, which are then efficiently coordi-
nated by updating Lagrangian multipliers, resulting in fast
convergence. We conducted weight-pruning experiments on
image classification and object detection tasks to compare our
SLR method against ADMM. We observed that SLR has a
significant advantage over ADMM under high compression
rates and achieves higher accuracy during weight pruning.
SLR reduces the accuracy loss caused by the hard-pruning
and so shortens the retraining process. With the effective op-
timization capabilities through coordination with clear advan-
tages shown from several examples, the SLR method has a
strong potential for more general DNN-training applications.
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