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Abstract
We propose a stochastic recursive momentum
method for Riemannian non-convex optimization
that achieves a nearly-optimal complexity to find
epsilon-approximate solution with one sample. The
new algorithm requires one-sample gradient eval-
uations per iteration and does not require restart-
ing with a large batch gradient, which is commonly
used to obtain a faster rate. Extensive experiment
results demonstrate the superiority of the proposed
algorithm. Extensions to nonsmooth and con-
strained optimization settings are also discussed.

1 Introduction
We consider the problem of expectation (online) minimiza-
tion over a Riemannian manifoldM:

min
x∈M

F (x) := Eω[f(x, ω)], (1)

where F : M −→ R is a sufficiently smooth and potentially
non-convex function. When ω can be finitely sampled from
its support Ω, problem (1) reduces to empirical risk (finite-
sum) minimization, minx∈M F (x) := 1

n

∑n
i=1 fi(x), where

n is the number of component functions.
In this paper, we focus on the case where full gradient of

F (x) is inaccessible as in online setting or when n is ex-
tremely large under finite-sum setting. Riemannian optimiza-
tion is ubiquitous in a variety of contexts. For example, prin-
cipal component analysis (PCA) and matrix completion can
be formulated on Grassmann manifold [Kasai et al., 2018].
In image processing, the tasks of diffusion tensor imaging
segmentation and clustering can be cast on symmetric posi-
tive definite (SPD) manifold [Cheng et al., 2012]. Joint di-
agonalization for independent component analysis (ICA) is
a problem over Stiefel manifold, which is useful for signal
separation [Theis et al., 2009].

Riemannian geometry provides the minimal ingredients
that allow unconstrained optimization methods to be prop-
erly defined. A default solver to problem (1) is Riemannian
stochastic gradient descent (RSGD) [Bonnabel, 2013], which
is a generalization of classic SGD [Robbins and Monro,
1951]. Recently, SGD with coordinate-wise adaptive learning
rates has become predominately popular within Deep Learn-
ing community, such as RMSProp [Tieleman and Hinton,

2012] and Adam [Kingma and Ba, 2014]. These variants have
been proved to improve robustness and escape saddle points
faster [Staib et al., 2019]. Under Riemannian optimization,
the lack of a canonical coordinate system and the highly non-
linear geometry make it difficult to extend such adaptation ef-
fectively. Regardless, Roy et al. (2018) proposed constrained
SGD with momentum (cSGD-M) and constrained RMSProp
(cRMSProp) that adapt learning rates by coordinate-wise op-
erations on matrix manifolds. However unlike Euclidean
space, parallelly transporting past gradients will likely dis-
tort gradient features, such as sparsity. Also, no convergence
guarantee has been provided. Bécigneul and Ganea (2018)
generalized Adam-like adaptation and momentum to a prod-
uct of Riemannian manifolds (referred to as RADAM and
RAMSGRAD). Li et al. (2020) introduced Cayley-Adam
tailored for Stiefel manifold, exploiting its unique geometry.
The only work that proves non-convex convergence on matrix
manifolds is [Kasai et al., 2019], where they proposed RASA
that adapts row and column subspaces of underlying mani-
fold, ensuring a convergence rate of Õ(1/

√
T ). This matches

that of RSGD up to a logarithmic factor.
Although SGD-based methods enjoy low sampling cost,

i.e. O(1) per iteration (one-sample), the main bottleneck
that slows down convergence is the unvanished gradient vari-
ance. For this problem, variance reduction (VR) techniques
are gaining increasing attention. Many methods, including
Riemannian stochastic variance reduced gradient (RSVRG)
[Sato et al., 2019], stochastic recursive gradient (RSRG) [Ka-
sai et al., 2018], stochastic path-integrated differential esti-
mator (RSPIDER) [Zhou et al., 2019] are generalized from
their Euclidean versions. The main idea is to correct for
stochastic gradient deviation by periodically computing a
large batch gradient. As a result, gradient variance decreases
as training progresses. Besides finite-sum optimization, Rie-
mannian VRs also enjoy favourable complexity under online
setting [Zhou et al., 2019; Han and Gao, 2020]. Specifically,
RSVRG requiresO(ε−10/3) stochastic gradient queries to re-
turn an ε-approximate solution (see Definition 1), which im-
proves on O(ε−4) of RSGD. RSRG and RSPIDER require
an even lower complexity of O(ε−3). This rate has been
proved to be optimal for stochastic optimization on Euclidean
space under an additional mean-squared smoothness assump-
tion [Arjevani et al., 2019].

Nevertheless, these online VR methods still require com-
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Complexity Large Batch Small Batch Restarting Manifold types
RSRG/RSPIDER

[Han and Gao, 2020; Zhou et al., 2019] O(ε−3) O(ε−2) O(ε−1) Yes General

RSGD
[Hosseini and Sra, 2017] O(ε−4) — O(1) No General

RASA
[Kasai et al., 2019] Õ(ε−4) — O(1) No Matrix manifolds

RSRM (this work) Õ(ε−3) O(1) O(1) No General

Table 1: Comparison of methods for Riemannian online non-convex optimization

puting a large batch gradient, i.e. O(ε−2), for each epoch and
the mini-batch size for each inner iteration should also be at
least O(ε−1). Therefore, we introduce a novel online vari-
ance reduction method, inspired by a recently proposed re-
cursive momentum estimator [Cutkosky and Orabona, 2019].
Our contributions are summarized below.

• We propose a Riemannian stochastic recursive momen-
tum (RSRM) method that achieves a gradient com-
plexity of Õ(ε−3) for online non-convex optimization,
matching the lower bound up to a logarithmic factor.

• RSRM requires only O(1) gradient computations per it-
eration and does not need restarting with a large batch
gradient. Thus, our method preserves the efficiency of
SGD while achieving fast convergence as VR methods.

• Our convergence result holds for general manifolds
while other online adaptive methods apply to restricted
manifold types, such as matrix manifolds [Roy et al.,
2018; Kasai et al., 2019], product manifolds [Bécigneul
and Ganea, 2018] and Stiefel manifold [Li et al., 2020].

• Our algorithm does not adapt learning rate as in
[Cutkosky and Orabona, 2019], therefore resulting in a
simplified convergence analysis that does not need gra-
dient Lipschitz assumption. This also benefits practical
implementation by reducing the number of hyperparam-
eters. Extensive experiments confirm that our method
significantly outperforms other one-sample methods.

The rest of this paper is organized as follows. Section 2 in-
troduces some useful definitions, notations and assumptions
used for convergence analysis. Section 3 describes our pro-
posed algorithm and highlights its relations with RSGD, vari-
ance reduction and stochastic momentum. Section 4 presents
convergence analysis for RSRM and Section 5 evaluates the
proposed method on a variety of tasks and manifolds.

2 Preliminaries
Riemannian manifold is a manifold with a smooth inner prod-
uct 〈·, ·〉x : TxM × TxM −→ R defined on tangent space
TxM for every x ∈ M. The induced norm on TxM is
‖u‖x :=

√
〈u, u〉x. Retraction Rx : TxM −→ M maps

a tangent vector to manifold surface satisfying Rx(0) = x
and DRx(0)[u] = u. The retraction curve is defined as
c(t) := Rx(tξ) for ξ ∈ TxM. Denote y = Rx(ξ). Then vec-
tor transport T yx (or equivalently Tξ) with respect to retraction
R maps u ∈ TxM to T yx u ∈ TyM along the defined retrac-
tion curve c(t). Exponential map Expx is a special instance

of retraction by restricting retraction curve to be a geodesic.
Similarly, as a special case of vector transport, parallel trans-
port P yx transports a tangent vector in ‘parallel’ while pre-
serving its norm and direction. In this paper, we consider
the more general and computationally efficient retraction and
vector transport. Therefore our results can be trivially applied
to exponential map and parallel transport (See Appendix).
Implicitly, we consider only isometric vector transport T yx ,
which satisfies 〈u, v〉x = 〈T yx u, T yx v〉y for all u, v ∈ TxM.
Notations. For the discussions that follow, we omit the sub-
script for norm and inner product, which should be clear from
the contexts. We define a sampling set S = {ω1, ..., ω|S|}
with cardinality |S|. Each ω(·) is sampled independently
from Ω. We thus denote the Riemannian stochastic gradient
gradfS(x) := 1

|S|
∑
ω∈S gradf(x, ω) ∈ TxM. We denote

g(t) = O(h(t)) if there exists a positive constant M and t0
such that g(t) ≤Mh(t) for all t ≥ t0. We use Õ(·) to further
hide poly-logarithmic factors. We refer to ‖ · ‖ as the induced
norm on tangent space of Riemannian manifold. Now we are
ready to make some assumptions as follows.
Assumption 1. Iterates generated by RSRM stay continu-
ously in a neighbourhood X ⊆ M that contains an opti-
mal point x∗. The objective F is continuously differentiable
and has bounded suboptimality. That is, for all x ∈ X ,
F (x)− F (x∗) ≤ ∆, with ∆ ≥ 0.
Assumption 2. Stochastic gradient gradf(x, ω) is unbiased
and has bounded variance. That is, for all x ∈ X , ω ∈ Ω, it
satisfies that

Eωgradf(x, ω) = gradF (x), and

Eω‖gradf(x, ω)− gradF (x)‖2 ≤ σ2.

Assumption 3. The objective F is retraction L-smooth with
respect to retraction R. That is, there exists a positive con-
stant L such that for all x, y = Rx(ξ) ∈ X , we have

F (y) ≤ F (x) + 〈gradF (x), ξ〉+
L

2
‖ξ‖2.

These three assumptions are standard in Riemannian
stochastic gradient methods [Hosseini and Sra, 2017; Kasai
et al., 2018]. Note that the assumption of bounded iterates in
neighbourhoodX can be made with respect to the entire man-
ifoldM, which results in stricter conditions on the retraction
and vector transport in the following assumptions. To en-
sure retraction L-smoothness as in Assumption 3, we require
an upper-bounded Hessian property on the pullback function
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F ◦R : TxM−→ R. That is, for all x ∈ X and u ∈ TxMwith
unit norm, d

2F (Rx(tu))
dt2 ≤ L. In the work of RASA [Kasai et

al., 2019], the variance bound in Assumption 2 is replaced
by G-gradient Lipschitz, which requires ‖gradf(x, ω)‖ ≤ G.
This, however, amounts to a stronger assumption.

According to [Arjevani et al., 2019], under the first three
assumptions, SGD is minimax optimal. To obtain faster con-
vergence, one further assumption of mean-squared retrac-
tion Lipschitz is required. This assumption is a straightfor-
ward generalization of mean-squared Lipschitz on Euclidean
space, which is the minimal additional requirement to achieve
the complexity lower bound.
Assumption 4. The objective F is mean-squared retraction
L̃ Lipschitz. That is, there exists a positive constant L̃ such
that for all x, y = Rx(ξ) ∈ X , ω ∈ Ω,

Eω‖gradf(x, ω)− T xy gradf(y, ω)‖2 ≤ L̃2‖ξ‖2

holds with vector transport T yx along the retraction curve
c(t) := Rx(tξ).

Note that the standard assumption of retraction Lipschitz-
ness is made with respect to parallel transport and one addi-
tional assumption that bounds the difference between vector
transport and parallel transport is needed for Assumption 4 to
hold [Han and Gao, 2020]. In this work, algorithm complex-
ity is measured by the number of stochastic first order oracles
to achieve ε-approximate solution, defined as follows.
Definition 1 (ε-approximate solution and SFO). ε-
approximate solution by a stochastic algorithm is an
output x such that E‖gradF (x)‖2 ≤ ε2. One stochastic first-
order oracle (SFO) outputs a stochastic gradient gradf(x, ω)
given inputs x and ω drawn from Ω.

3 Algorithms
3.1 RSGD — Variance Reduction and Momentum
Riemannian stochastic gradient makes the following retrac-
tion update: xt+1 = Rxt

(−ηtgradfSt(xt)). This allows up-
dates to follow the negative gradient direction while staying
on the manifold. Variance reduction techniques utilize past
gradient information to construct a modified gradient estima-
tor with decreasing variance. In particular, the recursive gra-
dient estimator in RSRG/RSPIDER achieves the optimal rate
of O(ε−3). That is, for each outer loop, a large batch gradi-
ent is computed as d0 = gradfS0(x0), where |S0| is set to
n under finite-sum setting and O(ε−2) under online setting.
Within each inner iteration, stochastic gradient is corrected
recursively based on its previous iterate:

dt = gradfSt(xt)− T xt
xt−1

(gradfSt(xt−1)− dt−1), (2)

where vector transport T xt
xt−1

is necessary to relate gradients
on disjoint tangent spaces. To achieve the optimal complex-
ity, mini-batch size |St| is set to be at least O(ε−1). This
choice of batch size can become very large, especially when
we desire more accurate solutions.

On the other hand, stochastic gradient with momentum is
not new on Euclidean space, while the first paper that presents
such an idea on Riemannian manifold is [Roy et al., 2018].

Algorithm 1 Riemannian SRM

1: Input: Step size ηt, recursive momentum parameter ρt,
Initial point x1.

2: Compute d1 = gradfS1(x1).
3: for t = 1, ..., T do
4: Update xt+1 = Rxt

(−ηtdt).
5: Compute dt+1 = gradfSt+1

(xt+1) + (1 −
ρt+1)T xt+1

xt (dt − gradfSt+1
(xt)).

6: end for
7: Output: x̃ uniformly chosen at random from {xt}Tt=1.

They simply take a combination of current stochastic gradient
and transported momentum, given as

dt = ρtT xt
xt−1

dt−1 + (1− ρt)gradfSt(xt), (3)

where ρt is commonly set to be 0.9. This idea has then
been used in generalizing Adam and AMSGrad to Rieman-
nian optimization [Bécigneul and Ganea, 2018], where they
only established convergence on a product of manifolds for
geodesically convex functions. Even on Euclidean space, the
effectiveness of stochastic momentum over vanilla SGD has
remained an open question.

3.2 Proposed RSRM
Our proposed RSRM is given in Algorithm 1 where we ex-
tend the recursive momentum estimator, originally introduced
in [Cutkosky and Orabona, 2019; Tran-Dinh et al., 2019]:

dt = ρtgradfSt(xt) + (1− ρt)
(
gradfSt(xt)

− T xt
xt−1

(gradfSt(xt−1)− dt−1)
)

(4)

= gradfSt(xt) + (1− ρt)T xt
xt−1

(
dt−1 − gradfSt(xt−1)

)
,

which hybrids stochastic gradient with the recursive gradi-
ent estimator in (2) for ρt ∈ [0, 1]. This can be also viewed
as combining momentum estimator in (3) with a scaled dif-
ference of gradfSt(xt) − T xt

xt−1
gradfSt(xt−1). Note that we

recover vanilla RSGD when ρt = 1 and the recursive estima-
tor in (2) when ρt = 0. As we will demonstrate in Section
4, ρt should be decreasing rather than fixed, thereby enabling
a smooth transition from RSGD to RSRG. As a result, we
do not require restarting the algorithm to achieve the optimal
convergence. One remark is that the idea of transition from
SGD to VR also appears in many batch size adaptation strate-
gies [Ji et al., 2019; Han and Gao, 2020].

Compared with algorithm designs in Euclidean versions of
SRM [Cutkosky and Orabona, 2019; Tran-Dinh et al., 2019],
our formulation and parameter settings are largely different.
Specifically, Cutkosky and Orabona (2019) further adapt the
recursive momentum parameter ρt to the learning rate ηt
where the latter itself is adapted to the norm of stochastic
gradient. This is claimed to relieve the parameter tuning pro-
cess. However, they reintroduce three parameters, which are
even less intuitive to be tuned (even though some are fixed
to a default value). As shown in Section 4, we only require
tuning the initial step size η0 and initial momentum parame-
ter ρ0 (where the latter can be fixed to a good default value).
Furthermore, the adaptive step size requires a uniform gradi-
ent Lipschitz condition, the same as in [Kasai et al., 2019]
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and also a uniform smoothness assumption, which is stronger
than mean-squared smoothness in our setting. On the other
hand, Tran-Dinh et al. (2019) replaces gradfSt(xt) in (4)
with gradfBt

(xt) where Bt is independent of St. This in-
creases sampling complexity per iteration and also compli-
cates its convergence analysis. In addition, they still require a
large initial batch size |S0| = O(ε−1) while our |S0| = O(1).

4 Convergence Results
In this section, we prove convergence of RSRM. We first
present a Lemma that bounds the estimation error of the re-
cursive momentum estimator.
Lemma 1 (Estimation error bound). Suppose Assumptions 1
to 4 hold and consider Algorithm 1. Then we have

E‖dt+1 − gradF (xt+1)‖2

≤ (1− ρt+1)2
(
1 +

4η2t L̃
2

|St+1|
)
E‖dt − gradF (xt)‖2

+
4(1− ρt+1)2η2t L̃

2

|St+1|
E‖gradF (xt)‖2 +

2ρ2t+1σ
2

|St+1|
.

The proof of this Lemma can be found in Appendix where
it follows an idea similar to the bound in RSRG/RSPIDER
[Han and Gao, 2020]. The key difference is that we further
use E‖dt‖2 ≤ 2E‖dt − gradF (xt)‖2 + 2E‖gradF (xt)‖2 to
show dependence on the full gradient. Based on the claims in
[Cutkosky and Orabona, 2019], we consider ρt = O(t−2/3)
and ηt = O(t−1/3), so that E‖dt+1 − gradF (xt+1)‖2 =
O(t−2/3 + E‖gradF (xt)‖2). To see this, denote st+1 =
dt+1−gradF (xt+1). Then by noting that (1−ρt)2 ≤ 1−ρt ≤
1 and η2t ≤ ηt ≤ 1, Lemma 1 suggests that E‖st+1‖2 ≤
O(1−t−2/3)E‖st‖2+O(t−2/3)E‖gradF (xt)‖2+O(t−4/3).
Simply setting E‖st+1‖2 = E‖st‖2 yields the result. This
implies that E‖gradF (xt)‖2 = O(T−2/3), which matches
the optimal rate of convergence. This claim is stated for-
mally in the following Theorem. For simplicity, we consider
|St| = b for all t.
Theorem 1 (Convergence and complexity of RSRM). Sup-
pose Assumptions 1 to 4 hold and consider Algorithm 1 with
ηt = cη(t + 1)−1/3, ρt = cρt

−2/3 where cη ≤ 1
L and

cρ = ( 10L̃2

b + 1
3 )c2η . Then we have

E‖gradF (x̃)‖2 =
1

T

T∑
t=1

E‖gradF (xt)‖2

≤ O(
M

T 2/3
) = Õ(

1

T 2/3
),

withM := (6∆+ σ2

2L̃2
+ σ2 ln(T+1)

L̃2
)/cη . To get ε-approximate

solution, we require an SFO complexity of Õ(ε−3).
Theorem 1 claims that RSRM achieves a nearly-optimal

complexity of Õ(ε−3) with one-sample gradient, i.e. b =
O(1). And specifically under noiseless case where σ2 = 0,
we can further improve this result to the lower bound com-
plexity O(ε−3). One final remark can be made that our step
size decays at a rate of O(t−1/3), which is slower compared

to the SGD-based rate of O(t−1/2). This step size sequence
is crucial for achieving the faster convergence, coupled with
gradually reduced variance.

5 Experiments
In this section, we compare our proposed RSRM with other
one-sample online methods. The benchmark is the standard
RSGD [Bonnabel, 2013]. We also consider cSGD-M and
cRMSProp [Roy et al., 2018] where past gradients are trans-
ported by a vector transport operator. For cRMSProp, we do
not project and vector-transport its adaptation term, which is
an element-wise square of stochastic gradient. Instead, we
treat it as an element in the ambient Euclidean space and
therefore only project the resulting scaled gradient after ap-
plying this term. This modification yields the full-matrix ver-
sion of the vectorized variant of RASA and turns out to sig-
nificantly outperform its original design. Also we compare
with RAMSGRAD [Bécigneul and Ganea, 2018], which is
designed for product manifolds. We thus modify the gradient
momentum similar as in [Roy et al., 2018] while accumulat-
ing square norm of gradient instead of element-wise square.
Hence, it only adapts the step size rather than the gradient.
Finally, we consider RASA [Kasai et al., 2019] that adapts
column and row subspaces of matrix manifolds. We simi-
larly label its variants as RASA-L, RASA-R and RASA-LR
to respectively represent adapting row (left) subspace, col-
umn (right) subspace and both.

All methods start with the same initialization and termi-
nate when the maximum iteration number is reached. For
competing methods, we consider a square-root decaying step
size ηt = η0t

−1/2, suggested in [Kasai et al., 2019]. We set
the parameters of RSRM according to the theory, i.e. ηt =
η0t
−1/3 and ρt = ρ0t

−2/3. A default value of ρ0 = 0.1 pro-
vides good empirical performance. For all methods, η0 are se-
lected from {1, 0.5, 0.1, ..., 0.005, 0.001}. The gradient mo-
mentum parameter in cSGD-M and RAMSGRAD is set to be
0.9 and the adaptation momentum parameter in cRMSProp,
RAMSGRAD and RASA is set to be 0.999. We choose a
mini-batch size of 5 for RSRM and 10 for all other algorithms
to ensure an identical per-iteration cost of gradient evaluation.
The initial batch size for RSRM is fixed to be 100 (except for
the problem of ICA where it is set to be 200). All algorithms
are coded in Matlab and experiments are conducted on a lap-
top with a i5-8600 3.1GHz CPU processor.

We consider principal component analysis (PCA) on
Grassmann manifold, joint diagonalization of independent
component analysis (ICA) on Stiefel manifold and computing
Riemannian centroid (RC) on SPD manifold. Stiefel mani-
fold St(r, d) = {X ∈ Rd×r : XTX = Ir} is defined as
the set of d × r column orthonormal matrices, which is a
natural embedded submanifold of Rd×r. Grassmann mani-
fold G(r, d) is the set of r-dimensional subspaces in Rd. One
representation of Grassmann manifold is by a Stiefel matrix
X ∈ Rd×r with orthonormal columns that span the sub-
space. This representation is not unique. Indeed, any XR
for R ∈ O(r) is equivalent to X, where O(r) is the or-
thogonal group of dimension r. Hence, Grassmann manifold
can be viewed as a quotient of Stiefel manifold, written as
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Figure 1: PCA problems on Grassmann manifold

St(r, d)/O(r). Finally, SPD manifold Sd++ is the set of d× d
symmetric positive definite matrices, which forms the interior
of a convex cone embedded in Rd(d+1)/2. Manifold retrac-
tions and vector transports used in the following experiments
are discussed in Appendix.

5.1 PCA on Grassmann Manifold
Consider n samples, represented by xi ∈ Rd, i =
1, ..., n. PCA aims to find a subspace where projection
onto this subspace minimizes reconstruction error. This
defines a problem on Grassmann manifold, written as
minU∈G(r,d)

1
n

∑n
i=1 ‖xi −UUTxi‖2. We first test RSRM

on a baseline synthetic dataset (SYN1) with (n, d, r) =
(104, 102, 10). Then we increase dimension to 500 (SYN2)
and consider a higher rank case with r = 20 (SYN3). In
addition, we consider two empirical datasets, MNIST [Le-
Cun et al., 1998] with (n, d, r) = (60000, 784, 10) and COV-
TYPE from LibSVM [Chang and Lin, 2011] with (n, d, r) =
(581012, 54, 10). We measure performance in terms of the
difference between current function value to the minimum,
pre-calculated using Matlab function PCA. Convergence re-
sults and the best-tuned η0 are shown in Figure 1. We find that
RSRM consistently outperforms others on every dataset (Fig-
ure 1(a) to 1(e)). It is also observed that on ‘easy’ datasets,
such as SYN1 and SYN2, adaptive methods perform simi-
larly compared with well-tuned SGD whereas RSRM demon-
strates its clear advantage. Figure 1(f) shows that RSRM
seems to be insensitive to the initial batch size and surpris-

ingly, larger batch size provides no benefit for this problem.

5.2 ICA on Stiefel Manifold
ICA (or blind source separation) aims to recover underlying
components of observed multivariate data by assuming mu-
tual independence of source signals. Joint diagonalization
is a useful pre-processing step that searches for a pseudo-
orthogonal matrix (i.e. Stiefel matrix) [Theis et al., 2009]
by solving minU∈St(r,d)− 1

n

∑n
i=1 ‖diag(UTXiU)‖2F with

diag(A) returning diagonal elements of matrix A. The sym-
metric matrices Xi ∈ Rd×d can be time-lagged covari-
ance matrices or cumulant matrices constructed from the ob-
served signals. We consider three image datasets described
as follows. YALEB [Wright et al., 2008] collects n =
2414 face images taken from various lighting environments.
CIFAR100 [Krizhevsky et al., 2009] contains n = 60000
images of 100 objects and COIL100 [Nene et al., 1996] is
made up of n = 7200 images from 100 classes. To con-
struct covariance representations from these datasets, we first
downsize each image to 32×32 before applying Gabor-based
kernel to extract Gabor features. Then the feature information
is fused in a region covariance descriptors of size 43×43. We
choose r = d = 43 for all problems and the results are pre-
sented in Figure 2. Optimal solution is obtained by running
RSRM for sufficiently long. Similarly, we find that RSRM,
although showing slow progress at the initial epochs, quickly
converges to a lower value compared with others. This is
mainly attributed to its variance reduction nature.
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Figure 2: ICA problems on Stiefel manifold
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Figure 3: RC problems on SPD manifold

5.3 RC on SPD Manifold
Computing Riemannian centroid on SPD manifold Sd++ are
fundamental in many computer vision tasks [Cheng et al.,
2012]. The problem concerns finding a mean represen-
tation of a set of SPD matrices, Xi. The geodesic dis-
tance on Sd++ induced by Affine Invariant Riemannian Metric
(AIRM) is d2(X1,X2) = ‖ log(X

−1/2
1 X2X

−1/2
1 )‖2F where

log(·) is the principal matrix logarithm. Riemannian cen-
troid with respect to this distance is obtained by solving
minC∈Sd

++

1
n

∑n
i=1 d

2(C,Xi). We first consider a simulated
dataset consisting of n = 5000 SPD matrices in R10×10, each
with a condition number of 20. Then we test our methods
on YALEB face dataset [Wright et al., 2008] and KYLBERG
[Kylberg, 2014] dataset that consists of n = 4480 texture
images of 28 classes. For each pixel, we generate a 5-
dimensional feature vector (d = 5), including pixel inten-
sity, first-order and second-order gradients. Subsequently,
the covariance representation is similarly constructed for each
image. Convergence results are shown in Figure 3 where
the optimal solutions are calculated by Riemannian Barzilai-
Borwein algorithm [Iannazzo and Porcelli, 2018]. By exam-
ining the figures, we also verify superiority of RSRM where
it enjoys a more stable convergence due to variance reduction
and sometimes converges to a lower objective value, as shown
in Figure 3(a) and (b). For the two real datasets, cRMSProp
and RASA fails to perform comparably.

5.4 Additional Experiment Results
More experiment results are included in Appendix. To ex-
amine sensitivity of algorithm performance to different ini-
tializations, we include three additional independent runs for
each problem instance. We observe that proposed RSRM is
superior regardless of initializations and yields more robust
performance against its alternatives. We also find RSRG to
be time-efficient from the convergence plots against runtime.

6 Perspectives
Since RSRM only requires O(1) gradient queries, it is read-
ily implementable for deep learning tasks with manifold con-
straints. For example, the use of orthonormality constraint
in neural network requires optimizing over Stiefel manifold
[Li et al., 2020]. For this purpose, our algorithm can be im-
plemented in some manifold deep learning libraries, such as
McTorch [Meghwanshi et al., 2018].

More promisingly, we extend RSRM for nonsmooth and
constrained optimization on Riemannian manifolds in Ap-
pendix. We also include a complete proof roadmap for con-
vergence analysis along with necessary assumptions. With an
improved convergence guarantee, we believe RSRM can out-
perform the default Riemannian stochastic proximal gradient
and Riemannian stochastic Frank-Wolfe solvers. It is worth
mentioning that the formulations we propose are different to
standard references, which should be of interest in itself.
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